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Abstract. The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn)
system of PDEs accounting for nonisothermal phase transition phenomena which was re-
cently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based
on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The
existence of solutions to a related Neumann-Robin problem is established in an N 6 3-
dimensional space setting. A fixed point procedure guarantees the existence of solutions
locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations es-
timates and results on renormalized solutions for a parabolic equation with L1 data are
used to handle a suitable a priori estimate which allows to extend our local solutions to the
whole time interval. The uniqueness result is justified by proper contracting estimates.
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1. Introduction

We are concerned with a Neumann-Robin problem related to a system of nonlin-

ear PDE, namely, the generalized Ginzburg-Landau (Allen-Cahn) equations which

model nonisothermal phase transition phenomena. More precisely, we investigate

the following equations:

(Φ(θ))t − ∆θ = ̺2
t + θ̺̺t in QT = Ω × ]0, T [,(1)

̺t − ∆̺+ f ′(̺) = −̺ (θ − θc) in QT ,(2)

∂n̺ = ∂nθ + n0(θ − θΓ) = 0 on Γ × (0, T ),(3)

θ(·, 0) = θ0(x), ̺(·, 0) = ̺0(x) in Ω,(4)
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where Ω is a bounded domain in RN , N 6 3, with smooth boundary ∂Ω = Γ, T > 0

is a fixed time, (·)t = ∂ · /∂t, ∆ denotes the Laplacian, ∂n = ∂/∂n the outer normal

derivative on Γ, f a double-well potential, θc > 0 the critical temperature at which

the transition takes place, θΓ > 0 represents the exterior (absolute) temperature on

the boundary, n0 is a positive proportionality parameter, θ0 (assumed a.e. greater

than a positive constant θ) and ̺0 are initial (given) values of the unknown fields

which are here the absolute temperature θ and the order parameter or phase field ̺.

In the above equation (1), Φ: R → R is a C1, increasing function such that Φ(0) = 0

and there exists a positive real number p such that

(5)

{

p > 2 if N 6 2,

2 6 p < 3 if N = 3,

and two positive constants c, c′ satisfying

(6) crp 6 Φ(r) 6 c′rp ∀ r ∈ R
+.

We note that we have got rid of the precise value of some physical parameters in the

above formulation (1)–(2), since they do not affect our analysis.

Our aim in this article is to establish a rigorous mathematical analysis for our

generalized problem (1)–(4). More precisely, we are concerned with the existence

and uniqueness results to the generalized Ginzburg-Landau system (1)–(4) under

suitable hypotheses on the data. To solve equation (1), we introduce a strictly

monotone function denoted by γ : R → R which coincides with Φ on R+ and satisfies

the necessary conditions (C1)–(C2), mentioned in the next section.

It is clear that this problem looks difficult to deal with, due to the term Φ(θ) and

to the presence of strong nonlinearities, especially, the term θ̺̺t. The boundedness

of ̺, the positivity of θ and the existence of a lower bound θ∗ are the key points to

prove the local existence in time, the global existence and the uniqueness of solutions

(θ, u, ̺) to the system (1)–(4), where

(7) u = γ(θ)

represents the third unknown function introduced to overcome the difficulties. The

case p = 2 and N = 3 was recently treated by Miranville and Schimperna in [37],

where they showed similar results of global existence and uniqueness of solutions.

Thus, we adapt here the techniques of [37] to prove our results.

Schauder’s fixed-point theorem is exploited twice to prove the local existence of

solutions to the problem (1)–(4). The global existence result follows from a simple

combination of the uniform a priori estimates and Theorem 4.1 on local existence.
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The main mathematical difficulty, in proving global existence results, comes from

establishing the regularity

(8) ̺2
t + θ̺̺t ∈ L2(Qt).

To have (8) in three-space dimension, we use Moser iterations procedure, Agmon-

Douglis-Nirenberg estimates ([28]) and renormalized solutions estimates of parabol-

ic PDE, with initial data in L1 (see [8], [9], and [10]). The concept of renormalized

solutions has been introduced by R. J. DiPerna and J.-L. Lions in [24] and [25] to

study Boltzmann equations and first-order equations.

To prove (8) in two-space dimension, we have to discuss it according to the values

of p. In fact, by noting the same procedure as in three dimensional case, we realize

that (8), for technical reasons, is valid only for 2 6 p < 5. On the other hand, making

use of the Ladyzhenskaya inequality (see [28, Chapter II, (3.1)]) and the continuous

embedding H1(Ω) →֒ L2p/(p−2)(Ω) we can establish (8) for all p > 2.

Since the renormalized solution estimates are valid only in two and three-space

dimensions, in order to improve (8) in one-space dimension we use the continuous

embedding V →֒ L∞(Ω), the Gagliardo-Nirenberg inequality ([15, p. 194]) and the

Agmon inequality ([41]).

2. Justification of the model

In a recent paper [36], Miranville and Schimperna introduced thermodynamically

consistent models of nonisothermal phase transitions based on a balance law for

internal microforces proposed by M. Gurtin in [27]. These models belong to a new

family of systems of equations of Ginzburg-Landau (Allen-Cahn) type. We give here

an idea on the physical derivation of these models. It turns out in [36] that, owing to

the two laws of thermodynamics and the following internal microforce balance, first

proposed by M. Gurtin in [27]:

(9) div ζ + π = 0,

where ζ (a vector) corresponds to the microstress and π (a scalar) corresponds to the

internal microforces (i.e., forces which arise from the interactions between atoms);

this yields the constitutive relations between the order parameter ̺ and the temper-

ature θ

1

θ
(π + ∂̺ψ)̺t = −β̺t − a · ∇

1

θ
,(10)

q = b̺t +B∇
1

θ
,(11)
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where β > 0 is a scalar, a, b are two vectors and B is, in some sense, a positive

semi-definite matrix. Then the relation

(12) ζ = ∂∇̺ψ,

the first law of thermodynamics (energy equation) and (10)–(11) give the system of

equations

β̺t + a · ∇
1

θ
+

1

θ
∂̺ψ −

1

θ
div(∂∇̺ψ) = 0,(13)

et = − div
(

b̺t +B∇
1

θ
− ̺t∂∇̺ψ

)

,(14)

where e is the internal energy (see [36]). We emphasize that the system in this family

exhibits many similarities with the so-called “models of phase transition with micro-

movements” proposed by M. Frémond and coauthors in [11] (see also the recent

monograph [26]) and mathematically analyzed in a series of articles, among which

we quote [32]–[35].

Our system (1)–(2) follows from (13)–(14) by assuming that βθ is a positive con-

stant (which we still denote by β), that a = b = 0 and that B = θ2I (I being the

identity matrix). Moreover, we take the free energy of the form

(15) ψ = −cV
cp

p− 1
θp + c̺2(θ − θc) + f(̺) +

α

2
|∇̺|2,

where cV > 0, c > 0, α > 0 (see [4]), p ∈ [1,+∞[ and cp = c(p) > 0. Knowing that

(16) e = ∂1/θ
ψ

θ
= ψ − θ∂θψ,

it is then easy to see that (1)–(2) can be recovered (by normalizing some of the

constants). We note that the “entropic” contribution E(θ) = −cV (cp/(p − 1))θp in

the expression of the free energy (15) and Φ(θ) in (1) fulfil the relation

(17) E(θ) − θE′(θ) = cV cpθ
p = cV Φ(θ).

In general, any concave function E with E(0) = 0 might be physically admissible, in

the sense that such assumptions are sufficient to ensure the thermodynamic consis-

tency of the model. From a mathematical point of view, the choice of E(θ) (and more

precisely, the corresponding term (Φ(θ))t in (1)) turns out to ensure the existence

of global in time solutions, since it provides a priori information on the large value

of θ.
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Let us mention other related works. In a recent paper [37], under certain assump-

tions, Miranville and Schimperna treated the case p = 2 and cp = 1 (i.e. E(θ) =

−cV θ
2) and proved the existence and uniqueness of global solutions in Ω × (0, T )

with Ω ⊂ R
3. If E(θ) = −cV θ ln θ (see the quoted works on Frémond type models),

one should probably only expect local in time existence result, at least in three-space

dimension (see [35]), due to the lower growth rate at +∞.

Our work is organized as follows. The next section is devoted to notation, as-

sumptions and statements of the main results. Section 4 is concerned with the local

in time existence result, performed by means of a fixed point procedure. Sections 5

and 6 treat the global existence and properties of solutions. This follows from a

simple combination of uniform a priori estimates and Theorem 4.1 of local existence.

Finally, in Section 7, we establish the uniqueness result and, more precisely, the

continuous dependence estimates.

3. Notation, assumptions and basic theorem

Throughout the paper, let H = L2(Ω), V = H1(Ω) and W = H2(Ω). Identifying,

as usual, H with its dual H ′, we recall that W →֒ V →֒ H →֒ V ′ with dense and

compact injections. We denote by (·, ·) the inner product in H and by 〈·, ·〉 the

duality pairing between V ′ and V . The norm in H or in HN is simply indicated

by | · | and the norm in V by ‖ · ‖. Moreover, we denote by A the Riesz isomorphism

of V onto V ′ and set

(18) J : V → V ′ ; 〈Jv, w〉 =

∫

Ω

∇v∇w dx+ n0

∫

Γ

vw dσ,

where v, w are elements of V . The norm ‖ · ‖J = 〈J ·, ·〉1/2 is of course equivalent

to ‖ · ‖ and we will use it whenever necessary. We define the scalar product in V ′ by

(19) ((w1, w2))∗ = (w1, J
−1w2).

The norm in the generic Banach space X will be generally denoted by ‖ · ‖X . Some-

times, forX = Lp(Ω), we will write |·|p instead of ‖·‖Lp(Ω), for brevity. For v ∈ R, we

make use of the quantities v+ = max(v, 0) and v− = max(−v, 0) so that v = v+−v−

and |v| = v+ + v−.

Now, we are ready to state our mathematical problem and the related results

properly. We note that, in what follows, the following assumptions are assumed to

hold true.

First, let γ : R → R be a function satisfying the following two properties:
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(C1) γ has the form

γ(r) =

{

Φ(r) = rG(r) if r > 0,

−r2 if r 6 0,

where G : R
+ → R is C2 with G(0) = 0, and there exists a positive real number p

depending only on the dimension N such that

{

p > 2 if N 6 2,

2 6 p < 3 if N = 3,

and two positive constants c1, c2 such that

c1r
p−2

6 G′(r) 6 c2r
p−2, ∀ r ∈ R

+.

We denote by α the inverse of γ. We shall need the sequences of functions

(20) γε(r) = εr + ηε(r),

where

(21) ηε(r) =































γ(r) if |r| 6
1

ε
,

rG
(1

ε

)

if r >
1

ε
,

r

ε
if r 6 −

1

ε

for ε ∈ (0, 1) and r ∈ R. Next, we set αε = γ−1
ε . So we have

(22) αε → α and γε → γ

in the sense of graphs (also called “G-convergence”, see [5]). Finally, we let α̂ε

and α̂ be respectively the antiderivatives of αε and α which vanish at 0.

(C2) There exist positive constants cα,i, i = 1, 2, 3, 4, independent of ε such that

α̂ε(r) > cα,1α
2
ε(r) − cα,2 > cα,3|r| − cα,4 ∀ ε ∈ (0, 1) ∀ r ∈ R.

Secondly, referring to the above notation, we introduce the functions

g = n0θΓ, F ′(r) = f ′(r) − (1 + θc)r, r ∈ R,
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and introduce the following assumptions on the data:

(H1) θ0 ∈ V, u0 = γ(θ0), ∃ θ > 0; θ0 > θ > 0 a.e. in Ω,

(H2) g ∈ H1(0,+∞;L2(Γ)),

(H3) ∃ g > 0; g > g a.e. in Γ × (0,∞),

(H4) F ∈ C2(R), F ′(0) = 0,

(H5) ∃ ̺ < 0, ̺ > 0; F ′(r) < 0, ∀ r > ̺, F ′(r) < 0, ∀ r < ̺,

(H6) ̺0 ∈ W 2−1/p,2p(Ω), ̺ 6 ̺0 6 ̺ a.e. in Ω.

We set

(23) 〈k, v〉 =

∫

Γ

gv, ∀ v ∈ V.

Now, we are ready to state the main result of the paper.

Theorem 3.1. Let T > 0 be an arbitrary final time. Assume that assump-

tions (C1)–(C2) and (H1)–(H6) hold true. Then the problem

ut + Jθ = ̺2
t + θ̺̺t + k in QT ,(24)

̺t +A̺+ F ′(̺) = −θ̺ in QT ,(25)

∂n̺ = ∂nθ + n0(θ − θΓ) = 0 on Γ × (0, T ),(26)

θ(·, 0) = θ0(x), u(·, 0) = u0(x), ̺(·, 0) = ̺0(x) a.e. in Ω(27)

admits a unique solution (θ, u, ̺),

θ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),(28)

u ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H),(29)

̺ ∈ L2(0, T ;W ) ∩H1(0, T ;H) ∩ L∞(0, T ;V ), ̺t, A̺ ∈ L2p(QT ).(30)

Moreover, we have

(31) ̺ 6 ̺ 6 ̺ a.e. in QT ,

and there exist two constants a, b > 0 depending only on Ω, Γ, g, θ, ̺, ̺ and n0 such

that

(32) θ(x, t) > ae−bT a.e. in QT .

The proof of these results will be carried out throughout the remainder of the

paper. We note that we will omit the proof of several results, in the sequel, since

they are detailed in [37].
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4. Local existence

We start by presenting our local existence theorem.

Theorem 4.1. Under assumptions (C1)–(C2) and (H1)–(H6), there exists a

positive constant T̂ ∈ ]0, T ] such that problem (24)–(30) admits at least a solution

defined on QT̂ . Moreover, we have

(33) ̺ 6 ̺ 6 ̺ a.e. in QT̂ ,

and there exist two constants a, b > 0 depending only on Ω, Γ, g, θ, ̺, θ and n0 such

that

(34) θ(x, t) > ae−bT̂ a.e. in QT̂ .

P r o o f. We warn that, in what follows, we employ the same letter c for different

constants, even in the same formula. We assume that c depends only on p and the

data specified in (H1)–(H6). In particular, this generic constant will not be allowed

to depend on T̂ . The constants depending on further parameters (e.g., on T̂ ) not

included in the above list will be denoted, e.g., by c(T̂ ). A notation like ci, i ∈ N (or

ci(T̂ ), i ∈ N) will be used to indicate specific constants whose precise value is needed

in the course of the procedure. Also, we denote by mi, i ∈ N, some continuous and

nonnegative functions defined on [0,+∞).

Now, we detail the local existence result. To this aim, we apply the Schauder

fixed-point theorem to a suitable operator T constructed as will be specified in a

while. For R > 0, let us consider the space for the fixed-point argument

(35) Θp(T̂ , R) = {w ∈ L2p(QT̂ ); w > 0 a.e. in QT̂ , ‖w‖L2p(QT̂ ) 6 R},

where T̂ ∈ ]0, T ]will be determined later in such a way that T : Θp(T̂ , R) → Θp(T̂ , R)

is a compact and continuous operator. The space Θp(T̂ , R) is endowed with the

natural L2p-norm. Now, we consider the following auxiliary problems for ̺ and θ,

whose well-posedness is guaranteed by standard arguments.

P r o b l e m 1. GivenR, T̂ > 0 and θ̃ ∈ Θp(T̂ , R), find a function ̺ = T1(θ̃) : QT̂ →

R satisfying

̺ ∈ L2(0, T̂ ;W ) ∩H1(0, T̂ ;H) ∩ L∞(0, T̂ ;V ),(36)

̺t +A̺+ F ′(̺) = −θ̺̃ in V ′, a.e. in (0, T̂ ),(37)

̺(·, 0) = ̺0(x) a.e. in Ω.(38)
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4a. Existence of a solution ̺ = T1(θ̃) to Problem 1

Lemma 4.1. Let (H4)–(H6) hold. Then Problem 1 admits one and only one

solution ̺ such that

(39) ̺ 6 ̺ 6 ̺ a.e. in QT̂ .

Furthermore, we have

(40) ‖̺t‖L2p(QT̂ ), ‖A̺‖L2p(QT̂ ) 6 c0(T̂
1/2p +R+ 1),

where the constant c0 is allowed to depend on ̺, ̺, |Ω| and on ‖̺0‖W 2−1/p,2p(Ω).

It is established in [37] that there exists one and only one solution ̺ satisfying

Problem 1 and such that (39)–(40) hold true. Now, we introduce the set

(41) Ξp = Ξp(T̂ ) = {v ∈ W 1,2p(0, T̂ ;L2p(Ω))∩L2p(0, T̂ ;W 2,2p(Ω)); ̺ 6 v 6 ̺ a.e.},

which we endow with its natural norm. Moreover, paralleling the preceding step,

we also introduce the convex and closed set Ξp(T̂ , R) which consists of the functions

̺ ∈ Ξp satisfying relation (40) with precisely this choice of c0. Now, we introduce

P r o b l e m 2. GivenR, T̂ > 0 and ̺ ∈ Ξp(T̂ , R), find a function θ = T2(̺) : QT̂ →

R such that

θ ∈ H1(0, T̂ ;H) ∩ L∞(0, T̂ ;V ), u = γ(θ) ∈ H1(0, T̂ ;V ′),(42)

ut + Jθ = k + θ̺̺t + ̺2
t in V ′, a.e. in (0, T̂ ),(43)

θ(0) = θ0 a.e. in Ω.(44)

4b. Existence of a solution θ = T2(̺) to Problem 2

Lemma 4.2. Let (C1)–(C2) and (H1)–(H3) hold. Then Problem 2 admits

one and only one solution θ such that the positivity condition (34) holds, for a,

b depending only on the quantities specified in the statement of Theorem 4.1. Also,

there exist m0 and m1 such that

(45) ‖θ‖H1(0,T̂ ;H) + ‖θ‖L∞(0,T̂ ;V ) 6 m0(R)m1(T̂ ).

P r o o f. First, for the outcome of our results, we have to state the next basic

lemma, which will be useful in the sequel.
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Lemma 4.3. Let ηε, γε, and αε be as above. Then there exists a constant

a ∈ (0, 1) fulfilling

aεp−1 6 α′
ε(r) 6

1

ε
,(46)

ε 6 γ′ε(r) 6
1

aεp−1
(47)

for any ε ∈ (0, 1) and r ∈ R.

P r o o f. Taking ε ∈ (0, 1) and r ∈ R, we have

(48) α′
ε(r) =



















































1

ε+G(γ−1
ε (r)) + γ−1

ε (r)G′(γ−1
ε (r))

if 0 6 γ−1
ε (r) 6

1

ε
,

1

ε− 2γ−1
ε (r)

if −
1

ε
6 γ−1

ε (r) 6 0,

1

ε+G(1/ε)
if γ−1

ε (r) >
1

ε
,

1

ε+ 1/ε
if γ−1

ε (r) 6 −
1

ε
.

Put X = γ−1
ε (r) for r ∈ R. We can easily deduce from (C1) that, taking c3 =

c1(1 + 1/(p− 1)) and c4 = c2(1 + 1/(p− 1)), we have the relation

(49) c3r
p−1 6 γ′(r) 6 c4r

p−1 ∀ r > 0.

⋆ For 0 6 X 6 1/ε, this yields that

(50) ε 6 ε+ γ′(X) 6
1

ε
+

c4
εp−1

6
c5
εp−1

,

where c5 = 2 sup{1, c4}.

⋆ For −1/ε 6 X 6 0, we get

(51) ε 6 ε− 2X 6
3

εp−1
.

⋆ Moreover,

(52) ε 6 ε+G
(1

ε

)

6
1

ε
+

c6
εp−1

6
c7
εp−1

,

where c7 = 2 sup{1, c6}. Finally,

(53) ε 6 ε+
1

ε
6

2

εp−1
.
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Setting a = 1/ sup{3, c5, c7}, it turns out from the above inequalities that for all

r ∈ R

(54) aεp−1 6 α′
ε(r) 6

1

ε
.

We deduce immediately that for all r ∈ R

(55) ε 6 γ′ε(r) 6
1

aεp−1
.

Knowing that αε(0) = 0 and integrating (54) with respect to r yields

(56)















aεp−1r 6 αε(r) 6
r

ε
∀ r ∈ R

+,

r

ε
6 αε(r) 6 aεp−1r ∀ r ∈ R

−.

�

Let τ and µ be two positive constants. We define the set

(57) Hp,µ = Hp,µ(τ) = {z ∈ L2p(Qτ ); ‖z‖L2p(Qτ ) 6 µ},

which is convex and closed in L2p(Qτ ). To prove the existence result for Problem 2,

we introduce an approximation of this problem. Let us consider the following problem

for ε > 0:

uε ∈ H1(0, τ ;H) ∩ L∞(0, τ ;V ), αε(uε) ∈ L2(0, τ ;W ),(58)

uεt + J(αε(uε)) = k + ̺2
t + αε(uε)̺̺t in V ′, a.e. in(0, τ),(59)

uε(0) = γε(θ0) a.e. in Ω.(60)

The proof of existence of solutions to the approximating problem for (58)–(60) es-

sentially consists of the following two lemmas. The first is a well-known result on

Stefan problems (see [22, Theorem 3.3] and [23]).

Lemma 4.4. Let (C1)–(C2) and (H1)–(H3) hold, let µ, τ > 0, ũ ∈ Hp,µ. More-

over, we assume that ϕ1 ∈ Lp(Qτ ), ϕ2 ∈ L2p(Qτ ), and ϕ1 > 0 almost everywhere.

Then the problem

u = uε ∈ H1(0, τ ;H) ∩ L∞(0, τ ;V ), αε(u) ∈ L2(0, τ ;W ),(61)

ut + J(αε(u)) = (k + ϕ1) + αε(ũ)ϕ2 in V ′, a.e. in (0, τ),(62)

u(0) = γε(θ0) a.e. in Ω,(63)

has one and only one solution.
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The next step consists in showing that the operator ũ 7→ u, where u is the solution

furnished by the previous lemma, has a fixed point, at least for small times. We

prove this by using again Schauder’s theorem in the space Hp,µ. We note that we

denote by τ this small final time to distinguish it from the final time T̂ appearing in

the statement of Theorem 4.1.

Lemma 4.5. Let (C1)–(C2) and (H1)–(H3) hold and let ϕ1, ϕ2 be as above.

Then, for every ε ∈ (0, 1) there exists τ = τ(p, µ, ε) > 0 and at least one function

u = uε : Qτ → R fulfilling:

u ∈ H1(0, τ ;H) ∩ L∞(0, τ ;V ), αε(u) ∈ L2(0, τ ;W ),(64)

ut + J(αε(u)) = (k + ϕ1) + αε(u)ϕ2 in V ′, a.e. in (0, τ),(65)

u(0) = γε(θ0) a.e. in Ω.(66)

P r o o f. We fix an arbitrary µ > 0 and denote by S the map ũ 7→ u, where

u is the solution of (61)–(63). We have to show the well-posedness, continuity, and

compactness of the operator S. Throughout the proof, all constants c (or c(ε)) will

be allowed to depend on ϕ1, ϕ2, in addition to p and the parameters in (H1)–(H6).

�

Lemma 4.6. Under the hypotheses of Lemma 4.5, there exists τ = τ(p, µ, ε) > 0

such that S maps Hp,µ onto itself.

P r o o f. Multiplying (62) by the time derivative of αε(u), then using Young’s

and Hölder’s inequalities and recalling (46), yields

(67)
aεp−1

2
|ut|

2 +
1

2

d

dt
‖αε(u)‖

2
J 6 c(ε)|ϕ1 + αε(ũ)ϕ2|

2
p +

∫

Γ

g
∂αε(u)

∂t
dσ.

Now, we integrate the above relation between 0 and a generic t 6 τ . Then, using

the continuity of the trace operator V →֒ L2(Γ), integrating by parts in time and

recalling (H1) and (56) leads to

‖ut‖
2
L2(Qt)

+ ‖αε(u(t))‖
2
J(68)

6 c(ε){1 + t+ ‖ϕ1‖
p
Lp(Qt)

+ ‖αε(ũ)‖
2p
L2p(Qt)

+ ‖ϕ2‖
2p
L2p(Qt)

+ ‖g‖2
H1(0,t;L2(Γ)) + ‖αε(u)‖

2
L2(0,t;V )}.

Applying Gronwall’s lemma, it turns out from (56) and the continuous embedding

V →֒ L2p(Ω) that

‖u‖2
L2p(Qτ ) 6 τ1/p‖u‖2

L∞(0,τ ;L2p(Ω)) 6 cτ1/p‖u‖2
L∞(0,τ ;V )(69)

6 c(ε)τ1/p‖αε(u)‖
2
L∞(0,τ ;V ) 6 c8(ε)τ

1/p(1 + τ + µ2p).
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Thus, for any arbitrary µ, we can choose τ (depending on ε, p, and µ, of course)

small enough so that

(70) c8(ε)τ
1/p(1 + τ + µ2p) 6 µ2,

whence θ ∈ Hp,µ. �

Lemma 4.7. Let the hypotheses of Lemma 4.5 hold and let τ be as in (70).

Then the map S is continuous and compact (with respect to the natural topology

induced in Hp,µ by L
2p(Qτ )).

P r o o f. We consider a sequence (ũn)n ⊂ Hp,µ and ũ ∈ Hp,µ such that

(71) ũn −→
n→∞

ũ strongly in L2p(Qτ ),

and set un = Sũn and u = Sũ. Then u and un fulfil (62) (in which ũ will be

substituted by ũn). Proceeding exactly as in the previous estimates (cf. (68)), we

can find a positive constant not depending on n such that

(72) ‖un‖H1(0,τ ;H)∩L∞(0,τ ;V ) 6 c.

On the other hand, we can deduce from the generalized Aubin Lemma [40, Corol-

lary 4] that

(73) H1(0, τ ;H) ∩ L∞(0, τ ;V ) ⊂⊂ L2p(Qτ )

is a compact embedding. Thus, there exist a subsequence of n, denoted by nk, k ∈ N,

and u1 ∈ H1(0, τ ;H) ∩ L∞(0, τ ;V ) such that

(74) unk
−→ u1 strongly in L2p(Qτ ).

The above convergences (71) and (74) allow us to pass to the limit in equation (62), as

n goes to infinity. Moreover, thanks to the uniqueness result holding by Lemma 4.4,

the whole sequence (un) converges to u1 and we can identify u1 = u. Finally, the

proof of the compactness of S can be achieved similarly owing to (68) and (73). This

yields the existence of a fixed-point for S which represents a solution to problem (64)–

(66) and, hence, to the approximating problem (58)–(60). �

We now show the positivity of this approximating solution.
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Lemma 4.8. Let (C1)–(C2) and (H1)–(H3) hold and let T̂ > 0, ϕ1, ϕ2 be as

in Lemma 4.4, and let u be any solution to (64)–(66) (with τ = T̂ ). Then u > 0

a.e. in QT̂ .

P r o o f. We test (65) by −u− and obtain

1

2

d

dt
|u−|2 +

∫

Ω

αε
′(u)|∇u−|2 dx− n0

∫

Γ

αε(u)u
− dσ(75)

+

∫

Ω

ϕ1u
− dx+

∫

Γ

gu− dσ = −

∫

Ω

αε(u)ϕ2u
− dx.

First, it follows from (46) and (56) that

(76)

∫

Ω

α′
ε(u)|∇u

−|2 dx− n0

∫

Γ

αε(u)u
− dx > aεp−1‖u−‖2

J .

Secondly, letting q = 2p/(p− 1) then

(77)

{

q > 2 if N 6 2,

2 < q < 6 if N = 3,

and, hence, the embedding V →֒ Lq(Ω) is continuous. Finally, using the fact that g

and ϕ1 are nonnegative and combining (75) and (76) yields

1

2

d

dt
|u−|2 + aεp−1‖u−‖2

J 6 aεp−1|ϕ2|2p|u
−|q|u

−|(78)

6
aεp−1

2
‖u−‖2

J + c|ϕ2|
2
2p|u

−|2.

An application of Gronwall’s Lemma implies that u− = 0 a.e. in Qτ , as desired, due

to (H1). �

Now, we aim at establishing the lower bound for the approximating solutions

holding by Lemma 4.5.

Lemma 4.9. Let (C1)–(C2) and (H1)–(H4) hold and let T̂ , R > 0. Let also

ϕ1 = ̺2
t and ϕ2 = ̺̺t, where ̺ ∈ Ξp(T̂ , R). Then, given any solution to (64)–(66)

(with τ = T̂ ) and setting θ = αε(u), θ satisfies (34) (where a, b depend on other

quantities as specified in Theorem 4.1).

P r o o f. We start by noticing that the functions ϕ1 and ϕ2 satisfy the assump-

tions stated in Lemma 4.4. Then we rewrite relation (65) as

(79)
∂γε(θ)

∂t
+ Jθ = (k + ϕ1) + θϕ2,
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where we have set θ = αε(u). Let q > p. We multiply (79) by −θ−q and integrate

over Qt, t 6 T̂ . From (H3) we deduce the relation

−

∫ t

0

∫

Ω

ε+ η′ε(θ)

θq
θt dxds(80)

+
4q

(q − 1)2

∫ t

0

∫

Ω

∣

∣

∣
∇

1

θ(q−1)/2

∣

∣

∣

2

dxds+ g

∫ t

0

∫

Γ

dσ ds

θq
+

∫ t

0

∫

Ω

ϕ1

θq
dxds

6 n0

∫ t

0

∫

Γ

dσ ds

θq−1
−

∫ t

0

∫

Ω

ϕ2

θq−1
dxds.

We treat the above inequality term by term, separately. First, we have

−

∫ t

0

∫

Ω

ε+ η′ε(θ)

θq
θt dxds(81)

=
ε

q − 1

∫

Ω

dx

θq−1(t)
−

ε

q − 1

∫

Ω

dx

θq−1(0)
−

∫ t

0

∫

Ω

η′ε(θ)

θq
θt dxds.

The last term in the above equation is written as

(82) −

∫ t

0

∫

Ω

η′ε(θ)

θq
θt dxds =

∫

Ω

ξ̂ε,q(θ(t)) dx−

∫

Ω

ξ̂ε,q(θ(0)) dx,

where

(83) ξ̂ε,q(r) = −

∫ r

1

η′ε(s)

sq
ds, ∀ r ∈ (0,+∞).

Let w : Ω → [0,+∞) be a positive measurable function. Then

∫

Ω

ξ̂ε,q(w(x)) dx = −

∫

Ω

∫ 1/ε

1

η′ε(s)

sq
ds dx−

∫

Ω

∫ w(x)

1/ε

η′ε(s)

sq
ds dx(84)

= − |Ω|

∫ 1/ε

1

γ′(s)

sq
ds+

∫

{x∈Ω; w(x)61/ε}

∫ 1/ε

w(x)

γ′(s)

sq
ds dx

−G
(1

ε

)

∫

{x∈Ω; w(x)>1/ε}

∫ w(x)

1/ε

ds dx

sq
.
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On the one hand, from (84), (49), and (C1) we obtain

∫

Ω

ξ̂ε,q(w(x)) dx(85)

> − c4|Ω|

∫ 1/ε

1

ds

sq−p+1
+ c3

∫

{x∈Ω; w(x)61/ε}

∫ 1/ε

w(x)

ds

sq−p+1
dx

−G
(1

ε

)

∫

Ω

∫ w(x)

1/ε

ds

sq
dx

> −
c4|Ω|

q − p
(1 − εq−p) +

c3
q − p

∫

{x∈Ω; w(x)61/ε}

( 1

wq−p(x)
− εq−p

)

dx

+
c/εp−1

q − 1

∫

Ω

( 1

wq−1(x)
− εq−1

)

dx

> −
|Ω|(c3 + c4)

q − p
−
cεq−p|Ω|

q − 1

+
c3

q − p

∫

{x∈Ω; w(x)61/ε}

dx

wq−p(x)
+

c

q − 1

∫

Ω

dx

wq−1(x)

> − c+
c3

q − p

∫

{x∈Ω; w(x)61/ε}

dx

wq−p(x)
+

c

q − 1

∫

Ω

dx

wq−1(x)
.

On the other hand, it follows from (84) and (49) that

∫

Ω

ξ̂ε,q(w) dx 6 c4

∫

{x∈Ω; w(x)61/ε}

∫ 1/ε

w(x)

ds

sq−p+1
dx(86)

6
c4

q − p

∫

{x∈Ω; w(x)61/ε}

1

wq−p(x)
dx.

At this stage, due to (80)–(86) and (H1), we have

ε

q − 1

∫

Ω

dx

θq−1(t)
+

4q

(q − 1)2

∫ t

0

∫

Ω

∣

∣

∣
∇

1

θ(q−1)/2

∣

∣

∣

2

dxds(87)

+
c3

q − p

∫

{x∈Ω; θ(x,t)=θ(t)61/ε}

dx

θq−p(t)
+

c

q − 1

∫

Ω

dx

θq−1(t)

+ g

∫ t

0

∫

Γ

dσ ds

θq
+

∫ t

0

∫

Ω

ϕ1

θq
dxds

6 n0

∫ t

0

∫

Γ

dσ ds

θq−1
−

∫ t

0

∫

Ω

ϕ2

θq−1
dxds+

ε|Ω|

(q − 1)θq−1

+
c4|Ω|

(q − p)θq−p + c.
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Secondly, the first term of the right-hand side of the above inequality is bounded as

follows:

(88) n0

∫ t

0

∫

Γ

dσ

θq−1
ds 6

g

2

∫ t

0

∫

Γ

dσ ds

θq
+
c

q

(2n0

g

)q

t.

We obtain owing to Young’s inequality and (41) that

−

∫ t

0

∫

Ω

ϕ2

θq−1
dxds = −

∫ t

0

∫

Ω

̺̺t

θ(q−2)/2θq/2
dxds(89)

6
1

2

∫ t

0

∫

Ω

̺2
t

θq
dxds+

1

2

∫ t

0

∫

Ω

̺2

θq−2
dxds

6
1

2

∫ t

0

∫

Ω

ϕ1

θq
dxds+ c

∫ t

0

∫

Ω

dxds

θq−2

6
1

2

∫ t

0

∫

Ω

ϕ1

θq
dxds+

c

p− 1

∫ t

0

∫

Ω

dxds

θq−p
+ c

p− 2

p− 1

∫ t

0

∫

Ω

dxds

θq−1

6
1

2

∫ t

0

∫

Ω

ϕ1

θq
dxds+ c

∫ t

0

∫

{x∈Ω; θ(x,s)61/ε}

dxds

θq−p(x, s)

+ c

∫ t

0

∫

Ω

dxds

θq−1
+ ct.

It follows from (87)–(89) that

ε

q − 1

∫

Ω

dx

θq−1(t)
+

4q

(q − 1)2

∫ t

0

∫

Ω

∣

∣

∣
∇

1

θ(q−1)/2

∣

∣

∣

2

dxds(90)

+
c3

q − p

∫

{x∈Ω; θ(x,t)=θ(t)61/ε}

dx

θq−p(t)
+

c

q − 1

∫

Ω

dx

θq−1(t)

+
g

2

∫ t

0

∫

Γ

dσ ds

θq
+

1

2

∫ t

0

∫

Ω

ϕ1

θq
dxds

6 c

∫ t

0

∫

{x∈Ω; θ(x,s)61/ε}

dxds

θq−p(x, s)
+ c

∫ t

0

∫

Ω

dxds

θq−1
+
c

q

(2n0

g

)q

t+ ct

+
c

(q − 1)θq−1 +
c

(q − p)θq−p + c

for all ε ∈ (0, 1). The positive constants c are independent of t, ε, and q. In order to

reduce the notation, we set

(91) σq(s) =

∫

{x∈Ω; θ(x,s)61/ε}

dx

θq−p(x, s)
, s ∈ (0, T̂ ).
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Thus, (90) entails

c3
q − p

σq(t) +
c

q − 1

∫

Ω

dx

θq−1(t)
(92)

6 c

∫ t

0

σq(s) ds+ c

∫ t

0

∫

Ω

dxds

θq−1
+
c

q

(4n0

g

)q

t+ ct

+
c

(q − 1)θq−1 +
c

(q − p)θq−p + c.

We set

D(t) =
1

q

(4n0

g

)q

t+ t+
1

(q − 1)θq−1 +
1

(q − p)θq−p + 1,

y(t) =

∫ t

0

σq(s) ds,

z(t) =

∫ t

0

∫

Ω

dxds

θq−1
.

We deduce from (92) an ordinary differential inequality of the form

(93)
1

q − 1
(y′(t) + z′(t)) 6 c(y(t) + z(t)) + cD(t).

We multiply by e−c(q−1)t and then integrate between 0 and t 6 T̂ to obtain

(94) y(t) + z(t) 6 c(T̂ )ec(q−p)t.

Consequently, (92) becomes, for any q > p and any t ∈ (0, T̂ ),

σq(t) +

∫

Ω

dx

θq−1(t)
(95)

6 c

{

(2n0

g

)q

t+ (q − 1)t+
1

θq−1 +
q − 1

q − p

1

θq−p + (q − 1)

}

ec(q−1)t.

Finally, it follows from the above estimate that

‖θ−1(x, t)‖Lq−p(Ω) 6 21/(q−p)−1σ1/(q−p)
q (t) + 21/(q−p)−1|Ω|

1/(q−p)
ε(96)

6 c23/(q−p)

{

(2n0

g

)q/(q−p)

t1/(q−p) + (q − 1)1/(q−p)t1/(q−p)

+
(q − 1

q − p

)1/(q−p) 1

θ
+

1

θ(q−1)/(q−p)
+ (q − 1)1/(q−p)

}

× ect(q−1)/(q−p) + 21/(q−p)−1|Ω|1/(q−p)ε,
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where the positive constants c are still independent of t, q, and ε. Now, letting

q → ∞ yields

(97) ‖θ−1‖L∞(Ω) 6 c9

{1

θ
+
n0

g
+ 1

}

ec10T̂ +
ε

2
∀ ε ∈ (0, 1),

where c9, c10 only depend on ̺, ̺, |Ω| and |Γ|. In particular, (97) holds true for

ε = 0. Thus, denoting θ∗ = ae−bT̂ with 1/a = c9{1/θ + n0/g + 1} and b = c10, we

deduce that θ > θ∗ a.e. in QT̂ . �

The next lemma concerns the global existence of the solution to the system (61)–

(63).

Lemma 4.10. Let (C1)–(C2) and (H1)–(H3) hold and let T̂ > 0. Let also ϕ1,

ϕ2 be as in Lemma 4.9. Then there exists at least one solution u : QT̂ → R satisfying

u ∈ H1(0, T̂ ;H) ∩ L∞(0, T̂ ;V ),(98)

ut + J(α(u)) = (k + ϕ1) + α(u)ϕ2 in V ′, a.e. in (0, T̂ ),(99)

u(0) = γ(θ0) a.e. in Ω.(100)

Moreover, θ = α(u) satisfies (34).

P r o o f. We will now denote by uε the approximating solution given by

Lemma 4.5. Our aim is to derive a priori bounds on uε which allow us to pass to

the limit when ε goes to zero.

We first test (65) by αε(uε) = θε and then use the continuous embeddings L
p(Ω) →֒

V ′ and V →֒ Lq(Ω) for q = 2p/(p− 1) to obtain

(101)
d

dt

∫

Ω

α̂ε(uε) dx+
1

2
‖αε(uε)‖

2
J 6 c|ϕ1|

2
p + ‖k‖2

V ′ + c|ϕ2|
2
2p|αε(uε)|

2.

By (C2) we have

d

dt
|α̂ε(uε)|1 +

1

2
‖αε(uε)‖

2
J(102)

6 c|ϕ1|
2
p + ‖k‖2

V ′ + c|ϕ2|
2
2p|α̂ε(uε)|1 + c|ϕ2|

2
2p.

From Gronwall’s Lemma we infer that

|α̂ε(uε)(t)|1 + ‖αε(uε)‖
2
L2(0,t;V )(103)

6 c

(

1 +

∫ t

0

|ϕ1(s)|
2
p ds+ ‖k‖2

L2(0,t;V ′) +

∫ t

0

|ϕ2(s)|
2
2p ds

)

ec
∫

T̂
0

|ϕ2(s)|
2
2p ds.
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Moreover, applying Hölder’s inequality with respect to time and using the fact that

̺ ∈ Ξp(T̂ , R) yields that, for any t ∈ (0, T̂ ),

∫ t

0

|ϕ1(s)|
2
p ds =

∫ t

0

|̺t|
4
2p ds 6 T̂ (p−2)/p‖̺t‖

4
L2p(Qt)

(104)

6 cT̂ (p−2)/p(T̂ 2/p +R4 + 1),
∫ t

0

|ϕ2(s)|
2
2p ds =

∫ t

0

|̺̺t|
2
2p ds 6 cT̂ (p−1)/p‖̺t‖

2
L2p(Qt)

(105)

6 cT̂ (p−1)/p(T̂ 1/p +R2 + 1).

Finally, it turns out from (103)–(105) that

‖α̂ε(uε)‖
2
L∞(0,T̂ ;L1(Ω))

+ ‖αε(uε)‖
2
L2(0,T̂ ;V )

(106)

6 c
(

1 + T̂ (p−2)/p(T̂ 2/p +R4 + 1) + T̂ (p−1)/p(T̂ 1/p +R2 + 1)
)

× ecT̂ (p−1)/p(T̂ 1/p+R2+1).

Next, we consider the (equivalent) expression (79) and test it by θεt to obtain

ε|θεt|
2 +

∫

Ω

θ2εtη
′
ε(θε) dx+

1

2

d

dt
‖θε‖

2
J(107)

6

∫

Ω

ϕ1θεt dx+

∫

Γ

gθεt dσ +

∫

Ω

ϕ2θεθεt dx.

Now, we aim to estimate separately the three terms on the right-hand side of (107).

Concerning the first, it follows from (C1), (49), Hölder’s and Young’s inequalities,

and Lemma 4.9 that

∫

Ω

ϕ1θεt dx =

∫

Ω

ϕ1

[η′ε(θε)]1/2
[η′ε(θε)]

1/2θεt dx(108)

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+

∫

Ω

ϕ2
1

η′ε(θε)
dx

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+

∫

{θε61/ε}

ϕ2
1

γ′(θε)
dx+

∫

{θε>1/ε}

ϕ2
1

G(1/ε)
dx

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+ c

∫

{θε61/ε}

ϕ2
1

θp−1
ε

dx+ cεp−1

∫

{θε>1/ε}

ϕ2
1 dx

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+ ceb(p−1)T̂ |ϕ1|

2
p,
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where the positive constant c is independent of ε. The second term can be controlled

as the first:

∫

Ω

ϕ2θεθεt dx 6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+

∫

Ω

(ϕ2θε)
2

η′ε(θε)
dx(109)

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+ ceb(p−1)T̂

∫

Ω

(ϕ2θε)
2 dx

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+ ceb(p−1)T̂ |ϕ2|

2
2p|θε|

2
2p/(p−1)

6
1

4

∫

Ω

θ2εtη
′
ε(θε) dx+ ceb(p−1)T̂ |ϕ2|

2
2p‖θε‖

2
J ,

where c is independent of ε. Combining (107)–(109) yields

ε|θεt|
2 +

1

2

∫

Ω

θ2εtη
′
ε(θε) dx+

1

2

d

dt
‖θε‖

2
J(110)

6

∫

Γ

gθεt dσ + ceb(p−1)T̂ (|ϕ2|
2
2p‖θε‖

2
J + |ϕ1|

2
p).

By applying Gronwall’s Lemma, we deduce from (104)–(105) that

∫ t

0

∫

Ω

θ2εtη
′
ε(θε) dxds+ ‖θε(t)‖

2
J(111)

6 c

(
∫ t

0

∫

Γ

gθεt dσ ds+ ceb(p−1)T̂ T̂ (p−2)/p(T̂ 2/p +R4 + 1) + 1

)

× eceb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1).

Now, we integrate by parts with respect to time. It turns out that

∫ t

0

∫

Ω

θ2εtη
′
ε(θε) dxds+ ‖θε(t)‖

2
J(112)

6 c

(
∫

Γ

g(t)θε(t) dσ −

∫ t

0

∫

Γ

θε
∂g

∂t
dσ ds

+ eb(p−1)T̂ T̂ (p−2)/p(T̂ 2/p +R4 + 1) + 1

)

eceb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1)

6
1

4
‖θε(t)‖

2 + c
(

‖g‖2
H1(0,t;L2(Γ)) + ‖θε‖

2
L2(0,t;V )

+ eb(p−1)T̂ T̂ (p−2)/p(T̂ 2/p +R4 + 1) + 1
)

eceb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1).
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From (H2) and (106) we deduce that

∫ t

0

∫

Ω

θ2εtη
′
ε(θε) dxds+ ‖θε‖

2
L∞(0,T̂ ;V )

(113)

6 c
(

1 + eb(p−1)T̂ T̂ (p−2)/p(T̂ 2/p +R4 + 1)

+ T̂ (p−1)/p(T̂ 1/p + R2 + 1)
)

eceb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1).

Moreover, due to (49) and (C1), the above inequality can be written as

c

∫ t

0

∫

{θε61/ε}

θp−1
ε θ2εt dxds(114)

+
c

εp−1

∫ t

0

∫

{θε>1/ε}

θ2εt dxds+ ‖θε‖
2
L∞(0,T̂ ;V )

6 c
(

1 + eb(p−1)T̂ T̂ (p−2)/p(T̂ 2/p +R4 + 1) + T̂ (p−1)/p(T̂ 1/p +R2 + 1)
)

× eceb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1),

where the positive constants c are independent of ε. Finally, we deduce from

Lemma 4.9 that

‖θε‖
2
H1(0,T̂ ;H)

+ ‖θε‖
2
L∞(0,T̂ ;V )

(115)

6 c
(

eb(p−1)T̂ + e2b(p−1)T̂ T̂ (p−2)/p(T̂ 2/p +R4 + 1)

+ eb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p +R2 + 1)
)

eceb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1).

The right-hand side of (115) does not explode as R or T̂ goes to 0, since the preceding

c’s do not. Thus, by the generalized Aubin Lemma (see, e.g., [40, Corollary 4]), we

have (here and below, all the convergences are understood up to the extraction of

subsequences, not relabelled)

(116) θε −→
ε→0

θ strongly in C0([0, T̂ ];H)

for some limit θ. Next, thanks to (115) and the continuous embedding V →֒ L6(Ω),

we have

(117) θε −→
ε→0

θ weakly in L∞(0, T̂ ;L6(Ω)).

Thus, it follows from (117) and (C1) that

(118) uε −→
ε→0

u weakly in L∞(0, T̂ ;L6/p(Ω))

for some limit u. This allows us to pass to the limit in (65) and obtain (99); indeed,

using e.g. [7, Proposition 1, p. 42], we have θ = α(u) a.e. �
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Lemma 4.11. Let (C1)–(C2) and (H1)–(H3) hold and let T̂ > 0. Let also ϕ1,

ϕ2 be as in Lemma 4.9. Then system (98)–(100) has a unique solution defined in QT̂ .

P r o o f. We consider a pair of solutions u1 = γ(θ1), u2 = γ(θ2) to the sys-

tem (98)–(100).

Let u = u1 − u2, θ = θ1 − θ2. Then we have the equality

(119) ut + Jθ = ϕ2θ.

We note that if v ∈ V and w ∈ H then

〈Jv, J−1w〉 = ((Jv, w))∗ = ((w, Jv))∗ = (w, J−1(Jv)) = (w, v).

Hence, testing (119) by J−1u, we get

(120)
1

2

d

dt
‖u‖2

V ′,J +

∫

Ω

θu dx = 〈ϕ2θ, J
−1u〉.

On the one hand, it is easy to see that

(121) γ(θ1) − γ(θ2) =

∫ 1

0

γ′(sθ1 + (1 − s)θ2)θ ds.

Then, in view of (49) and (34), it turns out that

(122)

∫

Ω

θu dx > c11|θ|
2,

where c11 depends on p and θ∗. On the other hand, combining (120) and (122) and

then using the continuous embedding L2p/(p+1)(Ω) →֒ V ′ yields

1

2

d

dt
‖u‖2

V ′,J + c11|θ|
2

6 ‖u‖V ′,J‖θϕ2‖V ′,J(123)

6 c‖u‖V ′,J |θϕ2|2p/(p+1)

6 c‖u‖V ′,J |ϕ2|2p|θ|

6 c(T̂ )‖u‖2
V ′,J |ϕ2|

2
2p +

c11
2

|θ|2.

Thus, the thesis follows by integrating the above inequality in time and applying

once more Gronwall’s Lemma.

Moreover, (45) holds by properly choosingm0 andm1, since all the above constants

and in particular, c1(R, T̂ ), i.e. the right-hand side of (115), do not explode as R or

T̂ or both become small. �
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The proof of Lemma 4.2. is completed. �

4c. Existence result in Theorem 4.1: Fixed-point argument applied to

the operator T2 ◦ T1

Having T1 and T2, we define the operator T as the composition T2 ◦ T1. We have

to show that, at least for small times, Schauder’s theorem applies to the map T from

Θp(T̂ , R) into itself. In other words, we will prove that there exists T̂ = T̂ (R) > 0

such that T possesses the properties stated in the following two lemmas.

Lemma 4.12. There exist R, T̂ = T̂ (R) > 0 such that

(124) T (Θp(T̂ , R)) ⊂ Θp(T̂ , R).

P r o o f. Our aim here is to find T̂ > 0 such that the operator T : Θp(T̂ , R) →

Θp(T̂ , R) is well-defined. Exploiting the preceding estimates (cf. (115)), by the

Sobolev embedding V →֒ L2p(Ω), we have

‖θ‖L2p(0,T̂ ;L2p(Ω)) 6 c‖θ‖L2p(0,T̂ ;V )(125)

6 cT̂ 1/2p‖θ‖L∞(0,T̂ ;V )

6 c12T̂
1/2p

(

e
1
2 b(p−1)T̂ + eb(p−1)T̂ T̂ (p−2)/2p(T̂ 1/p +R2 + 1)

+ e
1
2 b(p−1)T̂ T̂ (p−1)/2p(T̂ 1/2p +R+ 1)

)

× ec13e
b(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1).

Hence, for any R > 0, we can choose T̂ sufficiently small such that

c12T̂
1/2p

(

e
1
2 b(p−1)T̂ + eb(p−1)T̂ T̂ (p−2)/2p(T̂ 1/p +R2 + 1)(126)

+ e
1
2 b(p−1)T̂ T̂ (p−1)/2p(T̂ 1/2p +R+ 1)

)

× ec13eb(p−1)T̂ T̂ (p−1)/p(T̂ 1/p+R2+1) 6 R,

and ensure that θ belongs to Θp(T̂ , R). �

Lemma 4.13. Let T̂ > 0 be as in (126). Then T is continuous and compact

with respect to the L2p-norm.

P r o o f. We start by showing that T is continuous with respect to the natural

topology induced in Θp(T̂ , R) by L2p(QT̂ ). To this aim, we consider a sequence

(θ̃n)n ∈ Θp(T̂ , R) such that

(127) θ̃n −→
n→∞

θ̃ strongly in Θp(T̂ , R)
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and consider the sequence (̺n)n of solutions to (36)–(38) with θ̃ substituted by θ̃n,

i.e.

(128) ̺n = T1(θ̃n).

The standard energy estimates for the parabolic equations give a positive constant c

not depending on n such that

(129) ‖̺n‖H1(0,T̂ ;H)∩L∞(0,T̂ ;V )∩L2(0,T̂ ;W ) 6 c.

By the well-known weak and weak∗ compactness results, there exists a subsequence

of n still denoted by n, for the sake of brevity, such that

̺n −→
n→∞

̺ weakly in H1(0, T̂ ;H) ∩ L2(0, T̂ ;W ),(130)

̺n −→
n→∞

̺ weakly∗ in L∞(0, T̂ ;V ).(131)

Moreover, by the Aubin-Lions Theorem (see [30] and [31]), we also obtain the strong

convergence

(132) ̺n −→
n→∞

̺ in L2(0, T̂ ;H).

The above convergences (127) and (132) allow us to pass to the limit in equation (37).

Moreover, thanks to the uniqueness result holding by Lemma 4.1, we conclude that

the whole sequence (̺n)n converges to ̺ and we can identify ̺ = T1(θ̃).

In the second step, we consider the sequence (θn)n of solutions to (42)–(44) with

̺ substituted by ̺n, i.e., we consider, in particular,

(133) θn = T2(̺n) = T2 ◦ T1(θ̃n) = T (θ̃n).

Proceeding as in the previous estimates (cf. (68) and (115)), we can find a positive

constant c not depending on n such that

(134) ‖θn‖H1(0,T̂ ;H)∩L∞(0,T̂ ;V ) 6 c.

Hence, there exists a subsequence of n still denoted by n such that

(135) θn −→
n→∞

θ weakly∗ in H1(0, T̂ ;H) ∩ L∞(0, T̂ ;V ).

Furthermore, we deduce from the generalized Aubin Theorem (see [40, Corollary 4])

the strong convergence

(136) θn −→
n→∞

θ in C0([0, T̂ ];L2p(Ω)),
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which implies that

(137) θn −→
n→∞

θ in L2p(0, T̂ ;L2p(Ω)).

The above convergences (132) and (137) allow us to pass to the limit in rela-

tion (43). Again, thanks to the uniqueness result furnished by Lemma 4.2, the whole

sequence (θn)n converges to θ and we can identify

(138) θ = T2(̺) = T2 ◦ T1(θ̃) = T (θ̃).

Finally, by (137), we have

(139) T (θn) −→ T (θ) strongly in L2p(0, T̂ ;L2p(Ω)).

This completes the proof of continuity of the operator T .

It remains to show that the operator T is compact. Since T is continuous and

Θp(T̂ , R) is a closed set, it suffices to show that T (Θp(T̂ , R)) is compact. To this

aim, we consider a sequence (θn)n ⊂ T (Θp(T̂ , R)). Then, proceeding exactly as for

the previous estimates (cf. (68) and (115)), we deduce the existence of a positive

constant depending neither on n nor on the choice of θ̃n in Θp(T̂ , R) such that

(140) ‖θn‖H1(0,T̂ ;H)∩L∞(0,T̂ ;V ) 6 c.

We note that, owing the generalized Aubin Lemma (see [40, Corollary 4]),

(141) H1(0, T̂ ;H) ∩ L∞(0, T̂ ;V ) ⊂⊂ L2p(QT̂ ).

Consequently, (140) together with (141) imply that there exists a subsequence of n

still denoted by n and θ ∈ H1(0, T̂ ;H) ∩ L∞(0, T̂ ;V ) such that

(142) θn −→
n→∞

θ in L2p(QT̂ ),

which ensures that the operator T is compact. �

Thus, we have proved that T admits a fixed point in Θp(T̂ , R), i.e. there exists at

least a local in time solution to system (24)–(30) defined on the interval ]0, T̂ [. The

proof of Theorem 4.1. is complete. �

Now, we have to discuss the extension of this solution to the whole interval ]0, T [

for an arbitrary final time T > 0. To this end, we derive some additional a priori

estimates which yield suitable global bounds on the solution.
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5. Positivity and boundedness

Lemma 5.1. Let (C1)–(C2) and (H1)–(H6) hold, let T > 0 be any arbitrary

final time and let (θ, ̺) : QT → R
2 be a solution to system (24)–(30). Then (31) and

(32) hold.

P r o o f. We note that for θ < 0 we have assumed that γ(θ) = −θ2, hence we

omit the details of the proof here, since it is similar to that of Lemma 4.1 in [37]. In

the rest of the paper we denote by c a universal constant which depends on p, the

data mentioned in (H1)–(H6) and on T . �

6. Uniform a priori estimates

Lemma 6.1. For every t ∈ [0, T ], we have

(143) ‖θ‖p
L∞(0,t;Lp(Ω)) + ‖̺‖2

L∞(0,t;V ) 6 c.

P r o o f. We can consider, due to (32), that γ(θ) = Φ(θ). Multiplying (25) by ̺t

and (24) by 1, integrating over Qt for t 6 ν and adding the resulting equalities yields

1

2
‖̺(t)‖2 +

∫

Ω

F (̺(t)) dx+

∫

Ω

Φ(θ(t)) dx(144)

=
1

2
‖̺0‖

2 +

∫

Ω

F (̺0) dx+

∫

Ω

Φ(θ0) dx+

∫ t

0

∫

Γ

g dσ ds.

Then, it turns out from (C1), (H2), (H6), and (31) that

(145)
1

2
‖̺(t)‖2 + c(p)|θ(t)|pp 6 c,

from which the conclusion of this lemma follows. �

Lemma 6.2. We have

(146) ‖̺‖H1(0,t;H) 6 c.

P r o o f. Since p > 2, from (143) we have

(147) ‖θ‖L2(0,t;H) 6 |Ω|1/2−1/pT 1/2‖θ‖L∞(0,t;Lp(Ω)) 6 c.
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We first multiply (25) by ̺t, then integrate with respect to x and t and finally use (31)

to deduce that

‖̺t‖L2(0,t;H) +
1

2
‖̺(t)‖2 6

∫ t

0

∫

Ω

|θ̺̺t| dxds+

∫

Ω

|F (̺(t))| dx(148)

6 max(−̺, ̺)‖θ‖L2(0,t;H)‖̺t‖L2(0,t;H) + c(̺, ̺, |Ω|).

Thus, (146) follows from (148) by using (147) and applying Young’s inequality. �

Lemma 6.3. We have

(149) ‖̺‖L2(0,t;W ) 6 c.

P r o o f. We test (25) by A̺ to obtain

(150)
1

2

d

dt
‖̺‖2 +

1

2
|A̺|2 6 c|θ|2 + c,

which results in (149) by integrating with respect to t and using (147). �

Now, we give a basic lemma which plays an important role in the sequel.

Lemma 6.4. We have

(151) ‖̺t‖
2
L∞(0,t;H) + ‖̺t‖

2
L2(0,t;V ) 6 c+ c‖θt‖L2(0,t;H).

P r o o f. We differentiate (25) with respect to time,

(152)
∂2̺

∂t2
+A̺t + F ′′(̺)̺t = −θ̺t − ̺θt,

then we multiply (152) by ̺t and integrate over Qt, t 6 ν. Thus, it follows from (31)

and (146) that

1

2
|̺t(t)|

2 + ‖̺t‖
2
L2(0,t;V )(153)

6 −

∫ t

0

∫

Ω

F ′′(̺)(̺t)
2 dxds−

∫ t

0

∫

Ω

θ(̺t)
2 dxds−

∫ t

0

∫

Ω

̺̺tθt dxds

6 c‖̺t‖
2
L2(0,t;H) +

∫ t

0

‖̺‖L∞(Ω)|̺t||θt| ds

6 c‖̺t‖
2
L2(0,t;H) + ‖̺‖L∞(Qt)‖̺t‖L2(0,t;H)‖θt‖L2(0,t;H)

6 c+ c‖θt‖L2(0,t;H).

�
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Lemma 6.5. We have

(154) ‖θ‖H1(0,t;H) + ‖θ‖L∞(0,t;V ) 6 c.

P r o o f. We distinguish three cases according to the dimension N and the

exponent p:

First case (N = 2, 2 6 p < 5) or (N = 3, 2 6 p < 3):

Let

(155)











ψ1 = g,

ψ2 = θ̺̺t + (̺t)
2,

ψ = ψ1 + ψ2.

To prove (154) in this case, we have to use the so-called renormalized solution (see [8],

[9], and [10]). We recall the definition of the renormalized solutions.

Definition 6.1. Let K > 0 and r ∈ R. The quantity

(156) TK(r) = max{−K,min{K, r}}

is called the truncation function at height K.

Definition 6.2. We assume that

(A1) B is the field of symmetric coercive matrices defined on QT with bounded

coefficients; i.e.,

⋆ (B)ij = bij ∈ L∞(QT ),

⋆ bij = bji for 1 6 i 6 N , 1 6 j 6 N ,

⋆ there exists λ > 0 such that B(x, t)ξ · ξ > λ‖ξ‖2
RN for any ξ ∈ R

N and for

almost every (x, t) ∈ QT ;

(A2) b : R → R, is a C1 increasing function such that

⋆ b(0) = 0,

⋆ there exist δ, s > 0 such that |b(r)| > δ|r|s, ∀ |r| > 1;

(A3) v0 is a measurable function defined on Ω such that b(v0) ∈ L1(Ω);

(A4) G ∈ L1(QT ).

Then a measurable function v defined onQT is a renormalized solution of the problem

P(G, v0)















∂b(v)

∂t
− div(BDv) = G in QT ,

b(v)|t=0 = b(v0) in Ω,

v = 0 on Γ × (0, T ),
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if v satisfies

b(v) ∈ L∞(0, T ;L1(Ω));(157)

TK(v) ∈ L2(0, T ;H1
0 (Ω)) for any K > 0(158)

for any function S ∈ C∞(R) such that S′ has a compact support (i.e., S′ ∈ S ∈

C∞
0 (R)),

∂S(b(v))

∂t
− div[S′(b(v))BDv] + S′′(b(v))b′(v)BDv ·Dv = GS′(b(v))(159)

in D′(QT );

S(b(v))|t=0 = S(b(v0));(160)

lim
n→+∞

∫

{(x,t) ; n<|b(v)|<n+1}

b′(v)|Dv|2 dxdt = 0.(161)

R em a r k 6.1. Under hypotheses (A1)–(A3) and for any G ∈ L1(QT ), it is es-

tablished in [10] that there exists at least one solution v satisfying Definition 6.2.

The next lemma can be found in [9]. It establishes the most important property

of renormalized solutions of the nonlinear parabolic problem P(G, v0).

Lemma 6.6. Let v be a measurable function defined on QT and let σ > 0 be

such that

|v|σ ∈ L∞(0, T ;L1(Ω)),(162)

∀K > 0 TK(v) ∈ L2(0, T ;H1
0(Ω)) with

∫

QT

|DTK(v)|2 dxdt 6 KM.(163)

Then for all 1 6 q < 1 + 2σ/N there exists a constant c depending only on T , Ω, q,

and σ such that

(164) ‖v‖Lq(QT ) 6 c‖|v|σ|
2/(2σ+N)
L∞(0,T ;L1(Ω))M

N/(2σ+N).

P r o o f. For any positive real number r, we first write

∫

QT

|v|q dxdt =

∫ +∞

0

meas{(x, t); |v(x, t)|q > s} ds(165)

=

∫ r

0

meas{(x, t) ; |v(x, t)|q > s} ds

+

∫ +∞

r

meas{(x, t) ; |v(x, t)|q > s} ds,
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which leads to

(166) ‖v‖q
Lq(QT ) 6 rT |Ω| +

∫ +∞

r

meas{(x, t) ; |v(x, t)|q > s} ds.

The last term in the above inequality is bounded as follows:

(167) meas{(x, t) ; |v(x, t)|q > s} 6
c

s2(N+σ)/Nq

∫

QT

|Ts1/q(v)|2(N+σ)/N dxdt.

In fact, we have

c

s2(N+σ)/Nq

∫

QT

|Ts1/q(v)|2(N+σ)/N dxdt(168)

>
c

s2(N+σ)/Nq

∫

{(x,t) ; |v(x,t)|q>s}

|Ts1/q(v)|2(N+σ)/N dxdt.

Rewriting TK in the form

(169) TK(r) =

{

r if |r| 6 K,

K sign(r) if |r| > K,

yields, for any |v|q > s,

(170) Ts1/q(v) = s1/q.

Thus (167) follows by combining (168) and (170).

On the one hand, it turns out from the classical interpolation inequality (for

N = 3) that

(171) ‖Ts1/q(v)‖L2(N+σ)/N (QT ) 6 c‖Ts1/q(v)‖1−α
L∞(0,T ;Lr(Ω))‖Ts1/q(v)‖α

L2(0,T ;L6(Ω))

with

(172)















N

2(N + σ)
=
α

2
,

N

2(N + σ)
=
α

6
+

1 − α

r
,

which leads to

(173)

{

α =
N

N + σ
,

r = σ.
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Moreover, we know that, for any K and v, we have

(174) TK(v) 6 |v|.

Then, using the continuous embedding V →֒ L6(Ω), we infer that

‖Ts1/q(v)‖L2(N+σ)/N (QT ) 6 c‖Ts1/q(v)‖
σ/(N+σ)
L∞(0,T ;Lσ(Ω))‖Ts1/q(v)‖

N/(N+σ)
L2(0,T ;V )(175)

6 c‖|v|σ‖
1/(N+σ)
L∞(0,T ;L1(Ω))‖DTs1/q(v)‖

N/(N+σ)
L2(QT ) .

On the other hand, Gagliardo-Nirenberg’s ([15, p. 194]) and the classical interpola-

tion inequalities (for N = 2) imply

(176) ‖Ts1/q(v)‖L2(N+σ)/N (QT ) 6 c‖Ts1/q(v)‖1−α
L∞(0,T ;Lr(Ω))‖Ts1/q(v)‖α

L2(0,T ;V )

with

(177)















α = 1 −
rN

2(N + σ)
,

1 − α = 1 −
2N

2(N + σ)
,

which leads to

(178)

{

α =
N

N + σ
,

r = σ.

Thus, we get

(179) ‖Ts1/q(v)‖L2(N+σ)/N (QT ) 6 c‖Ts1/q(v)‖
σ/(N+σ)
L∞(0,T ;Lσ(Ω))‖Ts1/q(v)‖

N/(N+σ)
L2(0,T ;V ).

Finally, we conclude that, in the cases N = 2 or N = 3, we obtain the same form of

estimate which reads

(180)

∫

QT

|Ts1/q(v)|2(N+σ)/N dxdt 6 c‖|v|σ‖
2/N
L∞(0,T ;L1(Ω))‖DTs1/q(v)‖2

L2(QT ).

Consequently, returning to (167), it follows from (163) and (180) that

(181) meas{(x, t) ; |v|q > s} 6
c

s2(N+σ)/Nq
‖|v|σ‖

2/N
L∞(0,T ;L1(Ω))Ms1/q.

Therefore, (166) becomes

(182) ‖v‖q
Lq(QT ) 6 rT |Ω| + c‖|v|σ‖

2/N
L∞(0,T ;L1(Ω))M

∫ +∞

r

s−(N+2σ)/Nq ds.
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The second term on the right-hand side of the above inequality represents a gener-

alized integral which converges only if

(183) −
N + 2σ

Nq
< −1,

i.e.

(184) q < 1 +
2σ

N
,

and, hence, we have

(185)

∫ +∞

r

s−(N+2σ)/Nq ds = −
Nq

N(1 − q) − 2σ
r(N(1−q)−2σ)/(Nq).

Thus, it follows that, for all 1 6 q < 1 + 2σ/N , we have

(186) ‖v‖q
Lq(QT ) 6 rT |Ω| + c‖|v|σ‖

2/N
L∞(0,T ;L1(Ω))Mr(N(q−1)−2σ)/(Nq).

Now, let

(187) g(r) = rT |Ω| + c‖|v|σ‖
2/N
L∞(0,T ;L1(Ω))Mr(N(q−1)−2σ)/(Nq),

and let r∗ > 0 be the point at which g(r) achieves its minimum. Then we deduce

from (186) that

(188) ‖v‖q
Lq(QT ) 6 g(r∗).

It is easy to see that g′(r∗) = 0 corresponds to

(189) r∗ = c

(

M(N(q − 1) − 2σ)‖|v|σ‖
2/N
L∞(0,T ;L1(Ω))

qNT |Ω|

)qN/(N+2σ)

,

and then (164) is established by combining (188) and (189). �

The previous lemma allows us to establish the following estimate to our solution θ.

More precisely, we use a variant of this lemma, since we have different boundary

conditions; however, the proof is the same.
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Lemma 6.7. For all 1 6 q < 1 + 2p/N there exists a positive constant c(q)

independent of ν such that

(190) ‖θ‖Lq(Qt) 6 c(q).

P r o o f. This result is a direct consequence of the previous lemma. In fact,

we have g ∈ H1(0, t;L2(Γ)) and L2(Γ) →֒ V ′ is a continuous embedding. Then we

deduce that

(191) ‖ψ1‖H1(0,t;V ′) 6 c.

On the other hand, (143) allows us to obtain that

(192) ‖ψ2‖L1(Qt) 6 c.

So, in order to make sure that θ is a renormalized solution of the nonlinear parabolic

equation (24), whose right-hand side ψ is in L1(Qt) and the initial data Φ(θ0) ∈

L1(Ω), we have to show that (163) holds. To this aim, we test (24) by TK(θ) =

min(K, θ) and obtain

(193)

∫

Ω

TK(θ)
∂Φ(θ)

∂t
dx+ c14‖TK(θ)‖2 6 〈ψ1, TK(θ)〉 +

∫

Ω

ψ2TK(θ) dx.

Note that we are concerned only with the case TK(θ) = θ (because it is very simple

to verify that (163) holds for TK(θ) = K), hence the above inequality becomes

c(p)
d

dt
|θ|p+1

p+1 + c14‖TK(θ)‖2 6 ‖ψ1‖V ′‖TK(θ)‖ +K|ψ2|1(194)

6
c14
2

‖TK(θ)‖2 + c‖ψ1‖
2
V ′ +K|ψ2|1.

Thus, integrating with respect to t and using (191) and (192) leads to

(195) ‖TK(θ)‖2
L2(0,t;V ) 6 c(1 +K).

Moreover, it follows from (C1) and (143) that

(196) Φ(θ) ∈ L∞(0, t;L1(Ω)).

Consequently, (190) follows from (195), (196), and a simple application of Lemma 6.6.

�
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Lemma 6.8. Let

(197) p <

{

5 if N = 2,

3 if N = 3,
s =







6p

5
if N = 2,

p if N = 3.

Then for all s 6 q < 1 + 2p/N there exists a positive constant c(q) such that

(198) ‖ψ2‖Lq/2(QT ) 6 c(q).

P r o o f. We can easily verify that, when N = 2, we have 6p/5 < 1 + p and,

when N = 3, we have p < 1 + 2p/3.

Now, let h = F ′(̺) + θ̺. Then (25) becomes

(199) ̺t +A̺ = −h.

Since V →֒ Lq(Ω) is a continuous embedding, we deduce from (143) that

(200) ‖̺‖Lq(Qt) 6 c.

Thus, (190) and (200) yield

(201) ‖h‖Lq(Qt) 6 c.

On the other hand, it follows from the Agmon-Douglis-Nirenberg estimates (see [28,

Theorem 9.1, pp. 341–342]) that

(202)

2
∑

j=0

∑

2r+s=j
r,s>0

‖Dr
tD

s
x̺‖Lq(Q

T
) 6 c(‖h‖Lq(Q

T )
+ ‖̺0‖W 2−2/q,q(Ω)),

where Dr
t and D

s
x denote respectively any derivative of ̺ with respect to t and x of

order r and s. Moreover, we can easily verify that q < 2p, which implies the Sobolev

embedding

(203) W 2−1/p,2p(Ω) →֒W 2−2/q,q(Ω).

Therefore, taking, in particular, r = 0 and s = 2 in (202), it follows from (H6), (202),

and (203) that

(204) ‖A̺‖Lq(Qt) 6 c,
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which leads, together with (199) and (201), to

(205) ‖̺t‖Lq(Qt).

Thus,

(206) (̺t)
2 ∈ Lq/2(Ω).

Finally, (198) holds true owing to estimates (190), (200), and (206). �

Lemma 6.9. The following estimate holds:

(207) ‖ψ2‖L2(Qt) 6 c.

P r o o f. We know that the two dimensional case corresponds to p > 2 and if

we have also 4 ∈ (6p/5, p + 1), then (207) will be obtained by a simple deduction

from (198) and the continuous embedding Lq/2(Qt) →֒ L2(Qt). It suffices to take

4 6 q 6 p + 1. In the three dimensional case, we are sure that 4 6∈ (p, 1 + 2p/3),

since assuming that 4 6 1 + 2p/3 gives p > 9/2, which contradicts our assumptions.

Hence, we have to show this lemma in the following two cases: N = 3 or N = 2 with

4 6∈ (6p/5, p+1). Our idea is to combine Moser iterations estimates and (198) which

holds by Lemma 6.8.

Let q0 ∈ (s, 1 + 2p/N). Then testing (24) by θqi−p yields, for i = 0,

p

qi

d

dt

∫

Ω

θqi dx+
4(qi − p)

qi − p+ 1

∫

Ω

∣

∣∇
(

θ(qi−p+1)/2
)∣

∣

2
dx+ n0

∫

Γ

θqi−p+1 dσ(208)

6

∫

Γ

gθqi−p dσ +

∫

Ω

ψ2θ
qi−p dx.

We estimate separately the terms of (208). On the one hand, we note that

(209)
4(qi − p)

qi − p+ 1

∫

Ω

∣

∣∇
(

θ(qi−p+1)/2
)∣

∣

2
dx+ n0

∫

Γ

θqi−p+1 dσ > c15
∥

∥θ(qi−p+1)/2
∥

∥

2
,

where c15 depends of course on qi and p. On the other hand, it follows from Young’s

inequality that

(210)

∫

Ω

ψ2θ
qi−p dx 6

∫

Ω

θqi dx+

∫

Ω

ψ
qi/p
2 dx.

Finally, from (H2) we obtain

(211)

∫

Γ

gθqi−p dσ 6 ‖g‖L2(Γ)‖θ
qi−p‖L2(Γ) 6 c

∥

∥θ(qi−p+1)/2
∥

∥

2(qi−p)/(qi−p+1)

L4(qi−p)/(qi−p+1)(Γ)
.
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We note that (qi − p)/(qi − p+1) < 1. Then we deduce from the continuity of the

embedding V →֒ Ls(Γ), for any s < 4 (Γ is an (N − 1)-dimensional set), that

(212)

∫

Γ

gθqi−p dσ 6 c+
c15
2

∥

∥θ(qi−p+1)/2
∥

∥

2
,

where c depends on qi and p. Then, by first combining (208)–(210) and (212) and

then applying Gronwall’s Lemma, we infer that for i = 0

(213) ‖θ‖L∞(0,t;Lqi (Ω)) +
∥

∥θ(qi−p+1)/2
∥

∥

L2(0,t;V )
6 c(qi).

Thus, (213) becomes, by using the continuous embedding V →֒ L6(Ω),

(214) ‖θ‖L∞(0,t;Lqi (Ω)) + ‖θ‖Lqi−p+1(0,t;L3(qi−p+1)(Ω)) 6 c(qi).

Now, we use the classical interpolation inequality written in the Lq(0, t;Lr(Ω))-space

with

(215)















1

q
=

1 − δ

qi − p+ 1
,

1

r
=

δ

qi
+

1 − δ

3(qi − p+ 1)

for δ ∈ (0, 1). Letting q = r, we deduce that

(216) δ =
2qi

5qi − 3(p− 1)
,

which corresponds to

(217) q =
5

3
qi − p+ 1.

Consequently, we obtain the corresponding estimate

(218) ‖θ‖Lq(Qt) 6 c(qi), with q =
5

3
qi − p+ 1

for i = 0. It becomes clear that the right-hand side of (24) is bounded, independently

in time, in Lq(QT ) for q given by (217). Agmon-Douglis-Nirenberg estimates allow us

to improve (198), but with this new q, which is bigger than that given by Lemma 6.8.

In fact, we can easily verify that

(219)







q > 1 + p if N = 2,

q > 1 +
2p

3
if N = 3.
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Indeed, for N = 2 we have assumed that 6
5p 6 q0 6 1 + p, so that

(220) 1 + p 6 q 6
8

3
+

2

3
p,

and for N = 3 we have assumed that p 6 q0 6 1 + 2
3p, which implies

(221) 1 +
2

3
p 6 q 6

8

3
+

1

9
p.

R em a r k 6.2. This explains the reason why we have restricted q0 to [65p, 1 + p]

when N = 2 and to [p, 1+ 2
3p] when N = 3. Indeed, Lemma 6.7 allows us to have q0

between 1 and 1 + 2p/N . Then we can restrict q0 to [s, 1 + 2p/N ], s > 1. And, in

order to have (219), we must choose s such that

(222)















1 + p 6
5

3
s− p+ 1 if N = 2,

1 +
2

3
p 6

5

3
s− p+ 1 if N = 3,

whence our choices

(223)







s =
6

5
p if N = 2,

s = p if N = 3.

Furthermore, the conditions

(224)

{

p < 5 if N = 2,

p < 3 if N = 3,

can be explained by the fact that we must have

(225)















6

5
p < p+ 1 if N = 2,

p < 1 +
2

3
p if N = 3.

Now, let q1 ∈ (q0, q). Then applying the same procedure we deduce the existence

of a third new q = 5
3q1 − p+ 1, which is even bigger. We repeat these steps of Moser

iterations on i ∈ N with qi+1 ∈ (qi, q). We note that

(226) q =
5

3
qi − p+ 1 > 4
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if and only if we have

(227) qi >
3(3 + p)

5
.

Consequently, we arrive at (213) with precisely qi = 3(3+p)/5+1, which corresponds

to q = 17
3 > 4 in (218) (indeed, higher exponents are not allowed, since k belongs

to L2, see (H2), and we cannot go over q = 4 in (198)). Finally, (207) holds true due

to the continuity of the embedding Lq/2(QT ) →֒ L2(QT ). �

End of the proof of the first case. We infer from the above estimates that the

right-hand side of (24) is bounded, uniformly in time, in H1(0, t;V ′) ∩ L2(0, t;H).

Furthermore, it follows from (C1) that

(228)

∫ t

0

∫

Ω

Φ′(θ)(θt)
2 dxds > c3

∫ t

0

∫

Ω

θp−1(θt)
2 dxds > c3θ

p−1
∗ ‖θt‖

2
L2(0,t;H).

Testing (24) by θt, then integrating and integrating by parts with respect to time

yields

c3θ
p−1
∗

2
‖θt‖

2
L2(0,t;H) +

1

4
‖θ(t)‖2(229)

6 c+ c‖θ‖2
L2(0,t;V ) + c‖g‖2

H1(0,t;L2(Γ)) + c‖ψ2‖
2
L2(0,t;H),

which results in (154) owing to Gronwall’s Lemma.

Second case (N = 1):

We first multiply (24) by θt, then integrate over Qt, t 6 ν and use (33), (228),

and the continuous embedding V →֒ L∞(Ω) to obtain

c3θ
p−1
∗ ‖θt‖

2
L2(0,t;H) +

1

2
‖θ(t)‖2(230)

6 c+

∫ t

0

∫

Γ

gθt dσ ds+

∫ t

0

∫

Ω

(̺t)
2θt dxds+

∫ t

0

∫

Ω

θ̺̺tθt dxds

6 c+
1

4
‖θ(t)‖2 + c‖θ‖2

L2(0,t;V ) +

∫ t

0

‖̺t‖L∞(Ω)|̺t||θt| ds

+ c

∫ t

0

|θ|p‖̺t‖L∞(Ω)|θt| ds+ c‖g‖2
H1(0,t;L2(Γ))

6 c+
1

4
‖θ(t)‖2 + c‖θ‖2

L2(0,t;V ) + ‖̺t‖L∞(0,t;H)‖̺t‖L2(0,t;V )‖θt‖L2(0,t;H)

+ c‖θ‖L∞(0,t;Lp(Ω))‖̺t‖L2(0,t;V )‖θt‖L2(0,t;H).

Inequality (143) and Young’s inequality yield

c3
2
θp−1
∗ ‖θt‖

2
L2(0,t;H) +

1

4
‖θ(t)‖2(231)

6 c+ c‖θ‖2
L2(0,t;V ) + c‖̺t‖

2
L∞(0,t;H)‖̺t‖

2
L2(0,t;V ) + c‖̺t‖

2
L2(0,t;V ).
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Now, we have to show that θ and ̺t are bounded in L
2(0, t;V ). So, we establish the

following lemma.

Lemma 6.10. In one space dimension we have

(232) ‖θ‖2
L2(0,t;V ) + ‖θ‖p+1

L∞(0,t;Lp+1(Ω)) + ‖̺‖2
L∞(0,t;W ) + ‖̺t‖

2
L2(0,t;V ) 6 c.

P r o o f. We test (24) by A̺t, then integrate between 0 and t 6 ν and use

Agmon’s inequality

(233) ‖u‖L∞(Ω) 6 c|u|1/2‖u‖1/2 ∀u ∈ V,

(31), (143), and (149) to obtain

‖̺t‖
2
L2(0,t;V ) +

1

2
|A̺(t)|2(234)

6 c+ c

∫ t

0

‖F ′(̺)‖‖̺t‖ ds+ c

∫ t

0

‖θ̺‖‖̺t‖ ds

6 c+ c

∫ t

0

{|F ′′(̺)∇̺| + |F ′(̺)|}‖̺t‖ ds

+ c

∫ t

0

{|̺∇θ + θ∇̺| + |θ̺|}‖̺t‖ ds

6 c+ c

∫ t

0

|∇̺|‖̺t‖ ds+ c

∫ t

0

‖̺t‖ ds+ c

∫ t

0

‖̺‖L∞(Ω)|∇θ|‖̺t‖ ds

+ c

∫ t

0

|θ|‖∇̺‖L∞(Ω)‖̺t‖ ds+ c

∫ t

0

‖̺‖L∞(Ω)|θ|‖̺t‖ ds

6 c+ c

∫ t

0

‖̺‖‖̺t‖ ds+ c

∫ t

0

‖̺t‖ ds

+ c

∫ t

0

‖̺‖L∞(Ω)(|∇θ| + |θ|)‖̺t‖ ds+ c

∫ t

0

|θ|p‖∇̺‖‖̺t‖ ds

6 c+ cT 1/2(1 + ‖̺‖L∞(0,t;V ))‖̺t‖L2(0,t;V )

+ c‖̺‖L∞(0,t;V )‖θ‖L2(0,t;V )‖̺t‖L2(0,t;V )

+ c‖θ‖L∞(0,t;Lp(Ω))‖̺‖L2(0,t;W )‖̺t‖L2(0,t;V )

6 c+
1

2
‖̺t‖

2
L2(0,t;V ) + c16‖θ‖

2
L2(0,t;V ).

On the other hand, testing (24) by θ and noting that

(∂Φ(θ)

∂t
, θ

)

=
∂

∂t

∫

Ω

ψ(θ) dx,
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where ψ is the antiderivative of the function defined on R
+ by r 7→ rΦ′(r) which

vanishes at 0, we immediately infer that

(235)
c

p+ 1

d

dt
|θ|p+1

p+1 +
1

2
‖θ‖2

J 6 c‖θ‖L∞(Ω)|θ|p|̺t| + c|θ|p|̺t|
2
4 + c‖k‖2

V ′ .

The Gagliardo-Nirenberg interpolation inequality (see [15, p. 194]) implies that

(236) |̺t|4 6 c|̺t|
3/4‖̺t‖

1/4.

Then by integrating with respect to time, we obtain

c

p+ 1
|θ(t)|p+1

p+1 +
1

2
‖θ‖2

L2(0,t;V )(237)

6 c‖θ‖L∞(0,t;Lp(Ω))‖θ‖L2(0,t;V )‖̺t‖L2(0,t;H)

+ c‖θ‖L∞(0,t;Lp(Ω))‖̺t‖
3/2
L2(0,t;H)‖̺t‖

1/2
L2(0,t;V ) + c‖k‖2

L2(0,t;V ′).

Young’s inequality and (143) yield

c

p+ 1
|θ(t)|p+1

p+1 +
1

4
‖θ‖2

L2(0,t;V )(238)

6 δ‖̺t‖
2
L2(0,t;V ) + c(δ)‖̺t‖

2
L2(0,t;H) + c‖k‖2

L2(0,t;V ′)

for δ > 0. Now, summing (234) and (238) multiplied by 8c16, we obtain the relation

1

2
‖̺t‖

2
L2(0,t;V ) +

1

2
|A̺(t)|2 +

c

p+ 1
|θ(t)|p+1

p+1 + c16‖θ‖
2
L2(0,t;V )(239)

6 8c16δ‖̺t‖
2
L2(0,t;V ) + c(δ)‖̺t‖

2
L2(0,t;H) + c‖k‖2

L2(0,t;V ′).

�

Taking δ < 1/(16c16), (232) follows immediately from (146).

We return to (231) and deduce

(240)
c3
2
θp−1
∗ ‖θt‖

2
L2(0,t;H) +

1

4
‖θ(t)‖2 6 c+ c‖̺t‖

2
L∞(0,t;H).

It turns out from Lemma 6.4 that

(241)
c3
2
θp−1
∗ ‖θt‖

2
L2(0,t;H) +

1

4
‖θ(t)‖2 6 c+ c‖θt‖L2(0,t;H),

which results in (154).
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Third case (N = 2, p > 2):

We multiply (24) by θt and then integrate over Qt, t 6 ν to obtain

c3θ
p−1
∗ ‖θt‖

2
L2(0,t;H) +

1

2
‖θ(t)‖2(242)

6 c+

∫ t

0

∫

Γ

gθt dσ ds+

∫ t

0

∫

Ω

(̺t)
2θt dxds+

∫ t

0

∫

Ω

θ̺̺tθt dxds

6 c+
1

4
‖θ(t)‖2 + c‖θ‖2

L2(0,t;V ) +

∫ t

0

|̺t|
2
4|θt| ds

+ c

∫ t

0

|θ|p|̺t|2p/(p−2)|θt| ds+ c‖g‖2
H1(0,t;L2(Γ)).

Owing to the Ladyzhenskaya interpolation inequality (see [28, Chapter II, (3.1)])

(243) |̺t|4 6 21/4|̺t|
1/2‖̺t‖

1/2,

the continuous embedding V →֒ L2p/(p−2)(Ω) and (242)–(243) we infer that

c3θ
p−1
∗ ‖θt‖

2
L2(0,t;H) +

1

4
‖θ(t)‖2(244)

6 c+ c‖θ‖2
L2(0,t;V ) +

∫ t

0

‖̺t‖|̺t||̺t| ds+ c

∫ t

0

|θ|p‖̺t‖|θt| ds

6 c+ c‖θ‖2
L2(0,t;V ) + ‖̺t‖L∞(0,t;H)‖̺t‖L2(0,t;V )‖θt‖L2(0,t;H)

+ c‖θ‖L∞(0,t;Lp(Ω))‖̺t‖L2(0,t;V )‖θt‖L2(0,t;H).

Lemma 6.11. In the two-space dimension case and when p > 2 we have

(245) ‖θ‖2
L2(0,t;V ) + ‖θ‖p+1

L∞(0,t;Lp+1(Ω)) + ‖̺‖2
L∞(0,t;W ) + ‖̺t‖

2
L2(0,t;V ) 6 c.

P r o o f. We test (25) by A̺t, then integrate with respect to time and use

relations (31), (143), and (149) to obtain

‖̺t‖
2
L2(0,t;V ) +

1

2
|A̺(t)|2(246)

6 c+ c

∫ t

0

‖F ′(̺)‖‖̺t‖ ds+ c

∫ t

0

‖θ̺‖‖̺t‖ ds

6 c+ c

∫ t

0

|∇̺|‖̺t‖ ds+ c

∫ t

0

‖̺t‖ ds+ c

∫ t

0

|θ|p|∇̺|2p/(p−2)‖̺t‖ ds

+ c

∫ t

0

‖̺‖2
L∞(Ω)|∇θ|‖̺t‖ ds+ c

∫ t

0

‖̺‖2
L∞(Ω)|θ|‖̺t‖ ds
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6 c+ c

∫ t

0

‖̺‖‖̺t‖ ds+ c

∫ t

0

‖̺t‖ ds+ c

∫ t

0

|θ|p‖∇̺‖‖̺t‖ ds

+ c

∫ t

0

‖̺‖2
L∞(Ω)(|∇θ| + |θ|)‖̺t‖ ds

6 c+ cT 1/2‖̺‖L∞(0,t;V )‖̺t‖L2(0,t;V ) + cT 1/2‖̺t‖L2(0,t;V )

+ c‖θ‖L∞(0,t;Lp(Ω))‖̺‖L2(0,t;W )‖̺t‖L2(0,t;V )

+ c‖̺‖2
L∞(Qt)

‖θ‖L2(0,t;V )‖̺t‖L2(0,t;V )

6 c+
1

2
‖̺t‖

2
L2(0,t;V ) + c17‖θ‖

2
L2(0,t;V ).

Now, we test (24) by θ and use the Ladyzhenskaya interpolation inequality to infer

that

c

p+ 1

d

dt
|θ|p+1

p+1 +
1

2
‖θ‖2

J 6 c|θ|2p/(p−2)|θ|p|̺t| + c|θ|p|̺t|
2
4 + c‖k‖2

V ′(247)

6 c‖θ‖|θ|p|̺t| + c|θ|p|̺t|‖̺t‖ + c‖k‖2
V ′ .

Then, integration of this inequality with respect to t gives

c

p+ 1
|θ(t)|p+1

p+1 +
1

2
‖θ‖2

L2(0,t;V )(248)

6 c‖θ‖L∞(0,t;Lp(Ω))‖θ‖L2(0,t;V )‖̺t‖L2(0,t;H)

+ c‖θ‖L∞(0,t;Lp(Ω))‖̺t‖L2(0,t;V )‖̺t‖L2(0,t;H)

+ c‖k‖2
L2(0,t;V ′).

The remaining part of this proof is essentially the same as that of the previous lemma

for (237) and, hence, we can omit the details. �

Finally, (154) follows from (244), Lemma 6.4, and Lemma 6.11.

Since all the above a priori estimates are independent of the time t, we deduce

that our solution, furnished by Theorem 4.1, can be extended beyond t = T , which

gives the global existence stated in Theorem 3.1.

7. Continuous dependence

This section is devoted to the proof of uniqueness in Theorem 3.1. More precisely,

we prove the following continuous dependence result.
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Lemma 7.1. Let (C1)–(C2) hold and let F be as in (H4)–(H5). Let us be given

pairs of data θ0i, ̺0i and gi, i = 1, 2, satisfying (H1)–(H3) and (H6). Denote by

(θi, ̺i), i = 1, 2, two corresponding solutions to system (24)–(30). Then for each

T > 0 there is a constant c(T ) which is allowed to depend on T and on the data

in (H1)–(H6), of course with i = 1, 2, such that

‖Φ(θ1) − Φ(θ2)‖
2
L∞(0,T ;V ′) + ‖̺1t − ̺2t‖

2
L2(0,T ;H) + ‖̺1 − ̺2‖

2
L∞(0,T ;V )(249)

+ ‖θ1 − θ2‖
2
L2(0,T ;H)

6 c(T ){‖Φ(θ01) − Φ(θ02)‖
2
V ′ + ‖k1 − k2‖

2
L2(0,T ;V ′) + ‖̺01 − ̺02‖

2}.

P r o o f. We set θ = θ1− θ2, u = Φ(θ1)−Φ(θ2), ̺ = ̺1−̺2 and k = k1−k2. We

start by considering the difference between the corresponding equations (25) and we

test the resulting formula by ̺t. Then, from (H4) and (31) we infer that

(250)
1

4
|̺t|

2 +
1

2

d

dt
‖̺‖2 6 c|̺|2 + c17|θ|

2 + c‖θ2‖
2‖̺‖2.

Next, we consider the difference between the corresponding equations (24) and we

test it by J−1u. Then, Hölder’s inequality, the continuous embedding L6/5(Ω) →֒ V ′

and (122) imply

1

2

d

dt
‖u‖2

V ′,J + c11|θ|
2(251)

6 ‖u‖V ′,J{|̺t||̺1t + ̺2t|3 + c|θ||̺1t|3 + |θ2|6|̺|6|̺1t|

+ c|θ2|6|̺t| + ‖k‖V ′,J}.

Multiplying (250) by σ > 0, then adding together with (251) and using repeatedly

Young’s inequality yields

σ

8
|̺t|

2 +
σ

2

d

dt
‖̺‖2 +

1

2

d

dt
‖u‖2

V ′,J +
c11
2

|θ|2(252)

6 cσ|̺|2 + c17σ|θ|
2 + cσ‖θ2‖

2‖̺‖2 + ‖k‖2
V ′,J + ‖̺‖2|̺1t|

2

+ c(σ, θ∗)‖u‖
2
V ′,J{1 + |̺1t|

2
3 + |̺2t|

2
3 + ‖θ2‖

2}.

Finally, using the regularity of ∂t̺i given by (30), taking σ < c11/(2c17) and applying

Gronwall’s lemma, we have the assertion. �

Thus, the proof of Theorem 3.1 is complete. �
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