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Abstract. In this paper we propose a new generalized Rayleigh distribution different
from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of
the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely,
if X is a positive continuous random variable with a finite mean-value E(X), then a new
density is set to be f1(x) = xf(x)/E(X), where f(x) is the probability density function
of X. The new generalized Rayleigh variable is obtained using a generalized form of the
exponential distribution introduced by Isaic-Maniu and the present author as f(x).
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1. Introduction

A famous guru of SQC (Statistical Quality Control), I refer here to William Ed-

wards Deming (1900–1993), wrote in one of his books [13, p. 1] that the object of

taking data is to provide a basis for action. These data must be analyzed in the frame

of a statistical model, otherwise we deal only with a “pure raw material” whose ge-

nerating mechanisms are unknown to us. In a later work [14, p. 148], he wrote that

such a model has to be a statistical distribution personalized by a specific function

which describes the behavior of the considered characteristic of interest. Most of

these characteristics are measurable ones: “static” product quality characteristics

*The editors learnt with great sadness that Professor Viorel Vodă passed away on May 8,
2009. The galleys of this paper were therefore not proofread by the author, and the
responsibility for any typesetting inaccuracies lies solely with the editors.
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such as hardness, strength, geometric features, weights etc. or “dynamic” ones as

for instance durability or time to failure of a technical component or system.

Nowadays, the specific literature devoted to statistical distributions, especially

to those modeling various measurable variables, is extremely large. We have now

the second expanded edition of a four volume collection of the most used distri-

butions, see [31], and also some specialized monographs such as that of Patel and

Read [35] about the classical normal variable and the pioneering works of Pollard

and Rivoire [37] and Isaic-Maniu [25] on the Weibull one. From a theoretical point

of view, a specific distribution function (d.f.), or its associated probability density

function (p.d.f.), can be derived from what is called “a system of frequency curves”.

Rodriguez [40] discussed five such classical systems, namely those of Karl Pear-

son, Gram-Charlier-Edgeworth, Burr-Hatke, Johnson, and Tukey’s lambda which

are in fact: a differential equation, a series expansion, again a differential equation,

a transformation to normality and a special transformation (Rodriguez’s words, [40,

p. 218]). It is interesting to notice that there exists also an original system proposed

in 1939 by Rafaele D’Addario (1899–1974) [11] reconsidered by himself in 1969 [12]

which is in fact a functional equation involving some partially expected values of the

underlying variable (details are given by Guerrieri [21, pp. 56–57]).

Let us mention also the so-called “suprasystem of probability distributions” pro-

posed by Savageau [42] which is a set of simultaneous ordinary differential equations,

and the S-system of distributions presented by Voit [53] and defined as a four pa-

rameter ordinary differential equations which “appears to be a good candidate for

representing and analyzing failure data” ([54, p. 596]). A generalization of the Burr-

Hatke and S-system of distributions has been recently done by the present author

and posted on Gnedenko forum [52].

Another way to obtain p.d.f.’s is the one currently used in the reliability theory

via the formula f(x) = h(x) exp[−
∫

h(u) du], where integration is taken over [0, x]

and h(u) is the hazard (or failure) rate associated to the X variable representing the

time-to-failure of the given entity.

Various choices for h(u) provide a wide range of p.d.f.’s, as Blischke and Murthy

presented [6, pp. 128–129].

A linear choice, like h(u) = 2au furnishes just the Rayleigh p.d.f.

f(x) = 2ax exp(−ax2), a > 0, x > 0,

which will be one of our concerns.

A third way to derive peculiar p.d.f.’s is to consider a general multiparameter

p.d.f., as for instance the so-called generalized Gamma (GG); see Section 3 of this

paper. Then by punctual particularizations of its parameters, one may obtain some

usual (known) or quite “exotic” (less known) p.d.f.’s.
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In one monograph on statistical tolerances, I quote here that of Miloš Jílek [30,

pp. 18–27 and pp. 132–136], the Czech speaking readers (for instance) can find a

sound synthesis of some peculiar cases covered by this GG p.d.f.

In the present paper we will construct and analyze statistical properties of a new

density function via the following procedure: if X is a positive continuous ran-

dom variable with a finite mean value E(X) and f(x) is its p.d.f. then f1(x) =

xf(x)/E(X) is also a p.d.f. As a working material for f1(x) we will choose f(x) to

be a generalized variant of the exponential distribution proposed in [27].

Details will be given in the subsequent sections. We will now recall briefly some

elements which may be not widely known.

2. The classical Rayleigh distribution

The classical Rayleigh distribution was proposed in 1880 by John William

Strutt (1842–1919), better known as Lord Rayleigh (Nobel Prize in Physics, 1904),

as the distribution of the amplitude resulting from the harmonic oscillations. Its den-

sity is f(x; a) = (x/a2) exp(−x2/2a2), x > 0, a > 0, which provides a d.f. F (x; a) =

1 − exp(−x2/2a2) and a reliability function R(x; a) = 1 − F (x; a) = exp(−x2/2a2).

The main characteristics are: mean = E(X) = a(π/2)1/2 ≈ 1.253314 a; variance =

var(X) = a2(4 − π)/2 ≈ 0.429204 a2; mode = a; skewness ≈ 0.631111 and

kurtosis ≈ 3.245089.1

The usual way to generate a Rayleigh distributed variable is the following: let

M(X,Y ) be a point in a rectangular coordinate system, where X and Y are normally

distributed random variables with zero mean and the same variance a2. Then the

distance d = (X2 + Y 2)1/2 is a random element which obeys the Rayleigh law with

parameter a > 0. It is worth to notice that in a less known but still interesting

paper, Sergio Bruscantini [7, p. 103] enlists some of instances where the Rayleigh law

occurs: 1) in naval research to simulate the sea waves, 2) in telecommunications to

describe the signal fluctuations due to multipath effects in the line-of-sight links, 3)

as a model for wind speed, 4) in bombing problems to describe the distributions of

distances from target to the actual impact points.

As a curiosity, the last field of applications (bombing problems) has been largely

debated in the so-called “hottest cold war period” (approximately after 1946) when

the hysteria as regards “a probable nuclear attack on an urban center” became quite

a passion for some scholars. Hunter [23] quotes a study concerning a comparison

of estimates of nuclear bomb casualties from two different urban models: the cities

under such an imaginary attack in 1947 are Sydney and Brisbane (Australia) and

1 http://www.brighton-webs.co.uk/distributions/rayleigh.asp
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using a two dimensional Rayleigh variable the estimated number of casualities should

be 539,000 and 260,000 respectively (scaring!).

Let us focus on more peaceful illustrations. One of the main fields of applications

being that of cutting and grinding tool durability since the hazard rate function

of a Rayleigh variable is linearly increasing: this property is suitable to describe

the irreversible wear-out process of such items used in metalworking. Actual case

studies/examples may be found in [16, pp. 70–72 and 145–147] or in [18, pp. 44–59].

At the same time, linearity has obvious restrictions in describing the functional

behavior of more complex systems which exhibit often a bath tube shape of the

hazard rate. This is one of the reasons, we believe, which raised the interest in

constructing various forms which generalize the classical Rayleigh p.d.f. A short

review of some of these p.d.f.’s is presented in the next section.

3. A little bit of (quite a personal) statistical history

Some decades ago, I did publish in the Prague journal Apl. Mat. two papers (see

[48], [49]) regarding a generalized variant of the Rayleigh density function

(1) f(x; θ, k) =
2θk+1

Γ(k + 1)
x2k+1 exp(−θx2), x > 0, θ > 0, k > 0,

where Γ(u) is the well-known Gamma function

(2) Γ(u) =

∫

∞

0

tu−1e−t dt.

The form (1) includes, apart from the classical Rayleigh density (for k = 0), some

others, such as Maxwell (for k = 1
2 ) and Chi (χ) (for k = 1

2a− 1, a ∈ N, a > 2, and

θ = 1/2b2, b > 0).

Also, if we quit the positivity request for k and take k = − 1
2 and θ = 1/2σ2, σ > 0,

we obtain the “half-normal” density.

This form (1) has found its place in the well-known book of Johnson, Kotz, and

Balakrishnan [31, p. 479].

There exist a lot of density functions which may be considered generalizations of

the Rayleigh one. For instance, in a monograph by E. S. Pereverzev [36] I detected

two forms, namely

(3) F (x; k, a) = 1 − exp(−x2k/2a2), x > 0, k, a > 0,

this distribution becoming for k = 1
2 the exponential one and for k = 1 the Rayleigh

one

(4) F (x) = 1 − exp
[

− a(x − x1)
n

(x2 − x1)m

]

, x ∈ [x1, x2] ⊂ R
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with a > 0 and n,m ∈ N, which generalizes Rayleigh (m = 0, x1 = 0, n = 2, and

x ∈ [0,∞)).

The best known generalization is probably that of Waloddi Weibull (1887–1979):

(5) f(x; θ, k) = θkxk−1 exp(−θxk), x > 0, k, θ > 0,

which gives Rayleigh for k = 2.

Blischke and Murthy [6] consider that this distribution was a response to the

overused exponential model (which has a constant hazard rate h(x) = θ for k = 1)

inapplicable to strength of materials or cutting-tool durability studies, for instance.

Weibull distribution had a tremendous career amongst the practitioners. Weibull

himself collected in 1977 in a technical report of Förvarets Teletekniska Laboratorium

(in Stockholm, Sweden) a number of 1019 references (papers) and 36 titles of books

in which his model is mentioned (all these titles are only in English). Facing the

enthusiasm related to this distribution, A.C. Giorski [20] draws the attention of what

he calls “Weibull euphoria” arguing that the model is very useful but not “universal”

(one year later, Ravenis [39] just proclaimed Weibull’s model a “potentially universal

p.d.f. for scientists and engineers”. . . ).

A more general model (which includes the Weibull one) is the one called the

generalized Gamma:

(6) f(x; b, k, p) =
k

bΓ(p)
·
(x

b

)pk−1

exp
{(

−x
b

)k}

,

where x > 0, b, p, k > 0, proposed by Stacy [45], which for p = 1 becomes the Weibull

one, with bk as a scale parameter and k as a shape parameter. It is interesting to

notice that a similar form of (6) was used in 1925 by an Italian economist, Luigi

Amoroso (1886–1965), in “Annali di Matematica Pura ed Applicata” in a long paper

(No. 421, pp. 123–159) entitled “Ricerche intorno alla curva dei redditi” (Researches

on the curve of incomes). Since it was published in a journal not very widespread,

Amoroso’s work remained unknown for a long time (until late sixties) when Henrick

J. Malik discovered it and seized the merits of this generalized Gamma (see [5]).

Amoroso-Stacy’s distribution has been intensively studied by two Polish engineers:

K. Ciechanowicz [9] and S. Firkowicz [19]. U. Hjorth [33] proposed another general-

ization of Rayleigh distribution:

(7) F (x; θ, β, δ) = 1 − (1 + βx)−θ/β · exp{−δx2/2},

where x > 0, θ > 0, β, δ > 0. If we take θ = 0, we obtain the classical Rayleigh

form. It is interesting to notice that exponential distribution is obtained if δ = 0 and

β → 0.
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Recently, Soleha and Sewilam [44] introduced what they called “an entropy-like

transformation”, namely

(8) g(x) = F (x) +R(x) lnR(x), x > 0,

where F (x) and R(x) are respectively the distribution and the reliability function of

a positive continuous random variable X .

If X is Rayleigh distributed, that is F (x) = 1 − exp(−ax2), x > 0, a > 0, they

found that the first derivative of g, namely

(9) g′(x) = 2a3x3 exp(−ax2), x > 0, a > 0,

is just a peculiar case of our GRV given by (1). These authors stated that (1) is “one

of the earliest forms of generalized Rayleigh” [44, § 2, p. 8].

In our opinion, the form (8) is convenient from the analytical treatment point of

view ifR(x) is of an exponential type: R(x) = exp[−A(x)] (with suitable assumptions

on A) since (9) may be written as g′(x) = −f(x) lnR(x) = R′(x) lnR(x) and finally

g′(x) = A(x)A′(x) exp[−A(x)], x > 0 (this could be regarded as another possibility

constructing density functions!).

Raqab and Kundu [38] have studied a general d.f. of the form

(10) FEW(x; a, b, c) = [1 − exp(−abxb)]c, x > 0, a, b, c > 0,

which was baptized “exponentiated Weibull” (EW) and in a later paper, the same

authors (Kundu and Raqab, [32]) taking b = 2 in (10) obtained the following form

of a generalized Rayleigh:

(11) FEW(x; a, c) = [1 − exp(−a2x2)]c, x > 0, a, c > 0

(if c = 1, one has the classical Rayleigh d.f.).

Babus et al. [3, pp. 324–326] suggest that (11) may be used as a model in SPC

(Statistical Process Control): they constructed and studied the behavior of a new

control chart of Shewhart type but only for the case c = 1 (for details of Shewhar-

tian methodology, see Caulcutt [8, pp. 122–129 and pp. 220–224]. Other results on

control charts in the Rayleigh case belong to Drane et al. [17, pp. 237–241] where a

comparison with Shewhart type charts is performed.

In the next section we will examine some generalized forms of the exponen-

tial p.d.f., choosing one of them as working material.
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4. Generalized exponentials

Various ways how to generalize exponential distribution have been proposed. We

mention two of them:

Dobó’s form ([15]):

(12) F (x;λ, a, θ) = 1 −
( λ+ θ

λ+ θeax

)1/aθ

,

where x > 0, a > 0, λ, θ > 0, which gives the classical F (x; θ) = 1 − exp(−x/θ) for
λ = 0.

Khan’s form ([34] or [5, pp. 44–46]):

(13) f(x; r, θ) =
e−x/θ · xrx

θ1+rx · Γ(2 + rx)
,

with x > 0, r > 0 but rθ < 1, which for r = 0 gives f(x; θ) = θ−1 exp(−x/θ).
It is worth noticing that if in (10) one takes b = 1, then the so-called generalized

exponential (GE) distribution is obtained which has been studied in detail by Gupta

and Kundu [22].

Consider now the differential equation

(14)
dϕ

dx
= a(x) · ϕα + b(x) · ϕβ ,

where ϕ is a positive real function, x ∈ [a, b] ⊆ R and for a reliability context one

may choose [a, b] ≡ [0,+∞).

We will call (14) a generating differential equation (GDE) since for various choices

of real continuous functions a(x), b(x) on R and two real numbers α, β one could

obtain a wide range of densities ϕ.

Now, in (14) let us take α = −1, b(x) = 0, and β is an arbitrary real number. We

have

(15)
dϕ

dx
= a(x) · 1

ϕ
or

1

2
ϕ2 =

∫

a(x) dx.

If x > 0 and a(x) = −A · (k/λ)xk−1 exp(−xk/λ), where A is a norming factor, we

obtain

(16)
1

2
ϕ2 = A exp

(

−x
k

λ

)

or ϕ =
√

2A exp
(

−x
k

2λ

)

.
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If we denote 2λ = θ > 0 and take A as 1
2k

2/θ2/k · Γ2(1/k) where k > 0, we get ϕ(x)

as a density function, namely

(17) ϕ(x; θ, k) =
k

θ1/kΓ(1/k)
· exp

(

−k
k

θ

)

,

which for k = 1 gives the classical exponential p.d.f.

It is interesting to draw the attention to the so-called “generalized error distri-

bution” studied by T. Taguchi [47] who states that it was introduced by a Russian

mathematician M.T. Subbotin in [46]. Its density is

(18) f(x; p) =
1

2p
1

p−1Γ(1/p)
· exp

(

−|x|2
p

)

,

where x ∈ R and p > 0. This form resembles (17) but it does not include the

exponential, since for p = 1 one obtains the Laplace density function. Our form (17)

has two parameters (scale and shape ones) and x is restricted to [0,∞).

Now, if we compute the theoretical mean value for (17) we will obtain easily

(19) E(X) = θ1/k · Γ(2/k)

Γ(1/k)

(see for other details [26]).

5. The new GRV (Generalized Rayleigh Variable)

Our variable will be obtained in a more general framework which was presented

in [51]. It is known that in the reliability theory some classes of time-to-failure

distributions are obtained using a so-called “generator”, which is also a p.d.f. One of

the problems of interest is for instance the following: if we have an IFR (increasing

failure rate) distribution function (d.f.) F (x), and if we construct a new d.f.

(20) F1(x) = µ ·
∫ x

0

R(u) du, where R(x) = 1 − F (x), µ =

∫

∞

0

x · dF (x),

does this F1(x) preserve the IFR property? According to Barlow and Proschan [4],

the answer is yes. Let us recall that a failure distribution F (x) has an increasing

failure rate (IFR) if its associated failure (or hazard) rate h(x) = f(x)/[1 − F (x)]

where F ′(x) = f(x) is increasing in x [6, p. 121].

Now, if we define a p.d.f. as

(21) f1(x) =
x

E(X)
· f(x),
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where 0 < E(X) < ∞ is the mean value of X and where f(x) is known (that is,

it has a well-defined form and specified parameters), which means it belongs to a

certain class, say Weibull, is the new f1(x) also a Weibull type density? In this case,

the answer is no (see [51, p. 211]). The new p.d.f. was nicknamed a “pseudo-Weibull

distribution”.

The property to preserve the initial class of belongness has been called conserva-

tiveness. Therefore, in this approach, Weibull (and also the classical exponential)

are not conservative.

Now, if we take as f(x) the form (17), that is, our generalized exponential, we

obtain

(22) f1(x) =
x

E(X)
· f(x) =

kx

θ2/kΓ(2/k)
· exp

(

−x
k

θ

)

with x > 0, k, θ > 0, which for k = 2 yields the usual Rayleigh p.d.f. f1(x) =

(2/θ) · x · exp(−x2/θ).

Hence, this new generalization of Rayleigh p.d.f. is not conservative as regards

the transformation given by (21).

One interesting fact is the following: if k = 1, then we obtain (curiously) the

pseudo-Weibull p.d.f., PW (x; θ, 1), that is f1(x) = θ−2 · x · exp(−x/θ), since the
general PW (x; θ, k) is

(23) f1(x; θ, k) = kxk
[

θ1+1/k · Γ(1 + 1/k)
]

−1 · exp(−xk/θ).

The p.d.f. PW (x; θ, 1) has been studied in [51]. In our case (22) we have, for instance

(for m ∈ N)

(24) E(Xm) =
k

θ2/kΓ(2/k)

∫

∞

0

xm+1 · e−xk/θ dx = θm/k · Γ
(

(m+ 2)/k
)

Γ(2/k)
.

If m = 1 and m = 2 we have the first two noncentral moments

(25) E(X) = θ1/kΓ(3/k)/Γ(2/k) and E(X2) = θ2/kΓ(4/k)/Γ(2/k),

which give the variance of the variable

(26) var(X) = θ2/k

[

Γ(4/k)

Γ(2/k)
− Γ2(3/k)

Γ2(2/k)

]

.

We will now prove the following lemma:
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Lemma. If X is a GRV with k known, then the variable Y = Xk is a Gamma

type random variable with parameters θ and 2/k.

P r o o f. We write the distribution function of Y , namely

(27) f(y) = Prob{Xk < y} = Prob{X < y1/k} =

∫ y1/k

0

f(x; θ, k) dx,

where f(x; θ, k) is the p.d.f. of X . Hence, we have

(28) F (y) =
k

θ2/kΓ(2/k)

∫ y1/k

0

x · exp(−xk/θ) dx.

Taking into account the general formula

(29)
d

dx

(
∫ b(x)

a(x)

f(u) du

)

= b′(x) · f [b(x)] − a′(x)f [(a(x)],

we obtain from (24)

(30) F (y) = f(y) =
y2/k−1

θ2/k · Γ(2/k)
exp(−y/θ), y > 0, θ, k > 0,

which is just the p.d.f. of a Gamma random variable (one may denote (2/k = a) to

have the usual form). �

If k is known, then the estimation of θ is easy to find by the maximum likelihood

method. Indeed, if we have a sample {x1, x2, . . . , xn} on X , the likelihood function
is

(31) L =
kn · ∏n

1 xi

θ2n/k · Γn(2/k)
· exp

(

−1

θ

n
∑

1

xk
i

)

and taking the logarithms and the derivative with respect to θ, we find

lnL = n ln k +

n
∑

1

lnxi −
2n

k
· ln θ − n ln Γ(2/k) − 1

θ

n
∑

1

xk
i ,(32)

∂ lnL

∂θ̂
= −2n

k
· 1

θ̂
+

1

θ̂2
·

n
∑

1

xk
i = 0,(33)

which provides the solution

(34) θ̂ML =
( k

2n

)

·
n

∑

1

xk
i .
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The distribution of θ̂ML is now almost obvious: since X
k
i has a Gamma distribution,

the sum of i.i.d. (independent and identically distributed) Gamma variables is also

Gamma (the stability property of Gamma distribution; see [4]).

If both parameters are unknown then we obtain the system

(35)



















∂ lnL

∂k̂
=
n

k̂
+ 2n · 1

k̂2
· ln θ̂ − n · Γ′(2/k)

Γ(2/k)
− 1

θ̂

n
∑

1

xk̂
i lnxi = 0,

∂ lnL

∂k̂
=

2n

k̂
+

1

θ̂2
·

n
∑

1

xk̂
i = 0.

As one can see, the so-called DiGamma function is involved (that is, the derivative of

the Gamma function Γ(u)), and consequently, some numerical methods are needed.

Using some formulas from Ryshyk-Gradstein tables [41], namely

(36)
d ln Γ(u)

du
= ψ(u) = lnu+

∫

∞

0

e−ut
(1

t
− 1

1 − e−t

)

dt,

one may approximate ψ(u+ 1) as

(37) ψ(u+ 1) ≈ −0.577215664+ 1.644934067 · u− 1.202056904 · u2.

As regards ln θ, if 0 < θ < 1, we can use the well-known Taylor series, and if

θ > 1, we may approximate ln θ with the upper bound (θ− 1)/
√
θ since we have the

elementary inequality

(38)
lnx

x− 1
6

1√
x
if x ∈ (0,+∞) \ {1}.

Let us remark that in (33), the first constant is just Euler’s C = lim
n→∞

(1+ 1
2 + 1

3 +. . .+

1
n − lnn) ≈ 0.57721.

6. Some comments

a) One can detect in literature some p.d.f.’s more general than the generalized

Gamma, as for instance the so-called generalized Gompertz-Verhulst one (see [1], [2]

or [50]). Such p.d.f.’s contain two or more special functions, which are difficult to be

analytically treated.

b) The generating differential equation (14) may provide not only p.d.f.’s but also

distribution functions. For instance, if we take a(x) = θ, b(x) = −θ, θ > 0, α = 1,

and β = 2, we obtain

(39)
dϕ

dx
= θ · ϕ(1 − ϕ) or

dϕ

ϕ(1 − ϕ)
= θ dx,
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where by straightforward integration one gets

ϕ(x; θ) =
1

1 + e−θx
, x ∈ R, θ > 0,

which is just a reduced Verhulst distribution function, proposed by Pierre François

Verhulst (1804–1849) (see [24]).

c) An interesting form of a GRV can be obtained from the reliability function

proposed in 1998 by Silvia Spătaru and Angela Galupa [43]. Their construction

was the following: let Y > 0 be a random variable and let G(x) = Prob{Y 6 z},
x > 0, its distribution function. Starting from a generalized form of the power

distribution (see [26]) the following reliability function is obtained:

(40) R(x) = [1 −G(x)]λ · e−θx, x > 0, θ > 0,

which provides a hazard rate

(41) h(x) = λ · g(x)

1 −G(x)
+ θ, g(x) = G′(x)

having the following interpretation: if λ = 1, the first element on the right-hand side

of h(x) represents the hazard rate of Y component, and θ is the failure rate of the

second element having an exponential distribution. If we take now G(x) to be the

classical Rayleigh, namely G(x) = 1 − exp(−ax2), then the distribution

(42) F (x) = 1 −R(x) = 1 − exp(−λax2 + θx)

is obtained with x > 0, a > 0, λ, θ > 0 (we have F (x) = 1 − exp(−ax2) if λ = 1,

θ = 0).
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[19] Sz. Firkowicz: O potȩgówym rozkladzie trwalości (On the power distribution). Archi-
wum Electrotehniki 18 (1969), 29–40. (In Polish.)

[20] A.C. Giorski: Beware of the Weibull euphoria. IEEE Trans. Reliability R17 (1968),
202–203.

[21] G. Guerrieri: Sopra un nouvo metodo concernente la determinazione dei parametri
della distribuzione lognormale e delle distribuzioni pearsoniane del III e del V tipo (On
a new method for estimating the parameters of lognormal distribution and of Pearsonian
distribution of III a V type). Ann. dell’Istituto di Statistica dell’Università di Bari 34
(1969–1970), 55–110. (In Italian.)

[22] R.D. Gupta, D. Kundu: Generalized exponential distribution: statistical inferences.
J. Statist. Theory Appl. 1 (2002), 101–118.

[23] J. J. Hunter: An analytical technique for urban casualty estimation from multiple nu-
clear weapons. Operations Research 15 (1967), 1096–1108.

429



[24] M. Iosifescu, C. Moineagu, Vl. Trebici, E. Ursianu: Mică Enciclopedie de Statistică (A
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(In Romanian.)

[25] Al. Isaic-Maniu: Metoda Weibull. Aplicaţii (Weibull Method. Applications). Editura
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[29] Al. Isaic-Maniu, V.Gh. Vodă: Rayleigh distribution revisited. Econ. Comp. Econ. Cyb.
Stud. Res. 34 (2000), 27–32.

[30] M. Jílek: Statistické toleranční meze (Statistical Tolerance Limits). SNTL – Teoretická
knižnice inženýra, Praha, 1988. (In Czech.)

[31] N.L. Johnson, S. Kotz, N. Balakrishnan: Continuous Univariable Distributions. Vol. 1,
2nd Edition. John Wiley & Sons, New York, 1994.

[32] D. Kundu, M.Z. Raqab: Generalized Rayleigh distribution: different methods of esti-
mations. http://home.iitk.ac.in/~kundu/ (2004).

[33] U. Hjorth: A reliability distribution with increasing, decreasing, constant and bath-tub
shaped failure rates. Technometrics 22 (1980), 99–112.

[34] M.S.H. Khan: A generalized exponential distribution. Biometrical J. 29 (1987),
121–127.

[35] J.K. Patel, C.B. Read: Handbook of the Normal Distribution (2nd edition, revised and
expanded); Statistics: Textbooks and Monographs, Vol. 150. Marcel Dekker Inc., New
York, 1996.

[36] E. S. Pereverzev: Random Processes in Parametric Models of Reliability. Academy of
Ukraine, Institute of Technical Mechanics, Naukova Dumka Publ. House, Kiev, 1987.
(In Russian.)

[37] A. Pollard, C. Rivoire: Fiabilité et statistique previsionelle. Méthode de Weibull. Ey-
rolles, Paris, 1971. (In French.)

[38] M.Z. Raqab, D. Kundu: Burr type X distribution: revisited, 2003.
http://home.iitk.ac.in/~kundu/.

[39] J.V. Ravenis, II: A potentially universal probability density function for scientists
and engineers. Proceedings of the International Conference on Quality Control, Tokyo,
Sept. 1969. pp. 523–526.

[40] R. Rodriguez: Systems of frequency curves. In: Encyclopedia of Statistical Sciences,
Vol. 3 (S. Kotz, N. L. Johnson, eds.). John Wiley & Sons, New York, 1983, pp. 212–225.

[41] I.M. Ryshyk, I. S. Gradstein: Tables of Series, Product and Integrals. 4th edition
(Yu.V. Geronimus, M.Yu. Tseylin, eds.). Acadmic Press, New York, 1965.

[42] M.A. Savageau: A suprasystem of probability distributions. Biometrical J. 24 (1982),
209–215.
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(Generalization of a distribution with applications in reliability theory). Stud. Cerc.
Econ. Cib. Econ. 32 (1988), no. 1, 77–82. (In Romanian.)

[44] M. El-Moniem Soleha, Iman A. Sewilam: Generalized Rayleigh distribution revisited.
InterStat. http://interstat.statjournals.net/YEAR/2007/abstracts/0702006.pdf.

430



[45] E.W. Stacy: A generalization of the Gamma distribution. Ann. Math. Stat. 28 (1962),
1187–1192.

[46] M.T. Subbotin: On the law of frequency of error. Moscow Recueil mathématique 31
(1923), 296–301.

[47] T. Taguchi: On a generalization of Gaussian distribution, Part. A. Ann. Inst. Statist.
Math. (Tokyo) 30 (1978), 221–242.
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[49] V.Gh. Vodă: Inferential procedures on a generalized Rayleigh variate (II). Apl. Mat. 21
(1976), 413–419.
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