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Abstract. We consider a model for transient conductive-radiative heat transfer in grey
materials. Since the domain contains an enclosed cavity, nonlocal radiation boundary con-
ditions for the conductive heat-flux are taken into account. We generalize known existence
and uniqueness results to the practically relevant case of lower integrable heat-sources, and
of nonsmooth interfaces. We obtain energy estimates that involve only the Lp norm of
the heat sources for exponents p close to one. Such estimates are important for the in-
vestigation of models in which the heat equation is coupled to Maxwell’s equations or to
the Navier-Stokes equations (dissipative heating), with many applications such as crystal
growth.
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Introduction

Heat transfer processes that take place at high temperatures can be neither mod-

eled nor simulated accurately without taking into account the phenomenon of heat

radiation: the heating of high-temperatures furnaces in metallurgy or in crystal

growth is one typical example of a relevant industrial problem. Models of radiative

heat transfer have recently been studied from the point of view of applied mathe-

matics in different publications: e.g. [16], [5], [4] for modeling and numerics, [11] for

control theory, [7] for analysis.

In the present paper, we study from the analytical viewpoint the time-dependent

heat transfer problem that consists in computing the temperature distribution re-

sulting from the heating of several different opaque bodies separated from each other
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by an enclosed transparent medium. The essential purpose of the paper is to inves-

tigate for which regularity of the heat sources the problem admits weak solutions.

In industrial applications, the heat sources are often obtained from coupled physical

problems1 so that regular right-hand sides hardly can be expected.

Problem description

We consider a finite number of bounded domains Ω0, . . . ,Ωm ⊂ R
3 (m > 1) such

that the set
m
⋃

i=0

Ωi is a simply connected Lipschitz domain and

(0.1) dist(Ωi,Ωj) > 0 for i, j = 1, . . . ,m and i 6= j.

The computation domain Ω ⊂ R
3 is defined by Ω :=

m
⋃

i=1

Ωi, where Ω1, . . . ,Ωm

represent opaque materials. Note the important feature that if m > 2, the set Ω is

disconnected. The domain Ω0 represents a transparent cavity.

We further assume that the transparent cavity Ω0 is enclosed in Ω, that means,

the geometry satisfies the enclosure property

(0.2) R
3 \ Ω is disconnected.

We define Σ := ∂Ω0 to be the boundary of the transparent cavity, where nonlocal

radiation effects have to be modeled. We define Γ := ∂Ω \ Σ. We assume that the

surface Σ is at least pieciwise C1, and we in addition make the restriction that

(0.3) dist(Γ,Σ) > 0.

A typical geometrical situation is depicted in Fig. 1.

Ω0

Ω1,...,4

Figure 1. A typical geometry with the opaque bodies Ω1, . . . ,Ω4 and the enclosed trans-
parent cavity Ω0.

1 In the typical case of inductive heating, Maxwell’s equations have to be solved.
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We consider the problem

(0.4)























∂θ

∂t
− div(κ(θ)∇θ) = f in [0, T ]× Ωi for i = 1, . . . ,m,

−κ(θ) ∂θ
∂~n

= R− J on [0, T ]× Σ,

θ = θg on [0, T ]× Γ

where θ is the absolute temperature, κ = κi (i = 1, . . . ,m) denotes the temperature-

dependent heat conductivity of the medium Ωi, R is the outgoing radiation (ra-

diosity), J is the incoming radiation, θg is the given temperature distribution, and

f denotes the given heat source density. For i = 1, . . . ,m, the unit normal pointing

outwards to ∂Ωi is denoted by ~n.

The second relation in Problem (0.4) states that the conductive heat flux outgoing

from each body has to balance the difference between the heat quantity brought to

its surface by radiation, denoted by J , and the heat quantity leaving its surface

due to radiation, denoted by R. Since R and J are in general unknown, additional

relations are needed to close problem (0.4).

First, R and J are connected by the relation

(0.5) R = εσ|θ|3θ + (1 − ε)J on [0, T ]× Σ,

where the emissivity ε is a given function that takes values in [0, 1], and σ denotes

the Stefan-Boltzmann constant. The relation (0.5) simply states that the outgoing

radiation has to be the sum of the radiation emitted according to Stefan-Boltzmann’s

law, and of the reflected part of the incoming radiation.

Another constitutive relation between R and J is needed. If two points z, y ∈ Σ

are in each other’s range of vision, then the radiation incoming at z from y, denoted

by jy(z), is given by the inverse square law

jy(z) =
~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4 R(y),

where ~n is a unit normal to Σ. The total radiation J(z) is obtained by summing

over the whole surface. For points pairs (z, y) ∈ Σ × Σ one introduces a view factor

w : Σ × Σ −→ R by setting

(0.6) w(z, y) :=







~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4 Θ(z, y) if z 6= y,

0 if z = y,
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where Θ is the visibility function that penalizes the presence of opaque obstacles:

(0.7) Θ(z, y) =

{

1 if ]z, y[ ⊂ Ω0,

0 else.

Here we have used the notation ]z, y[ := conv{z, y} \ {z, y}. Observe that the view
factor w is obviously well defined and nonnegative if the surface Σ has C1-regularity.

This can be generalized to the case of a piecewise C1-boundary (see for example [3],

[15], [2]).

The second constitutive relation between R and J is then given by

(0.8) J = K(R) on [0, T ]× Σ,

where

(0.9) (K(R))(t, z) =

∫

Σ

w(z, y)R(t, y) dSy for (t, z) ∈ [0, T ]× Σ.

The relations (0.5) and (0.8) are equivalent to an integral equation of the second

kind, the radiosity equation

(0.10) (I − (1 − ε)K)(R) = εσ|θ|3θ on [0, T ]× Σ,

where the symbol I denotes the identity mapping, and the functions ε, 1 − ε in

connection with integral operators simply mean multiplication.

The integro-differential problem

(0.11)



































∂θ

∂t
− div(κ(θ)∇θ) = f in [0, T ]× Ωi for i = 1, . . . ,m,

−κ(θ) ∂θ
∂~n

= (I −K)(R) on [0, T ]× Σ,

(I − (1 − ε)K)(R) = εσ|θ|3θ on [0, T ]× Σ,

θ = θg on [0, T ]× Γ

is well-defined and closed.

In a large class of applications, the formulation of (0.11) can be simplified. If the

solution operator (I − (1 − ε)K)−1 of the integral equation (0.10) is well-defined

(cf. Lemma A.2 (3)), it is possible to eliminate the unknown R. Introducing the

linear operator

(0.12) G := (I −K)(I − (1 − ε)K)−1ε,

114



we see that the problem (0.11) is equivalent to

(0.13) (P)























∂θ

∂t
− div(κ(θ)∇θ) = f in [0, T ]× Ωi for i = 1, . . . ,m,

−κ(θ) ∂θ
∂~n

= G(σ|θ|3θ) on [0, T ]× Σ,

θ = θg on [0, T ]× Γ,

which only involves the one unknown θ. Throughout the paper, we focus on cases

where the last formulation (P) is valid.

State of the research

The papers [15], [14] were devoted to the stationary equations corresponding to

the problem (P). The existence of weak solutions was proved in the case that the

transparent medium Ω0 is not enclosed. In [10], a result was stated for the time-

dependent problem under the same geometrical restriction.

The crucial point of the existence proof, the coercivity on a suitable Banach space

of the nonlinear operator A defined by

〈Aθ, ψ〉 :=

∫

Ω

κ∇θ · ∇ψ +

∫

Σ

G(σ|θ|3θ)ψ,

turns out to have an elementary solution in geometries such that (0.2) fails.

In [7], new coercivity properties were established for the operator A, allowing to

extend the previous results concerning the stationary problem to enclosures. Since

the coercivity inequality proved in [7] relies on smoothing properties (compactness)

of the integral operator K, the surface Σ has to be at least of class C1,α for some

α > 0. In the same paper [7], a paragraph was also devoted to the time-dependent

problem, and an existence result was stated for f ∈ L2(]0, T [ × Ω) in the case of a

C1,α boundary.

In the present paper, we prove the existence of weak solutions to (P) in geometrical

situations allowing for enclosures. Our main results nontrivially generalize the results

of [7] in the following respects:

(1) We consider right-hand sides f ∈ Lp(]0, T [×Ω), with arbitrary 1 6 p 6 ∞ (see
Theorem 2.2 and Theorem 4.1).

(2) We include in our considerations the case of a piecewise smooth surface Σ (see

Theorem 2.1).

(3) We propose new methods for proving existence in the case that f ∈ L2(]0, T [×Ω)

(see Theorem 2.1).

The points (1) and (2) are especially relevant for the high-temperatures industrial

applications mentioned at the beginning of the introduction. The main result of
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our paper, the existence of weak solutions for f ∈ L1(]0, T [ × Ω), is also of interest

for the theory of parabolic problems with L1 right-hand side (see [1] and related

publications), since the type of nonlocal nonlinearity introduced by the radiation

boundary conditions have not yet been considered.

The paper is organized as follows. In the first section, we introduce the functional

setting of the problem (P). The second section is devoted to existence results for

the case that f ∈ Lp(]0, T [× Ω) with p > 1 arbitrary. We then briefly address some

regularity and uniqueness properties of weak solutions. The last section is concerned

with the proof of existence in the case that f ∈ L1(]0, T [ × Ω). In the appendix, we

have gathered some auxiliary results needed throughout the paper.

1. Functional setting and definition of a weak solution

We use the notation

Qt := ]0, t[ × Ω, St := ]0, t[ × Σ, Ct := ]0, t[ × Γ.

We write Q instead of QT , S instead of ST , etc. For 1 6 p, q <∞ we use the notation

Lp,q(Q) :=

{

u ∈ L1(Q) :

∫ T

0

(
∫

Ω

|u|q dx

)p/q

dt <∞
}

,

and for p = ∞,

L∞,q(Q) :=

{

u ∈ L1(Q) : ess sup
t∈]0,T [

(
∫

Ω

|u|q dx

)1/q

<∞
}

.

Analogously, one can define the spaces Lp,q(S). We write Lp(Q), Lp(S) instead of

Lp,p(Q), Lp,p(S). For 1 6 p < ∞ we use the function spaces (see [6] for a general

description)

W 1,0
p (Q) := {u ∈ Lp(Q) : ∃uxi ∈ Lp(Q) for i = 1, 2, 3}

and

W 1
p (Q) := {u ∈W 1,0

p (Q) : ∃ut ∈ Lp(Q)},

where the partial derivatives uxi , ut are intended in the weak sense. The space

V 1,0
2 (Q) consists of all u ∈W 1,0

2 (Q) such that ess sup
t∈]0,T [

∫

Ω
u2(t, x) dx <∞. We define

V p,q(Ω) := {u ∈ W 1,p(Ω): γ(u) ∈ Lq(Σ)},
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where γ is the trace operator. For such p and q that the Sobolev spaceW 1,p(Ω) is not

embedded in Lq(Σ), the norm on V p,q is ‖ · ‖W 1,p(Ω) + ‖γ(·)‖Lq(Σ). The subscript Γ

will indicate subspaces of functions that vanish on the surface Γ. We set

V
p,q(Q) := {u ∈W 1

p (Q) : γ(u) ∈ Lq(S)},
V

p,q
0 (Q) := {u ∈W 1,0

p (Q) : γ(u) ∈ Lq(S)}.

Using the subscript C, we denote the subspaces of functions that vanish on the surface

]0, T [ × Γ. Throughout the paper, we assume that there exist positive constants κl,

κu such that

(1.1) 0 < κl 6 κi(s) 6 κu <∞ for all s ∈ R for i = 1, . . . ,m,

and a positive constant εl such that

(1.2) 0 < εl 6 ε(t, z) 6 1 for (t, z) ∈ ]0, T [× Σ.

The last hypothesis ensures that the operator G introduced in (0.12) is well-defined

(see Lemma A.2 (3)). We note that for a real number s > 1, we denote throughout

the paper by s′ the conjugated exponent s/(s − 1). By convention, the numbers 1

and ∞ are conjugated.
With these preliminaries, and with help of Lemma A.2, we can show that the

following definition is meaningful:

Definition 1.1. We call θ a weak solution to (P) if there exists 1 6 s 6 ∞ such
that θ ∈ V

s,4
0 (Q), if θ = θg almost everywhere on C, and if the integral relation

−
∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ +

∫

S

G(σ|θ|3θ)ψ =

∫

Ω

θ0ψ(0) +

∫

Q

fψ

is valid for all ψ ∈ V
s′,∞
C

(Q) such that ψ(T ) = 0 almost everywhere in Ω.

R em a r k 1.2. Since the data θg, θ0 only play a subordinate role in applications,

we restrict ourselves in the paper to the simplifying assumption

(1.3) θg = const = θ0,

which allows not to burden the proofs with technical details.
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2. Existence of solutions

The main difficulty in proving the existence of weak solution to (P) is the strong

growth of the term θ4 on the boundary S. In this section we show that the regularity

of the right-hand side f and of the surface Σ are the two key-points to decide whether

or not this term can be controlled.

(1) In the case of a piecewise smooth interface Σ, the existence of weak solutions

to (P) has not yet been proved. That is the object of Theorem 2.1 below.

(2) In the case of a C1,α-boundary Σ, the existence of weak solutions for right-hand

sides f less regular than f ∈ L2(Q) has never been studied. That is the object

of Theorem 2.2 below.

Theorem 2.1. Let Σ ∈ C1 piecewise. Assume that f ∈ Ls1,s2(Q), where s1, s2 ∈
[1,∞] are such that

s1 ∈















] 2s2
3(s2 − 1)

,∞
]

if s2 6
3

2
,

] 2s2
3(s2 − 1)

,
2s2

2s2 − 3

]

if s2 >
3

2
.

Let θg, θ0 satisfy (1.3), let κ satisfy (1.1), and let ε satisfy (1.2).

Then the number q̄ := (5s1s2− (3s1 +2s2))/(3s1 +2s2−2s1s2) satisfies q̄ > 2, and

there exists a weak solution θ to (P) such that |θ|(q̄+1)/2 ∈ V 1,0
2 (Q). In particular,

we have

∇θ ∈ [Ls(Q)]3, θ4 ∈ L(q̄+1)/3(S),

with s := min{5(q̄ + 1)/(q̄ + 4), 2}.

We can deal with less regular right-hand sides if we assume that Σ ∈ C1,α.

Theorem 2.2. Let Σ ∈ C1,α for some α > 0. Assume that f ∈ Ls1,s2(Q), where

s1 ∈ [1,∞] and s2 ∈ [1, 3/2] are such that

s1 ∈
] 2s2
5s2 − 3

,∞
]

.

Let θg, θ0 satisfy (1.3), let κ satisfy (1.1), and let ε satisfy (1.2).

Then the number q̄ := (5s1s2 − (3s1 + 2s2))/(3s1 + 2s2 − 2s1s2) satisfies q̄ > 0,

and there exists a weak solution θ to (P) such that |θ|(q̄+1)/2 ∈ V 1,0
2 (Q). In particular,

we have

∇θ ∈ [Ls(Q)]3, θ ∈ Lq̄+4(S),

with s := min{5(q̄ + 1)/(q̄ + 4), 2}.
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The remainder of the section is devoted to the proof of Theorem 2.1 and of The-

orem 2.2. We start the proof by constructing suitable approximate solutions in

Proposition 2.3. In Propositions 2.5 and 2.6, we derive uniform estimates. Passage

to the limit and existence proofs are given at the end of the section.

Proposition 2.3. Let the assumptions of Theorem 2.1 or of Theorem 2.2 be

satisfied. For δ > 0, define f [δ] := sign(f)min{|f |, 1/δ}. Let p > 5 be arbitrary.

Then there exists θ ∈ Lp(0, T ;W 1,p(Ω)) such that θ′ ∈ Lp′

(0, T ; [W 1,p(Ω)]∗), θ =

θg in L
p(C), θ(0) = θ0 in L

p(Ω) and

〈θ′, ψ〉 + δ

∫ T

0

∫

Ω

(|θ|p−2θ − |θg|p−2θg)ψ +

∫ T

0

∫

Ω

(δ|∇θ|p−2 + κ(θ))∇θ · ∇ψ(2.1)

+

∫ T

0

∫

Σ

G(σ|θ|3θ)ψ =

∫ T

0

∫

Ω

f [δ]ψ

for all ψ ∈ Lp(0, T ;W 1,p
Γ (Ω)). In addition, θ ∈ L∞(Q).

P r o o f. We first introduce some notation. We define

Vp := Lp(0, T ;W 1,p
Γ (Ω)), Lξ := ξ′,

D(L) := {ξ ∈ Lp(0, T ;W 1,p
Γ (Ω)): ∃ ξ′ ∈ Lp′

(0, T ; [W 1,p
Γ (Ω)]∗); ξ(0) = 0}.

The symbol ξ′ denotes the distributional time derivative of ξ. By classical results

that can be found, for example, in [9] (see Ch. 3, Lem. 1.1), the operator L is a

densely defined, maximal monotone linear operator from the linear subspace D(L)

of Vp into the dual V∗
p .

For arbitrary ξ ∈ Vp, we define ξ̂ := ξ + θg and we introduce an operator

〈Aξ, ψ〉 := δ

∫ T

0

∫

Ω

(|ξ̂|p−2ξ̂ − |θg|p−2θg)ψ

+

∫ T

0

∫

Ω

(δ|∇ξ̂|p−2 + κ(ξ̂))∇ξ̂ · ∇ψ +

∫ T

0

∫

Σ

G(σ|ξ̂|3ξ̂)ψ,

where the symbol 〈·, ·〉 denotes the duality pairing between Vp and its dual V∗
p .

We can show that A is a well-defined, bounded operator from Vp into V∗
p . Observe

that thanks to Lemma A.2

∣

∣

∣

∣

∫ T

0

∫

Σ

G(σ|ξ̂|3ξ̂)ψ
∣

∣

∣

∣

6 ‖G(σ|ξ̂|3ξ̂)‖L5/4(0,T ;L5/4(Σ))‖ψ‖L5(0,T ;L5(Σ))

6 ‖G‖L(5/4,5/4)σ‖ξ̂‖4
L5(0,T ;L5(Σ))‖ψ‖L5(0,T ;L5(Σ)),
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where we use the notation (A.1). Since p > 5, we can use Hölder’s and Young’s

inequalities to obtain that

∣

∣

∣

∣

∫ T

0

∫

Σ

G(σ|ξ̂|3ξ̂)ψ
∣

∣

∣

∣

6 c(1 + ‖ξ̂‖p−1
Lp(0,T ;W 1,p(Ω)))‖ψ‖Lp(0,T ;W 1,p

Γ (Ω)).

Estimating the other terms in A in a similar way, we verify that

(2.2) ‖Aξ‖V∗

p
6 cδ(1 + ‖ξ‖p−1

Vp
).

To prove the existence result, we show that there exists ξ ∈ D(L) such that for

all ψ in Vp

(2.3) 〈ξ′, ψ〉 + 〈Aξ, ψ〉 =

∫ T

0

∫

Ω

f [δ]ψ −
∫ T

0

∫

Ω

∂θg

∂t
ψ.

Then the function θ := ξ + θg satisfies (2.1) and is the desired solution.

To prove that the mapping F given by

〈F , ψ〉 :=

∫ T

0

∫

Ω

f [δ]ψ −
∫ T

0

∫

Ω

∂θg

∂t
ψ

is a well-defined element of V∗
p is routine. Of course, under the assumption (1.3), the

second term on the right-hand side is even zero.

Observe then that ξ ∈ D(L) satisfies (2.3) if and only if the equation (L+A)ξ = F
takes place in V∗

p . Due to the theory of elliptic regularization (exposed for example

in [9, Ch. 3, Th. 1.2]), it is sufficient to prove that A is coercive and pseudomonotone
with respect to D(L) to ensure the surjectivity of the operator L+A from Vp into V∗

p .

For proving coercivity, we first verify that

∫

S

G(σ|ξ̂|3ξ̂)ξ̂ > (1 − ‖H‖L(L5/4(S),L5/4(S)))

∫

S

|ξ̂|5 > 0,

where we use Lemma A.2 (4). It follows that

〈Aξ, ξ〉 = 〈Aξ, ξ̂ − θg〉

= δ

∫

Q

(|∇ξ̂|p + |ξ̂|p) +

∫

Q

κ(ξ̂)|∇ξ̂|2 +

∫

S

G(σ|ξ̂|3ξ̂)ξ̂ − 〈Aξ, θg〉

− δ

∫

Q

(|ξ̂|p−2ξ̂θg + |θg|p−2θg ξ̂ − |θg|p)

> δ‖ξ̂‖p
Lp(0,T ;W 1,p(Ω)) − |〈Aξ, θg〉| − δ

∫

Q

(|ξ̂|p−1|θg| + |θg|p−1|ξ̂| + |θg|p).
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Using Hölder’s and Young’s inequalities, we obtain from the inequality (2.2) that

〈Aξ, ξ〉 >
δ

2
‖ξ̂‖p

Lp(0,T ;W 1,p(Ω)) − cδ(1 + ‖ξ‖p−1
Vp

)‖θg‖Lp(0,T ;W 1,p(Ω))

− δc̃‖θg‖p
Lp(0,T ;W 1,p(Ω))

>
δ

4
‖ξ̂‖p

Lp(0,T ;W 1,p(Ω)) − Cδ,

with a constant Cδ that depends on δ but whose precise value is not needed. This

proves the coercivity.

We now prove that A is pseudomonotone. Let ξk ⇀ ξ in D(L). We assume that

lim sup
k→∞

〈Aξk, ξk − ξ〉 6 0. The weak convergence in D(L) means that

(2.4) ξk ⇀ ξ in Vp, ξ′k ⇀ ξ′ in V∗
p .

Applying the well-known compactness result of [9, Ch. 1, Th. 5.1], we can find a

subsequence, still denoted by {ξk}, such that

(2.5) ξk −→ ξ in Lp(0, T ;Lp(Ω)).

The inequality

(2.6) ‖u‖Lp(Σ) 6 γ‖u‖W 1,p(Ω) + cγ‖u‖Lp(Ω)

holds for any u in W 1,p(Ω) and arbitrary small γ > 0. Therefore, from (2.4) and

(2.5) we obtain the existence of a (not relabelled) subsequence such that

ξk −→ ξ in Lp(0, T ;Lp(Σ)).

Using the monotonicity of the p-Laplace terms, the property

lim inf
k→∞

〈Aξk, ξk − ψ〉 > 〈Aξ, ξ − ψ〉

is readily verified for all ψ in Vp, completing the proof of existence.

We finally prove the global boundedness of the solution θ := ξ + θg. Fix an

arbitrary t1 < T and consider an arbitrary 0 < h < T − t1. Using the properties of

the Steklov averaging operator, recalled in the appendix, we can prove the validity

of the relation
∫ t1

0

∫

Ω

∂θ(h)

∂t
ψ + δ

∫ t1

0

∫

Ω

{|θ|p−2θ − |θg|p−2θg}(h)ψ(2.7)

+

∫ t1

0

∫

Ω

{(δ|∇θ|p−2 + κ(θ))∇θ}(h) · ∇ψ +

∫ t1

0

∫

Σ

{G(σ|θ|3θ)}(h)ψ

=

∫ t1

0

∫

Ω

f
[δ]
(h)ψ
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for all ψ ∈ Lp(0, T ;W 1,p
Γ (Ω)). For every number k > max{ess sup

Ω
θ0, ess sup

C

θg}, the
function (θ(h) − k)+ belongs to Vp and can be used as a test function in (2.7).

Observe that
∫ t1

0

∫

Ω

∂θ(h)

∂t
(θ(h) − k)+ =

∫ t1

0

∫

Ω

∂(θ(h) − k)

∂t
(θ(h) − k)+

=
1

2

∫

Ω

[(θ(h) − k)+(t1)]
2 − 1

2

∫

Ω

[(θ(h) − k)+(0)]2.

Our choice of k implies that (θ − k)+(0) = (θ0 − k)+ = 0 almost everywhere in Ω.

On the other hand, observe that D(L) ⊂ C(0, T ;L2(Ω)). By the properties of the

averaging operator (·)(h), we thus have for all t ∈ [0, T ] that θ(h)(t) → θ(t) in L2(Ω)

as h→ 0. Thus, as h→ 0,

∫ t1

0

∫

Ω

∂θ(h)

∂t
(θ(h) − k)+ −→ 1

2

∫

Ω

[(θ − k)+(t1)]
2.

Passage to the limit with the remaining terms in (2.7) is an easy exercise. Observe

that ∫

Qt1

|∇θ|p−2∇θ · ∇(θ − k)+ =

∫

Qt1

|∇θ|p−2|∇(θ − k)+|2 > 0,

and that, due to the choice of the parameter k,
∫

Qt1

(|θ|p−2θ − |θg|p−2θg)(θ − k)+ > 0.

So we obtain, for all t1 < T , the relation

1

2

∫

Ω

[(θ − k)+(t1)]
2 +

∫

Qt1

κ(θ)|∇(θ − k)+|2 +

∫

St1

G(σ|θ|3θ)(θ − k)+

6

∫

Qt1

f [δ](θ − k)+.

In view of Lemma A.4 we have
∫

St1
G(σ|θ|3θ)(θ − k)+ > 0, which implies that

max
t1∈[0,T ]

∫

Ω

[(θ − k)+(t1)]
2 +

∫

Q

κ(θ)|∇(θ − k)+|2 6 2

∣

∣

∣

∣

∫

Q

f [δ](θ − k)+
∣

∣

∣

∣

.

The results of [6] or of [13] prove the existence of an upper bound for θ in Q. A lower

bound is obtained in the same way, by considering (k − θ)− for k < min{ess inf
Ω

θ0,

ess inf
C

θg}. It follows for all r > 5/2 that

(2.8) ‖θ‖L∞(Q) 6 max{‖θg‖L∞(C), ‖θ0‖L∞(Ω)} + Cr‖f [δ]‖Lr(Q).

�
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R em a r k 2.4. The approximation method of Proposition 2.3 corresponds to the

regularization of the problem (P) with a nonlinear Fourier-law for the heat flux. For

δ small, the term δ(|θ|p−2θ − |θg|p−2θg) can be interpreted as a penalization of the

heat sources at high-temperatures.

The next point consists in obtaining uniform estimates for sequences of approxi-

mate solutions.

Proposition 2.5. Let the assumptions of Theorem 2.1 be satisfied, and define

numbers q̄ and s as in that theorem. Then for any sequence of solutions {θδ} ac-
cording to Proposition 2.3 we have

(2.9) ‖∇θδ‖[Ls(Q)]3 + ‖|θδ|(q̄+1)/2‖V 1,0
2 (Q) + ‖θ4δ‖L(q̄+1)/3(S) 6 C,

where the constant C depends continuously on ‖f‖Ls1,s2 (Q), on ‖θ0‖Lq̄+1(Ω), and on

‖θg‖L∞(Q).

P r o o f. In the sequel we write for convenience θ instead of θδ. For the family

of parameters 0 < q <∞, we first prove that

1

2(q + 1)

∫

Ω

|θ(t1)|q+1(2.10)

+

∫

Qt1

4q

(q + 1)2
κ(θ)

∣

∣∇|θ|(q+1)/2
∣

∣

2
+

∫

St1

σG(|θ|3θ)|θ|q−1θ

6

∫

Qt1

f [δ]|θ|q−1θ +
cq

q + 1

∫

Ω

|θ0|q+1.

The inequality (2.10) can be obtained by testing the approximate equation (2.3) with

the signed powers (|θ|q−1θ − |θg|q−1θg). This part of the proof is technical, and the

reader will find it in Lemma C.1 below (see the appendix).

Define w := |θ|(q+1)/2. Since according to Lemma A.2, G = I −H with a positive

operator H , we have

∫

St1

G(σ|θ|3θ)|θ|q−1θ >

∫

St1

G(σ|θ|4)|θ|q =

∫

St1

G(σw8/(q+1))w2q/(q+1).

Rewriting (2.10), we obtain that

∫

Ω

w2(t1) +

∫

Qt1

|∇w|2 +

∫

St1

G(σw8/(q+1))w2q/(q+1)(2.11)

6 cq

(
∫

Ω

|θ0|q+1 +

∫

Qt1

|f [δ]|w2q/(q+1)

)

.

123



We use Hölder’s inequality to conclude that

(2.12)

∫ t1

0

∫

Ω

|f [δ]|w2q/(q+1) 6 ‖f‖Ls1,s2 (Q)‖w‖2q/(q+1)

Lβ1,β2 (Q)
,

where

(2.13) β1 := 2s′1q/(q + 1), β2 := 2s′2q/(q + 1).

Note that, in view of Proposition 2.3, we have θ ∈ L∞(Q), which ensures that

‖w‖Lβ1,β2 (Q) is finite.

With help of (2.11), we first obtain that

(2.14) ess sup
t1∈]0,T [

∫

Ω

w2(t1) 6 cq

(
∫

Ω

|θ0|q+1 + ‖f‖Ls1,s2 (Q)‖w‖2q/(q+1)

Lβ1,β2 (Q)

)

,

and reusing (2.11), it follows that

(2.15) ‖w‖2
V 1,0
2 (Q)

6 2cq

(
∫

Ω

|θ0|q+1 + ‖f‖Ls1,s2 (Q)‖w‖2q/(q+1)

Lβ1,β2 (Q)

)

.

Assume now that the numbers β1, β2 can be chosen such as to satisfy the conditions

of Lemma B.1 for the continuity of the embedding V 1,0
2 (Q) →֒ Lβ1,β2(Q). It then

follows, from Young’s inequality, that

‖w‖2
Lβ1,β2(Q) 6 c̃q

(
∫

Ω

|θ0|q+1 + ‖f‖q+1
Ls1,s2(Q)

)

,

which can be inserted in (2.15) to obtain that

(2.16) ‖w‖2
V 1,0
2 (Q)

6 C(q, ‖θ0‖Lq+1(Ω), ‖f‖Ls1,s2(Q)).

Recalling the definition of w, we have obtained the estimate

(2.17) ‖|θ|(q+1)/2‖2
V 1,0
2 (Q)

6 C(q, ‖θ0‖Lq+1(Ω), ‖f‖Ls1,s2(Q)).

The idea is now to control θ4 on the boundary with help of Lemma B.1. Since

V 1,0
2 (Q) →֒ L8/3(S) with a continuous embedding, we now obtain a uniform bound

‖θ4‖L(q+1)/3(S) 6 C̃(q, ‖θ0‖Lq+1(Ω), ‖f‖Ls1,s2(Q)),

which makes sense provided that (q + 1)/3 > 1.
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Finally, we verify that if s1, s2 satisfy the hypothesis of Theorem 2.1, the choice

q :=
5s1s2 − (3s1 + 2s2)

3s1 + 2s2 − 2s1s2

ensures that q > 2, and that the continuity of the embedding V 1,0
2 (Q) →֒ Lβ1,β2(Q)

is valid.

We reuse the estimate (2.17) to obtain an estimate on ∇θ. If r 6 2, we can write

∫

Q

|∇θ|r =

∫

Q

|∇θ|r
|θ|(1−q)r/2

|θ|(1−q)r/2

6

(
∫

Q

|∇θ|2
|θ|1−q

)r/2(∫

Q

|θ|(1−q)r/(2−r)

)(2−r)/2

6 c‖∇|θ|(q+1)/2‖r
L2(Q)‖|θ|(q+1)/2‖(1−q)r/(q+1)

L2(1−q)r/((2−r)(q+1))(Q)
.

In view of estimate (2.17) and of Lemma B.1, we see that if the relation

2(1 − q)r 6
10

3
(2 − r)(q + 1)

is satisfied and r 6 2, then ∇θ will be uniformly bounded in [Lr(Q)]3. This is true

exactly for the range 1 6 r 6 s. �

Proposition 2.6. Let the assumptions of Theorem 2.2 be satisfied, and define

the numbers q̄ and s as in that theorem. Then for any sequence of solutions {θδ}
according to Proposition 2.3

(2.18) ‖|θδ|(q̄+1)/2‖V 1,0
2 (Q) + ‖∇θδ‖[Ls(Q)]3 + ‖θδ‖Lq̃+4(S) 6 C,

where the constant C depends continuously on ‖f‖Ls1,s2 (Q), on ‖θ0‖L1+q̄(Ω), and on

‖θg‖L∞(Q).

P r o o f. We can of course use the same reasoning as in the proof of Propo-

sition 2.5. However, we obtain an additional estimate thanks to the regularizing

properties of the operator K on smooth surfaces.

We reconsider the relation (2.11). We apply Lemma A.3 with ψ := w2q̄/(q̄+1),

r := 4/q̄, and s := (q̄ + 1)/2q̄, and we obtain that

∫ t1

0

∫

Σ

G(σw8/(q̄+1))w2q̄/(q̄+1)(2.19)

> c1,q̄

∫ t1

0

∫

Σ

w2(q̄+4)/(q̄+1) − c2,q̄

∫ t1

0

(
∫

Σ

w

)2(q̄+4)/(q̄+1)

.
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In view of Lemma B.1, the embedding V 1,0
2 (Q) →֒ L∞,4/3(S) is continuous. We

obtain that

∫ T

0

(
∫

Σ

w

)2(q̄+4)/(q̄+1)

6 T ‖w‖2(q̄+4)/(q̄+1)
L∞,1(S) 6 Tc‖w‖2(q̄+4)/(q̄+1)

V 1,0
2 (Q)

6 T C̃(q̄, ‖θ0‖Lq̄+1(Ω), ‖f‖Ls1,s2 (Q)),

in view of (2.16). We now obtain from (2.19) that

(2.20) ‖θ‖q̄+4
Lq̄+4(S) 6 C.

Unlike in the proof of Proposition 2.5, we are not bound to the condition q̄ > 2 to

control θ4 on the boundary. Therefore, a larger choice of the parameters s1, s2 is

possible. �

In order to pass to the limit with the approximate solutions, we state in the

following lemma an additional estimate.

Lemma 2.7. Let the hypotheses of Proposition 2.3 be satisfied with p > s1, and

assume that the hypotheses either of Proposition 2.5 or of Proposition 2.6 are valid.

Then the sequence ‖θ′δ‖L1(0,T ;[W 1,p
Γ (Ω)]∗) is uniformly bounded.

P r o o f. The proof is technical. The reader will find it at the end of the appendix.

�

P r o o f of Theorem 2.1 and of Theorem 2.2. Thanks to the a priori estimates of

Proposition 2.5 (or of Proposition 2.6) and of Lemma 2.7, the compactness theorems

of [9] generalized in [12], imply the existence of a subsequence δ → 0 and of a

function θ such that

(2.21) ∇θδ ⇀ ∇θ in [Ls(Q)]3, θδ −→ θ in L2(Q), θδ −→ θ a.e. in Q.

By means of the inequality (2.6), we also find subsequences such that

(2.22) θδ −→ θ in Ls(S), θδ −→ θ a.e. on S,

with s := min{2, 5(q̄ + 1)/q̄ + 4}.
In addition, we see that there exists a u ∈ Lr(S) such that

(2.23) θδ|θδ|3 ⇀ u in Lr(S)

with r := (q̄ + 1)/3 > 1 in the case of Theorem 2.1, r := (q̄ + 4)/4 > 1 in the case

of Theorem 2.2. The fact that r > 1 implies that the weak limit u must be identical
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with the pointwise limit, if it exists. Then the convergence properties (2.22) imply

that u = θ|θ|3.
We test in (2.1) with an arbitrary ψ in C∞(Q) that vanishes in {T }×Ω and on C.

We can write

−
∫

Q

θδ
∂ψ

∂t
+ . . .+

∫

Q

κ(θδ)∇θδ · ∇ψ +

∫

S

G(σ|θδ|3θδ)ψ =

∫

Ω

θδ(0)ψ(0) +

∫

Q

f [δ]ψ,

where (. . .) represents the terms involving the p-power. Passing to the limit in the

last relation, we can easily show that

(2.24) −
∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ +

∫

S

G(σ|θ|3θ)ψ =

∫

Ω

θ0ψ(0) +

∫

Q

fψ.

�

3. Some additional properties of weak solutions

In order to state the first result, we introduce the notation

W(t1, t2, t3; Ω) := {ψ ∈W 1,1(Ω): ∇ψ ∈ [Lt1(Ω)]3, ψ ∈ Lt2(Ω), γ(ψ) ∈ Lt3(Σ)}.

As usual, the subscript Γ indicates vanishing on the surface Γ.

Lemma 3.1. The weak solution θ constructed in Theorems 2.1 and 2.2 has a

distributional time derivative θ′ ∈ Lr(0, T ; , [WΓ(t1, t2, t3; Ω)]∗), where in the case of

Theorem 2.1,

r := min
{5(q̄ + 1)

q̄ + 4
,
q̄ + 1

3
, s′1

}

,

t1 := s′, t2 := s′2, t3 :=
q̄ + 1

q̄ − 2
,

and in the case of Theorem 2.2,

r := min
{5(q̄ + 1)

q̄ + 4
,
q̄ + 4

4
, s′1

}

,

t1 := s′, t2 := s′2, t3 :=
q̄ + 4

q̄
.

P r o o f. For ψ ∈ C∞
c (0, T ;C∞(Ω)) such that ψ = 0 on Γ we can write

∣

∣

∣

∣

∫

Q

θ
∂ψ

∂t

∣

∣

∣

∣

6

∫

Q

κ(θ)|∇θ||∇ψ| +
∫

S

|G(σ|θ|3|θ|)||ψ| +
∫

Q

|f ||ψ|.
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We further estimate the right-hand side using the properties stated in Theorem 2.1

or Theorem 2.2. The proofs being quite similar to each other, we consider the case

of Theorem 2.1. First, we have

∫

Q

κ(θ)|∇θ||∇ψ| 6 κu‖∇θ‖[Ls(Q)]3‖∇ψ‖[Ls′(Q)]3 ,

∫

S

|G(σ|θ|3|θ|)||ψ| 6 ‖G‖L((q̄+1)/3,(q̄+1)/3)‖θ4‖L(q̄+1)/3(S)‖ψ‖L(q̄+1)/(q̄−2)(S),

∫

Q

|f ||ψ| 6 ‖f‖Ls1,s2(Q)‖ψ‖L
s′
1

,s′
2(Q)

.

Thus, defining the numbers r, t1, t2 and t3 as in the lemma, we obtain that

∣

∣

∣

∣

∫

Q

θ
∂ψ

∂t

∣

∣

∣

∣

6 c(‖∇ψ‖[Lr′,t1 (Q)]3 + ‖ψ‖Lr′,t2 (Q) + ‖ψ‖Lr′,t3 (S)).

The claim follows. �

Lemma 3.2. Let f ∈ Lr(Q) for a r > 5
2 , and let θ0 ∈ L∞(Ω), as well as

θg ∈ L∞(C). Then the weak solution θ of (P) constructed in the Theorems 2.1 and

2.2 is bounded in Q, and we have

‖θ‖L∞(Q) 6 max{‖θg‖L∞(C), ‖θ0‖L∞(Ω)} + C‖f‖Lr(Q).

P r o o f. The statement follows directly from the estimate (2.8) on the approxi-

mate solutions. �

In the case that κi = const in Ωi for i = 1, . . . ,m, the uniqueness of weak solutions

in the class V
2,5
0 (Q) has been proved in [7], together with an interesting comparison

principle. The next lemma is not new but it extends the validity of this result to

larger classes of weak solutions, and to the temperature-dependent heat conductivity,

with an elementary method of proof.

Lemma 3.3. Assume that κi is globally Lipschitz continuous for i = 1, . . . ,m.

Let f1, f2 ∈ Ls1,s2(Q) be such that f1 > f2 almost everywhere in Q.

Then, if θj ∈ V
2,4
0 (Q) ∩ C(0, T ;L1(Ω)) is a weak solution to (P) corresponding

to fj (j = 1, 2), we have θ1 > θ2 almost everywhere in Q. Consequently, the weak

solution to (P) is unique in the class V
2,4
0 (Q) ∩ C(0, T ;L1(Ω)).
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P r o o f. Under the assumptions of the lemma, the difference θ1 − θ2 vanishes

on C, and the relation

−
∫

Q

(θ1 − θ2)
∂ψ

∂t
+

∫

Q

(κ(θ1)∇θ1 − κ(θ2)∇θ2) · ∇ψ(3.1)

+

∫

S

G(σ[|θ1|3θ1 − |θ2|3θ2])ψ =

∫

Q

(f1 − f2)ψ

is valid for all ψ ∈ V
2,∞
C

(Q). For parameters γ > 0 we consider the function gγ : R →
R defined by

(3.2) gγ(t) :=
sign(t)

γ
min{|t|, γ},

and we denote by Fγ the primitive of gγ that vanishes at zero. Note that gγ is

monotonely increasing and globally bounded by 1. We apply Lemma B.2 with u :=

(θ1 − θ2)
−, ū = 0 and we obtain for all t1 < T that

∫

Ω

Fγ((θ1(t1) − θ2(t1))
−)(3.3)

+

∫

Qt1

(κ(θ1)∇θ1 − κ(θ2)∇θ2) · ∇gγ((θ1 − θ2)
−)

+

∫

St1

G(σ[|θ1|3θ1 − |θ2|3θ2])gγ((θ1 − θ2)
−) 6 0.

We write
∫

Qt1

(κ(θ1)∇θ1 − κ(θ2)∇θ2) · ∇gγ((θ1 − θ2)
−)

=

∫

Qt1

κ(θ1)∇(θ1 − θ2) · ∇gγ((θ1 − θ2)
−)

+

∫

Qt1

(κ(θ1) − κ(θ2))∇θ2 · ∇gγ((θ1 − θ2)
−).

Observe that
∫

Qt1

|κ(θ1) − κ(θ2)||∇θ2||∇gγ((θ1 − θ2)
−)|

=
1

γ

∫

{(t,x)∈Qt1 : 0<|(θ1−θ2)−(t,x)|<γ}

|κ(θ1) − κ(θ2)||∇θ2||∇(θ1 − θ2)
−|.

Pointwise in Qt1 we have the estimate

1

γ
χ{(t,x)∈Qt1 : 0<|(θ1−θ2)−(t,x)|<γ}|κ(θ1) − κ(θ2)| 6 Lκ,
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where Lκ is a Lipschitz constant of κ. Due to the dominated convergence theorem,

we thus see that
∫

Qt1

|κ(θ1) − κ(θ2)||∇θ2||∇gγ((θ1 − θ2)
−)| −→ 0 as γ → 0.

Since gγ monotonely increases, we have almost everywhere in Q that

∇(θ1 − θ2) · ∇gγ((θ1 − θ2)
−) = |∇(θ1 − θ2)

−|2g′γ((θ1 − θ2)
−) > 0.

From (3.3) we deduce the relation

lim
γ→0

{
∫

Ω

Fγ((θ1(t1) − θ2(t1))
−)

+

∫

St1

G(σ[|θ1|3θ1 − |θ2|3θ2])gγ((θ1 − θ2)
−)

}

6 0.

We next observe that gγ((θ1 − θ2)
−) → −χ{(t,x)∈S : θ1<θ2} almost everywhere on S

as γ → 0. We obtain the inequality
∫

Ω

|(θ1(t1) − θ2(t1))
−| +

∫

St1

G(σ[|θ1|3θ1 − |θ2|3θ2])(−χ{(t,x)∈S : θ1<θ2}) 6 0.

Now expressing G = I −H , we conclude

−
∫

St1

G(σ[|θ1|3θ1 − |θ2|3θ2])χ{(t,x)∈S : θ1<θ2}

=

∫

St1

σ|(|θ1|3θ1 − |θ2|3θ2)−|

+

∫

St1

H(σ[|θ1|3θ1 − |θ2|3θ2])χ{(t,x)∈S : θ1<θ2}

>

∫

St1

σ|(|θ1|3θ1 − |θ2|3θ2)−|

+

∫

St1

H(σ(|θ1|3θ1 − |θ2|3θ2)−)χ{(t,x)∈S : θ1<θ2}

> (1 − ‖H‖L(1,1))

∫

St1

σ|(|θ1|3θ1 − |θ2|3θ2)−| > 0.

Thus,
∫

Ω |(θ1(t1) − θ2(t1))
−| 6 0 for all t1 ∈ ]0, T [, and the claim follows. �

R em a r k 3.4. Under the assumptions of Theorem 2.1, we can introduce for

fixed θ0, θg with (1.3) the nonlinear solution operator S : L2(Q) → V
2,5
0 (Q) to the

problem (P) defined by the correspondence f 7→ θ. Since θ ∈ C(0, T ;L2(Ω)) is

an easy consequence of Lemma 3.1, Lemma 3.3 shows that S is well-defined and

monotone.
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4. L1-estimates

The result of Section 2 shows two cases such that the nonlocal radiation term G(θ4)

can be controlled to obtain a weak solution in the sense of Definition 1.1. In The-

orem 2.1, we consider a nonsmooth surface Σ, and obtain the result by requiring a

certain regularity of the right-hand f . In Theorem 2.2, right-hands f ∈ L1+ε(Q) for

ε arbitrarily small are admissible, but we have to compensate this lack of regularity

by using the smoothing properties of the operator K, valid only on regular surfaces.

In this section we will be interested in the limiting case that f ∈ L1(Q). As in the

stationary case, we can prove the existence of weak solutions only if the surface Σ

is sufficiently smooth (cf. [2]). In addition, we obtain uniform estimates only in the

case of a nowhere vanishing reflexivity, that is

t 7−→ ε(t, z) ∈ C([0, T ]) for all z ∈ Σ,(4.1)

∀ t ∈ [0, T ], ε(t, z) < 1 for all z ∈ Σ.(4.2)

For technical simplicity, we restrict ourselves in this section to the case that

(4.3) f > 0 almost everywhere in Q.

Theorem 4.1. Let Σ ∈ C1,α (α > 0), and let ε satisfy (4.1) and (4.2). Let

f ∈ L1(Q) satisfy (4.3), and let θ0, θg satisfy (1.3). There exists a weak solution

θ ∈ ⋂

16p< 5
4

V
p,4
0 (Q) ∩ L∞,1(Q) to (P) in the sense of Definition 1.1. In addition,

ess inf
Q

θ > θg.

As to the structure of this section, we start the proof of Theorem 4.1 by construct-

ing approximate solutions. Uniform estimates are derived in Proposition 4.3 and in

Proposition 4.4. The proof of the main result 4.1 then follows.

Proposition 4.2. Let Σ belong to the class C1 piecewise. Assume that f ∈ L1(Q),

and that θ0, θg satisfy (1.3). For δ > 0, we define f [δ] := sign(f)min{|f |, 1/δ}.
Then there exists a unique θδ ∈ V

2,5
0 (Q) ∩ C(0, T ;L2(Ω)) such that θδ = θg on C,

and

−
∫

Q

θδ
∂ψ

∂t
+

∫

Q

κ(θδ)∇θδ · ∇ψ +

∫

S

G(σ|θδ|3θδ)ψ(4.4)

=

∫

Ω

θ0ψ(0) +

∫

Q

f [δ]ψ

for all ψ ∈ V
2,5
C

(Q) such that ψ(T ) = 0. In addition, we can assume that θδ ∈ L∞(Q),

and that there exists a distributional time-derivative θ′δ ∈ L2(0, T ; [V 2,5
Γ (Ω)]∗). Under

the additional assumption (4.3), we can show that θδ > θg almost everywhere in Q.
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P r o o f. Existence in V
2,5
0 (Q) follows from Theorem 2.1. The additional regu-

larity follows from Lemma 3.1 and Lemma 3.2. Note that θδ ∈ C(0, T ;L2(Ω)) is a

well-known consequence of the existence of θ′δ ∈ L2(0, T ; [V 2,5
Γ (Ω)]∗). The uniqueness

is then derived from Lemma 3.3. Under the additional assumption (4.3), we can use

Lemma 3.3 to verify that θδ − θg = S(f [δ]) − S(0) > 0 almost everywhere in Q. �

Proposition 4.3. Let the hypotheses of Proposition 4.2 be satisfied. For the

sequence of approximate solutions {θδ} that satisfy (4.4), the following uniform es-
timates are valid:

(1) There exists a positive constant C1 such that ‖θδ‖L∞,1(Q) 6 C1.

(2) For all 1 6 r < 5
4 , there exists a positive constant C2 = C2(r) such that

‖θδ‖W 1,0
r (Q) 6 C2.

(3) There exist a positive constant C3 and a number 1 < q < ∞ such that for all
i = 1, . . . ,m, ‖θ′δ‖L1(0,T ;[W 1,q

0 (Ωi)]∗) 6 C3.

The constants Cj (j = 1, . . . , 3) depend continuously on ‖f‖L1(Q), on ‖θ0‖L1(Ω) and

on ‖θg‖L∞(Q), but are independent of δ.

P r o o f. For the sake of notational simplicity, we write θ instead of θδ. For a

parameter γ > 0, we consider functions g = gγ , F = Fγ ∈ C(R) given by

gγ(s) :=
1

γ
sign(s)min{|s|, γ}, Fγ(s) =































−s− γ

2
if s < −γ,

s2

2γ
if − γ 6 s 6 γ,

s− γ

2
if s > γ.

Clearly, F is the primitive function of g that vanishes at zero. We are allowed to

test the relation (4.4) with ψ := g(θ − θg). Applying Lemma B.2 with u := θ − θg,

we get the relation

∫

Ω

Fγ(θ(t1) − θg) +

∫

Qt1

κ(θ)∇θ · ∇gγ(θ − θg) +

∫

St1

G(σ|θ|3θ)gγ(θ − θg)

=

∫

Ω

Fγ(θ0 − θg) +

∫

Qt1

f [δ]gγ(θ − θg).

Since gγ is nondecreasing and θg is constant, we have ∇θ · ∇gγ(θ − θg) > 0 almost

everywhere in Q.

In view of Lemma A.4, we verify that

∫

St1

G(σ|θ|3θ)gγ(θ − θg) > 0.
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Letting γ → 0 in the previous relation, we obtain the inequality

(4.5)

∫

Ω

|θ(t1) − θg| 6 ‖θ0‖L1(Ω) + ‖f‖L1(Q).

This proves the estimate (1).

For the next estimate, we follow the techniques of [8]. For n ∈ N we consider the

functions

gn(t) :=



































−1 for t < −(n+ 1),

t+ n for t ∈ [−(n+ 1),−n[,

0 for t ∈ [−n, n[,

t− n for t ∈ [n, n+ 1[,

1 for t > n+ 1,

and define Fn as the primitive function of gn that vanishes at zero. Observe that gn is

continuous, nondecreasing and bounded, and we are allowed to test the relation (4.4)

with ψ := gn(θ − θg). Applying Lemma B.2 with u := θ − θg and ū := 0, we obtain

for all t1 < T that
∫

Ω

Fn(θ(t1) − θg) +

∫

Qt1

κ(θ)|∇θ|2g′n(θ − θg) +

∫

St1

G(σ|θ|3θ)gn(θ − θg)

=

∫

Ω

Fn(θ0 − θg) +

∫

Qt1

f [δ]gn(θ − θg).

Recalling Lemma A.4, we verify that
∫

St1
G(σ|θ|3θ)gn(θ − θg) > 0. Letting t1 → T

yields the inequality

(4.6)

∫

Q

g′n(θ − θg)κ(θ)|∇θ|2 6

∫

Ω

Fn(θ0 − θg) +

∫

Q

f [δ]gn(θ − θg) 6 ‖f‖L1(Q),

where we have also used the fact that θ0 = θg. As in Proposition B.3, we introduce

Bn := {(t, x) ∈ Q : n 6 |θ(t, x) − θg| < n+ 1}.

Relation (4.6) amounts to saying that

∫

Bn

κ(θ)|∇(θ − θg)|2 6 ‖f‖L1(Q).

Now, Proposition B.3 applies. Combined with (1), it gives (2).

Finally, we want to estimate the time derivatives. The relation (4.4) is equivalent

to

(4.7) 〈θ′(t), ψ〉 = −
∫

Ω

κ(θ(t))∇θ(t) · ∇ψ −
∫

Σ

G(σ|θ|3θ(t))ψ +

∫

Ω

f [δ](t)ψ
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for almost all t ∈ ]0, T [ and all ψ ∈ V 2,5
Γ (Ω). Here 〈·, ·〉 is the duality pairing

in V 2,5(Ω).

We recall that Ω =
m
⋃

i=1

Ωi. In (4.7) we can choose any test function ψ ∈ W 1,q
0 (Ωi)

(q > 5) that we extend by zero to the rest of Ω. For this test function it follows that

〈θ′(t), ψ〉 = −
∫

Ωi

κ(θ(t))∇θ(t) · ∇ψ +

∫

Ωi

f [δ](t)ψ.

We obtain

|〈θ′(t), ψ〉| 6 c(‖∇θ(t)‖Lq′ (Ωi)
+ ‖f(t)‖L1(Ωi))‖ψ‖W 1,q

0 (Ωi)
.

Thus,

‖θ′(t)‖[W 1,q
0 (Ωi)]∗

6 c(‖∇θ(t)‖[Lq′ (Ωi)]3
+ ‖f(t)‖L1(Ωi)).

In view of the previous result (2), it follows for q > 5 that

‖θ′‖L1(0,T ;[W 1,q
0 (Ωi)]∗) 6 c(T 1/q‖∇θ‖[Lq′(Qi)]3

+ ‖f‖L1(Q))

6 C(q, T, ‖f‖L1(Q)).

This is the last claim that we had to prove. �

In the next proposition we state two additional, technical estimates and derive the

uniform estimate that will allow to control the surface integral.

Proposition 4.4. Let the hypotheses of Proposition 4.2 be satisfied, and assume

in addition that Σ ∈ C1,α, α > 0, and that ε satisfies (4.1) and (4.2). Let {θδ} be
the sequence of approximate solutions that satisfy (4.4).

(1) Let H̃ denote the positive operator introduced in Lemma A.2 (6). For every

nonnegative h ∈ C1
c (R) we can find a positive constant C(h) that depends on

the data and on h, but is independent of δ, such that

∫

S

εH̃(σθ4δ )h(θδ) 6 C(h).

(2) There is a constant c independent of δ such that for all λ > 0

ess sup
t∈]0,T [

{meas({z ∈ Σ: θδ(t, z) > λ})} 6 c/
√
λ.

(3) There exists a constant C independent of δ such that ‖θ4δ‖L1(S) 6 C.
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P r o o f. (1) We first prove a preliminary estimate. For ξ ∈ C(R) we denote by ξ̄

the primitive function of ξ that vanishes at zero, and introduce the notation Mξ :=
∫ ∞

0
|ξ(s)|2 ds. We show that if Mξ < ∞, then there exists a positive constant Cξ

such that

(4.8) ‖∇ξ̄(θδ)‖[L2(Q)]3 6 Cξ.

We introduce the function g = gξ : R
+ → R

+ defined by g(t) :=
∫ t

0
|ξ(s)|2 ds, which

is nonnegative and continuous, nondecreasing, and vanishes at zero. We denote by

F = Fξ the primitive of g that vanishes at zero. Since g is globally bounded by the

numberMξ, its primitive F has at most linear growth at infinity. Starting from (4.4),

we apply Lemma B.2 with u := θδ and ū := θg. For all t1 ∈ ]0, T [ we can derive the

identity

∫

Ω

F (θδ(t1)) +

∫

Qt1

κ(θδ)∇θδ · ∇g(θδ) +

∫

St1

G(σ|θδ|3θδ)g(θδ)(4.9)

=

∫

Qt1

f [δ]g(θδ) +

∫

Ω

F (θ0) +D,

where

D :=

∫

Qt1

κ(θδ)∇θδ · ∇g(θg) +

∫

St1

G(σ|θδ|3θδ)g(θg) + g(θg)

∫

Ω

(θδ(t1) − θδ(0)).

Under the simplifying assumption (1.3) we see that

|D| 6 g(θg)‖θδ‖L∞,1(Q),

which remains bounded in view of Proposition 4.3. On the other hand, Lemma A.4

can be used to verify that
∫

St1
G(σθ4δ )g(θδ) > 0. Thus, we can conclude that

∫

Ω

F (θδ(t1)) +

∫

Qt1

κ(θδ)∇θδ · ∇g(θδ) 6 C(‖f‖L1(Q), θ0,Mξ).

We denote by ξ̄ the primitive function of ξ that vanishes at zero. Obviously,

∫

Qt1

κ(θδ)∇θδ · ∇g(θδ) =

∫

Qt1

κ(θδ)|∇ξ̄(θδ)|2,

proving (4.8). For all h ∈ C1
c (R), both ξ := h and ξ :=

√

|h′| satisfyMξ <∞. Setting
h̃(t) :=

∫ t

0

√

|h′(s)| ds, we obtain from (4.8) for every h ∈ C1
c (R) the existence of a

constant C̃(h) independent of δ such that

(4.10) ‖∇h̄(θδ)‖[L2(Q)]3 + ‖∇h̃(θδ)‖[L2(Q)]3 6 C̃(h).
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To prove (1), we apply Lemma B.2 to the relation (4.4) with g := h, u := θδ and

ū := θg, and as in (4.9) we can deduce that
∫

Ω

h̄(θδ(t1)) +

∫

Qt1

h′(θδ)κ(θδ)|∇θδ|2 +

∫

St1

G(σ|θδ |3θδ)h(θδ)(4.11)

=

∫

Qt1

f [δ]h(θδ) +

∫

Ω

F (θ0) +D,

where D, as in the case of (4.9), is uniformly bounded with respect to δ. On the

other hand, due to (4.10) we have
∣

∣

∣

∣

∫

Qt1

h′(θδ)κ(θδ)|∇θδ|2
∣

∣

∣

∣

6

∫

Qt1

κ(θδ)|∇h̃(θδ)|2 6 C̃(h).

Note also that h̄(t) =
∫ t

0
h(s) ds is globally bounded. Thus, decomposing G =

ε(I − H̃) according to Lemma A.2 (6), we deduce from (4.11) that
∫

S

εH̃(σθ4δ )h(θδ) 6 C(h) +

∫

S

εσθ4δh(θδ)(4.12)

6 C(h) + σmeas(S)( max
s∈supp(h)

|s|4)(max
s∈R

|h(s)|),

proving the claim (1).

(2) For λ > 0 we consider the function g = gλ given by

gλ(s) = sign(s)min{|s|, λ}.

We denote by Fλ the primitive of gλ that vanishes at zero, that is

Fλ(s) =















λ|s| − λ2

2
if |s| > λ,

s2

2
if − λ 6 s 6 λ.

For all t1 ∈ ]0, T [, with help of Lemma B.2 we can derive the identity
∫

Ω

Fλ(θδ(t1)) +

∫

Qt1

κ(θδ)∇θδ · ∇gλ(θδ) +

∫

St1

G(σ|θδ|3θδ)gλ(θδ)(4.13)

=

∫

Qt1

f [δ]gλ(θδ) +

∫

Ω

Fλ(θ0) +D,

where

D :=

∫

Qt1

κ(θδ)∇θδ · ∇gλ(θg)

+

∫

St1

G(σ|θδ|3θδ)gλ(θg) + gλ(θg)

∫

Ω

(θδ(t1) − θδ(0)).
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Under the simplifying assumption (1.3), we see that

|D| =

∣

∣

∣

∣

gλ(θg)

∫

Ω

(θδ(t1) − θδ(0))

∣

∣

∣

∣

6 λ‖θδ‖L∞,1(Q).

On the other hand, we observe that

∫

St1

G(σ|θδ |3θδ)gλ(θδ) > 0,

due as usual to Lemma A.4. Observing that Fλ(s) > g2
λ(s)/2 for all s ∈ R, we deduce

from (4.13) that

1

2

∫

Ω

g2
λ(θδ(t1)) +

∫

Qt1

κ(θδ)|∇gλ(θδ)|2

6 λ(‖f‖L1(Q) + θ0 meas(Ω) + ‖θδ‖L∞,1(Q)).

Using also Proposition 4.3, we see that ‖gλ(θδ)‖2
V 1,0
2 (Q)

6 cλ, where c does not depend

on δ. Now, using the result of Lemma B.1, we obtain that

(4.14) ‖gλ(θδ)‖2
L∞,1(S) 6 c20cλ,

where c0 is the embedding constant of V
1,0
2 (Q) →֒ L∞,1(S). For almost all t ∈ ]0, T [,

note that

λmeas({z ∈ Σ: θδ(t, z) > λ}) 6 ‖gλ(θδ)(t)‖L1(Σ),

and therefore

λ2(ess sup
t∈]0,T [

{meas({z ∈ Σ: θδ(t, z) > λ})})2 6 (ess sup
t∈]0,T [

‖gλ(θδ)(t)‖L1(Σ))
2 6 c20cλ,

in view of (4.14). This proves (2).

(3) For θδ, according to Proposition 4.2 we are allowed to introduce the solution Rδ

of the radiosity equation (0.10),

Rδ := (I − (1 − ε)K)−1(εσθ4δ ).

In view of Lemma A.2 (3), we have Rδ ∈ L5/4(S), and Rδ > 0 almost everywhere

on S due to the positivity of the operator (I − (1 − ε)K)−1.

On the other hand, by Lemma A.2 (6) we have the identity K(Rδ) = H̃(σθ4δ ).

Using the result of Proposition 4.4 (1), it follows for all h ∈ C1
c (R) positive that

(4.15)

∫

S

εK(Rδ)h(θδ) =

∫

S

εH̃(σθ4δ )h(θδ) 6 C(h).
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Almost everywhere on S we have

(4.16) Rδ − (1 − ε)K(Rδ) = εσθ4δ .

Multiplying (4.16) by the function h(θδ) and using the estimate (4.15) we can verify

that

‖Rδh(θδ)‖L1(S) 6 σ‖θ4δh(θδ)‖L1(S) + (1 − εl)‖K(Rδ)h(θδ)‖L1(S)(4.17)

6 σmeas(S)
(

max
s∈supp(h)

|s|4
)(

max
s∈R

|h(s)|
)

+
1 − εl

εl
C(h).

We start again from the relation (4.16) valid for almost all (t, z) ∈ S. For a fixed

parameter k > 0 we can choose a function hk ∈ C1
c (R) with the following properties:











hk(s) = 1, s ∈ [0, k],

1 > hk(s) > 0, s ∈ ]k, k + 1],

hk(s) = 0, s ∈ ]k + 1,∞[,

and we can multiply (4.16) by the function hk(θδ). We obtain for almost all (t, z) ∈ S

that

(4.18) (1 − ε(t, z))hk(θδ(t, z))

∫

Σ

w(z, y)Rδ(t, y) dSy 6 hk(θδ(t, z))Rδ(t, z).

We integrate the inequality (4.18) over Σ, and using Fubini’s theorem together with

the positivity of w, we obtain that

∫

Σ

Rδ(t, y)

(
∫

Σ

w(z, y)hk(θδ(t, z))(1 − ε(t, z)) dSz

)

dSy(4.19)

6 ‖hk(θδ(t))Rδ(t)‖L1(Σ).

Note that for fixed k the right-hand side of (4.19) is uniformly bounded in L1(0, T ) in

view of the estimate (4.17). On the other hand, we can write for almost all t ∈ ]0, T [

that

meas({ξ ∈ Σ: θδ(t, ξ) 6 k}) = meas(Σ) − meas({ξ ∈ Σ: θδ(t, ξ) > k})
> meas(Σ) − c/

√
k,

where we make use of the uniform estimate in Proposition 4.4 (2). We deduce that

(4.20) ess inf
t∈]0,T [

{meas({ξ ∈ Σ: θδ(t, ξ) 6 k})} > meas(Σ) − c/
√
k.
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We introduce

f δ
k,t(y) :=

∫

Σ

w(z, y)χ{ξ∈Σ: θδ(t,ξ)6k}(y)(1 − ε(t, z)) dSz.

Defining δ0 as in Lemma A.6, we can in view of (4.20) choose a k0 > 0 independent

of t, δ such that

ess inf
t∈]0,T [

{meas({ξ ∈ Σ: θδ(t, ξ) 6 k0})} > measΣ) − δ0.

We conclude from Lemma A.6 that

ess inf
y∈Σ

ess inf
t∈]0,T [

f δ
k0,t(y) > β0.

It now follows from (4.19) that

(4.21) β0

∫

Σ

Rδ(t, y) dSy 6

∫

Σ

Rδ(t, y)f
δ
k0,t(y) dSy 6 ‖hk0(θδ(t))Rδ(t)‖L1(Σ).

We integrate over ]0, T [ to obtain

β0‖Rδ‖L1(S) 6 ‖hk0(θδ)Rδ‖L1(S) 6 C(k0),

due to (4.17). Since θ4δ 6 Rδ/(σεl) uniformly on S due to (4.16), the claim follows.

�

P r o o f of Theorem 4.1. Applying Proposition 4.3, we first find a sequence such

that

(4.22) θδ ⇀ θ in W 1,0
r (Q) for 1 6 r <

5

4
.

We now want to prove additional convergence properties. For the number q given in

Proposition 4.3 (3), we have

W 1,r(Ωi) →֒ Lr(Ωi) →֒ [W 1,q
0 (Ωi)]

∗.

We introduce the notation Qi := ]0, T [ × Ωi and Si := ]0, T [ × ∂Ωi. From Proposi-

tion 4.3 (3), and the generalized Lemma of Aubin-Lions, we get for all i = 1, . . . ,m

that θδ −→ θ in Lr(Qi). In view of the inequality (2.6), we also find a subsequence

such that θδ −→ θ in Lr(Si) and, after extracting subsequences, even

θδ −→ θ in Lr(Q), θδ −→ θ in Lr(S),(4.23)

θδ −→ θ pointwise a.e. in Q and on S.
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In order to pass to the limit with the surface integrals in (4.4), the uniform bound de-

rived in Proposition 4.4 (3) is not sufficient. Though we can prove the convergence in

general settings, we can use the simplifying assumption (4.3) to significantly shorten

matters. Under (4.3), observe that f [δ] ր f almost everywhere in Q as δ ց 0. In

view of the positivity property of Lemma 3.3, we see that θδ ր θ almost everywhere

in Q as δ ց 0. Then the monotone convergence theorem and Proposition 4.4 (3)

imply that
∫

S

θ4 = lim
δց0

∫

S

θ4δ 6 C.

Therefore, θ4 ∈ L1(S), and we have even

(4.24) θ4δ −→ θ4 in L1(S).

Thanks to (4.23) and (4.24), we can elementarily pass to the limit in (4.4) and get

(4.25) −
∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ +

∫

S

G(σθ4)ψ =

∫

Ω

θ0ψ(0) +

∫

Q

fψ

for all ψ ∈ V
q,∞
C

(Q) (q > 5) such that ψ = 0 in {T } × Ω. �

Appendix A. Essential properties of the radiation operators

Throughout this section we assume that Ω0, . . . ,Ωm (m > 1) are bounded domains

such that
m
⋃

i=0

Ωi is simply connected, and such that the condition (0.1) is satisfied. As

in the introduction of the paper, we set Ω :=
m
⋃

i=1

Ωi. We denote by Σ the boundary

of the transparent cavity ∂Ω0, and by Γ the exterior boundary ∂Ω \ Σ.

The following lemma has been proved in [3] for polyhedral surfaces, in [14] for

piecewise C1−boundaries.

Lemma A.1. Let Σ ∈ C1 piecewise. Let w : Σ × Σ → R denote the view-

factor (0.6). Then, for almost all z ∈ Σ,
∫

Σ

w(z, y) dSy 6 1.

In addition, the equality is valid if and only if the enclosure condition (0.2) is satisfied.

For 1 6 p, q 6 ∞, we introduce

(A.1) L(p, q) := L(Lp,q(S), Lp,q(S)),

the space of all linear continuous maps from Lp,q(S) into itself. The following lemma

states easily derived, but essential consequences of Lemma A.1.
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Lemma A.2. Let the hypotheses of Lemma A.1 be valid.

(1) For each 1 6 p, q 6 ∞ the operator K extends to a bounded linear operator

from Lp,q(S) into itself, and the norm estimate ‖K‖L(p,q) 6 1 is valid.

(2) The operator K is positive, in the sense that K(f) > 0 almost everywhere on S

whenever f > 0 almost everywhere on S. Moreover, K is positive semi-definite

and selfadjoint in L2(S).

(3) If ε : S → R is such that

0 < εl 6 ε(t, z) 6 1 on ]0, T [ × Σ,

then the operator [I − (1 − ε)K] has a positive inverse in L(Lp,q(S), Lp,q(S))

having the representation

[I − (1 − ε)K]−1 =

∞
∑

i=0

(1 − ε)iKi.

(4) The operator G is positive semi-definite and selfadjoint in L2(S). The operator

H := I − G is positive, selfadjoint in L2(S), and satisfies for all 1 6 p, q 6 ∞
the norm estimate ‖H‖L(p,q) 6 1.

(5) Assume in addition that (0.2) is valid. Then the kernel of the operator G

consists of the functions constant almost everywhere on Σ.

(6) The operator H̃ := I −G/ε has the representation H̃ = K[I − (1 − ε)K]−1ε.

P r o o f. Denote by S the surface measure on Σ. We can prove that the mapping

(z, y) 7−→ w(z, y) is S×S-measurable on Σ×Σ provided that Σ is a Lipschitz surface.

This will ensure, for f ∈ L1(S), that the mapping

(t, z, y) 7−→ w(z, y)f(t, y)

is λ1 ×S×S-measurable on [0, T ]×Σ×Σ. Thus, by Fubini’s theorem, we can easily

derive the assertions of the lemma from the properties that were established in [15],

[10], among others, for the stationary operators. �

We also need to recall two auxiliary lemmas.

Lemma A.3. Let Σ ∈ C1,α (α > 0). Let r, s > 0 be two real numbers such that

s 6 r + 1. There exists a positive constant cr,s such that for all ψ ∈ Lr+1(Σ),

∫

Σ

G(|ψ|r−1ψ)ψ +

(
∫

Σ

|ψ|s
)(r+1)/s

> c‖ψ‖r+1
Lr+1(Σ).

P r o o f. The proof in the case that (0.2) fails is trivial (see [15]), and valid

even for nonsmooth boundaries. For the case that Ω is an enclosure, a proof is given

in [2]. �
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The next two statements are proved in [2].

Lemma A.4. We assume that (0.2) is valid. Let F : R → R be a nondecreasing

continuous function such that F (0) = 0 and |F (t)| 6 C0(1 + |t|s) as |t| → ∞
(0 6 s <∞). Let 0 6 r <∞ be an arbitrary number. Then, for all ψ ∈ Lr+s(Σ),

∫

Σ

G(|ψ|r−1ψ)F (ψ) > 0.

Lemma A.5. Let Σ ∈ C1,α (α > 0). For p > 1/α, the operators K and H̃

(Lemma A.2 (6)) are compact from Lp(Σ) into C(Σ).

Lemma A.6. Let Σ ∈ C1,α (α > 0) and assume that the emissivity ε according

to (1.2) satisfies (4.1) and (4.2). Then there exist positive constants β0 > 0 and

δ0 > 0 such that for all measurable A ⊂ Σ with meas(A) > meas(Σ) − δ0 we have
∫

A w(z, y)(1 − ε(t, y)) dSy > β0 for all (t, z) ∈ [0, T ]× Σ.

P r o o f. Assume that the claim is not true. Then there exists a sequence

{An}n∈N of measurable subsets of Σ such that χAn ⇀ 1 in Lp(Σ) (p <∞ arbitrary),
and a sequence {(tn, zn)} ⊂ [0, T ]×Σ such that (tn, zn) → (t∗, z∗) for some (t∗, z∗) ∈
[0, T ]× Σ and

(A.2) K(χAn(1 − ε(tn)))(zn) 6 1/n.

Since the function ε is continuous in time and globally bounded, we can show that

χAn(1 − ε(tn)) ⇀ (1 − ε(t∗)) in Lp(Σ) (p <∞ arbitrary). In view of Lemma A.5, it
therefore follows for a subsequence that K(χAn(1−ε(tn))) → K(1−ε(t∗)) uniformly
on Σ. Passing to the limit in (A.2) and using the positivity of the function K(1 −
ε(t∗)), we obtain that

K(1 − ε(t∗))(z∗) = 0.

Since K(1 − ε(t∗)) is a continuous function due to Lemma A.5, the statement of

Lemma A.1 is valid everywhere on Σ, and we obtain that
∫

Σ

w(z∗, y)ε(t∗, y) dSy = 1.

Writing

1 =

∫

Σ

w(z∗, y)ε(t∗, y) dSy

=

∫

{y∈Σ: ε(t∗,y)<1}

w(z∗, y)ε(t∗, y) dSy +

∫

{y∈Σ: ε(t∗,y)=1}

w(z∗, y) dSy

we clearly obtain a contradiction in view of (4.2) and Lemma A.1. �
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Appendix B. Auxiliary results

The following embedding result is well known.

Lemma B.1. Let Ω ⊂ R
3 be such that ∂Ω ∈ C0,1. For T > 0, let Q := ]0, T [×Ω.

If r, q satisfy

r ∈ [2,∞], q ∈ [2, 6],
1

r
+

3

2q
=

3

4
,

then there exists a positive constant cr,q such that

‖u‖Lr,q(Q) 6 c‖u‖V 1,0
2 (Q).

If r̃, q̃ satisfy

r̃ ∈ [2,∞], q̃ ∈
[4

3
, 4

]

,
1

r̃
+

1

q̃
=

3

4
,

then there exists a positive constant c̃r̃,q̃ such that

‖u‖Lr̃,q̃(]0,T [×∂Ω) 6 c̃‖u‖V 1,0
2 (Q).

P r o o f. See [6, Chapter II, § 3]. �

For functions defined in Q, we can introduce for all h ∈ ]0, T [

u(h)(x, t) :=
1

h

∫ t+h

t

u(x, τ) dτ.

The function u(h) is called the Steklov averaging of u, and belongs to W
1
2 (QT−h)

whenever u belongs to W 1,0
2 (Q). Its fundamental properties are listed in [6, Chap-

ter II, $ 4]. The notation

u(h)(x, t) :=
1

h

∫ t

t−h

u(x, τ) dτ

makes sense if we extend u, for instance by zero, to the interval [−h, 0]. For functions

u, η : Q → R such that η vanishes in the intervals [−h, 0] and [T − h, T ], and such

that
∫

Q uη dxdt <∞, the relation

(B.1)

∫

Q

uη(h) dxdt =

∫

Q

u(h)η dxdt,

is valid. We now give a lemma that helps us to shorten some technical arguments.
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Lemma B.2. Let ξ1 ∈ L1(Q), ξ2 ∈ L1(S), and suppose that ξ3 ∈ [Lp(Q)]3 for

some p > 1. Denoting as usual by p′ the conjugated exponent to p, suppose that

u ∈W 1,0
p′ (Q) ∩C(0, T ;L1(Ω)) satisfies

(B.2) −
∫

Q

u
∂ψ

∂t
=

∫

Q

ξ1ψ + ξ3 · ∇ψ +

∫

S

ξ2ψ

for all ψ ∈ C∞
c (0, T ;C∞(Ω)) such that ψ = 0 on C.

Let g : R → R be globally Lipschitz continuous and bounded, and let F denote the

primitive function of g that vanishes at zero. Then, if ū ∈ W 1
s (Q) ∩ C(0, T ;L1(Ω)),

s = max{p, p′} is such that u = ū on C in the sense of traces, we have for all t1 < T

the identity

∫

Ω

F (u(t1)) =

∫

Ω

F (u(0)) +

∫

Qt1

ξ1(g(u) − g(ū))

+

∫

Qt1

ξ3 · ∇(g(u) − g(ū)) +

∫

St1

ξ2(g(u) − g(ū))

−
∫

Qt1

u
∂g(ū)

∂t
+

∫

Ω

u(t1)g(ū(t1)) −
∫

Ω

u(0)g(ū(0)).

If the function g is not globally bounded but u, ū ∈ L∞(Q), then the assertion

remains valid.

P r o o f. We denote by C∞
Γ (Ω) the set of all functions that are smooth in Ω

and that vanish on Γ. We consider t1 < T arbitrary, and choose a positive number

h < T − t1. For an arbitrary ψ̃ ∈ C∞
c (0, t1;C

∞
Γ (Ω)) that we extend by zero to [t1, T ]

and [−h, 0], the test function ψ := ψ̃(h) can be used in (B.2).

It is checked elementarily that

−
∫

Q

u
∂ψ̃(h)

∂t
=

∫

Q

∂u(h)

∂t
ψ̃.

Using also the fact that the Steklov averaging operator commutes with derivative

with respect to space, we transfer for each integral the Steklov averaging according

to (B.1), and we obtain that

(B.3)

∫

Q

∂u(h)

∂t
ψ̃ =

∫

Q

(ξ1)(h)ψ̃ +

∫

Q

(ξ3)(h) · ∇ψ̃ +

∫

S

(ξ2)(h)ψ̃

for all ψ̃ ∈ C∞
c (0, t1;C

∞
Γ (Ω)).
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By assumption, the function g(u(h)) − g(ū(h)) belongs to the space W
1
p′,C(Qt1),

and can therefore be approximated in the norm of W 1,0
p′,C(Qt1) by a sequence {ψ̃k} ⊂

C∞
c (0, t1;C

∞
Γ (Ω)). We insert ψ̃k in (B.3).

Passing to the limit k → ∞ and observing that (∂u(h)/∂t)g(u(h)) = (∂/∂t)F (u(h)),

we obtain that
∫

Ω

F (u(h)(t1)) =

∫

Ω

F (u(h)(0)) +

∫

Qt1

(ξ1)(h)(g(u(h)) − g(ū(h)))

+

∫

Qt1

∂u(h)

∂t
g(ū(h)) +

∫

Qt1

(ξ3)(h) · ∇(g(u(h)) − g(ū(h)))

+

∫

St1

(ξ2)(h)(g(u(h)) − g(ū(h))).

Using integration by parts again, we have
∫

Qt1

∂u(h)

∂t
g(ū(h))

= −
∫

Qt1

u(h)

∂g(ū(h))

∂t
+

∫

Ω

u(h)(t1)g(ū(h)(t1)) −
∫

Ω

u(h)(0)g(ū(h)(0)).

Since u ∈ C([0, T ];L1(Ω)), we have for all t ∈ [0, T ] and h→ 0 that u(h)(t) −→ u(t)

in L1(Ω). Since the function g is globally bounded, its primitive F has at most linear

growth at infinity, which implies that

F (u(h)(t)) −→ F (u(t)) in L1(Ω),

for all t ∈ [0, T ]. The convergence of the right-hand side as h → 0 is checked easily.

This proves the claim. �

To obtain a-priori estimates in the L1-case, we will need two further auxiliary

results.

Proposition B.3. For n ∈ N and u ∈ W 1,0
p (Q) ∩ L∞,1(Q), define

Bn := {(t, x) ∈ [0, T ] × Ω: n 6 |u(t, x)| < n+ 1}.

Suppose that there exists a positive constant C∗ such that sup
n∈N

∫

Bn
|∇u|p dxdt 6 C∗.

If p < 15
4 , then for all 1 6 q < p − 3

4 , we can find positive constants c1, c2 that

depend only on Ω, q, p, such that for s = (p− q)/3q

‖∇u‖Lq(Q) 6 c1 + c2‖u‖s
L∞,1(Q)C

1/q
∗ .

P r o o f. Similar results were proved in [1]. We can also follow the argumentation

of [8]. �
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Appendix C. Two technical proofs

Lemma C.1. Assume that θ satisfies Proposition 2.3. Then, for all 0 < q < ∞,
the estimate (2.10) is valid.

P r o o f. For a number q > 1 we consider the functions g = gq, F = Fq ∈ C(R)

given by

g(s) := |s|q−1s, F (s) :=
1

q + 1
|s|q+1.

The function F is the primitive function of g that vanishes at zero.

We want to test the relation (2.3) with the function ψ := g(θ) − g(θg). Observe

that |∇g(θ)| = q|θ|q−1|∇θ|. Since θ ∈ L∞(Q) according to Proposition 2.3, it follows

that g(θ) ∈ Lp(0, T ;W 1,p(Ω)). Since in addition ψ = g(θ)− g(θg) vanishes on C, the

function ψ is admissible in (2.1).

Applying Lemma B.2, we can derive for all t1 < T the identity

∫

Ω

F (θ(t1)) +

∫

Qt1

(δ|∇θ|p−2 + κ(θ))∇θ · ∇(|θ|q−1θ) +

∫

St1

G(σ|θ|3θ)|θ|q−1θ(C.1)

=

∫

Qt1

f [δ]|θ|q−1θ +

∫

Ω

F (θ(0)) +R,

where

R := −
∫

Qt1

(|θ|p−2θ − |θg|p−2θg)(|θ|q−1θ − |θg|q−1θg)

+

∫

Qt1

(δ|∇θ|p−2 + κ(θ))∇θ · ∇(|θg|q−1θg)

+

∫

St1

G(σ|θ|3θ)|θg|q−1θg + g(θg)

∫

Ω

(θ(t1) − θ(0)).

We now want to estimate the absolute value of R. The simplifying assumption (1.3)

that θg is a constant, though not strictly necessary for the proof, will help us to

shorten matters.

By Young’s inequality we obtain that

∣

∣

∣

∣

∫

Ω

(θ(t1) − θ(0))

∣

∣

∣

∣

6
1

2(q + 1)

∫

Ω

|θ(t1)|q+1 + cq

∫

Ω

|θ0|q+1.

Due to the fact that G is selfadjoint we have

∫

St1

G(σ|θ|3θ)|θg|q−1θg =

∫

St1

σ|θ|3θG(|θg |q−1θg) = 0,
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since G vanishes on constants. Thus, we obtain that

|R| 6
1

2(q + 1)

∫

Ω

|θ(t1)|q+1 + cq

∫

Ω

|θ0|q+1,

which together with (C.1) proves the claim for q > 1.

In the case 0 < q < 1, we consider for a parameter α > 0 the functions g = gα,q,

F = Fα,q ∈ C(R) given by

g(s) := (|s| + α)q−1s,

F (t) :=















− (α− t)qt

q
− (α− t)q+1

q(q + 1)
+

αq+1

q(q + 1)
if t 6 0,

(α+ t)qt

q
− (α+ t)q+1

q(q + 1)
+

αq+1

q(q + 1)
if t > 0.

We again test the relation (2.3) with ψ = g(θ) − g(θg). By similar arguments we

obtain the relation (2.10), this time with 0 < q < 1. �

Lemma C.2 (Lemma 2.7). Let the hypotheses of Proposition 2.3 be satisfied,

and assume that the hypotheses either of 2.5 or of Proposition 2.6 are valid. Then

if p > s′1, the sequence ‖θ′δ‖L1(0,T ;[W 1,p
Γ (Ω)]∗) is uniformly bounded.

P r o o f. For the sake of notational simplicity, we write θ instead of θδ. In (2.3)

we test with θ(t) − θg, and by usual considerations we obtain the inequality

〈θ′(t), θ(t)〉 + δ‖θ(t)‖p
W 1,p(Ω) 6

∫

Ω

f [δ](t)(θ(t) − θg) + 〈θ′(t), θg〉.

We integrate this inequality on ]0, t1[. We have

∫ t1

0

〈θ′, θg〉 = θg

∫

Ω

(θ(t1) − θ0).

Therefore, by Young’s inequality, we obtain that

∣

∣

∣

∣

∫ t1

0

〈θ′, θg〉
∣

∣

∣

∣

6
1

4

∫

Ω

|θ(t1)|2 + c

∫

Ω

|θ0|2.

Since p > 3, the space W 1,p(Ω) embeds continuously in the space of continuous

functions, and we get

1

4
‖θ(t1)‖2

L2(Ω) + δ

∫ t1

0

‖θ(t)‖p
W 1,p(Ω)

6 c‖θg‖2
L2(Ω) + c‖f‖Lp′(0,T ;L1(Ω))(‖θ‖Lp(0,T ;W 1,p(Ω)) + ‖θg‖Lp(0,T ;W 1,p(Ω))).
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Therefore,

δ‖θ‖p
Lp(0,T ;W 1,p(Ω)) 6 C + c‖f‖Ls1(0,T ;L1(Ω))‖θ‖Lp(0,T ;W 1,p(Ω)).

If ‖θ‖Lp(0,T ;W 1,p(Ω)) > 1, then it follows that

δ‖θ‖p−1
Lp(0,T ;W 1,p(Ω)) 6 C + c‖f‖Ls1(0,T ;L1(Ω)).

Thus, we get that

(C.2) ‖δ1/(p−1)θ‖p−1
Lp(0,T ;W 1,p(Ω)) 6 max{δ, C + c‖f‖Ls1(0,T ;L1(Ω))}.

Starting again from (2.3), for ψ ∈ W 1,p
Γ (Ω) we can write

|〈θ′(t), ψ〉| 6

∫

Ω

[δ|∇θ(t)|p−1 + κ(θ(t))|∇θ(t)|]|∇ψ|

+

∫

Ω

(δ|θ(t)|p−1 + δ|θg(t)|p−1 + |f(t)|)|ψ|

+

∫

Σ

∣

∣G(σ|θ(t)|3θ(t))
∣

∣|ψ|

6 δ‖θ(t)|p/p′

W 1,p(Ω)‖ψ‖W 1,p
Γ (Ω) + κu‖∇θ(t)‖Lp′(Ω)‖∇ψ‖Lp(Ω)

+ ‖f(t)‖L1(Ω) max
Ω

|ψ| + c‖θ(t)‖4
L4(Σ) max

Ω
|ψ|.

Using one more time the continuity of the embedding W 1,p(Ω) →֒ C(Ω), we get

‖θ′(t)‖[W 1,p
Γ (Ω)]∗ 6 c(δ(‖θ(t)‖p/p′

W 1,p(Ω) + ‖θg‖p/p′

W 1,p(Ω)) + ‖∇θ(t)‖Lp′(Ω)(C.3)

+ ‖f(t)‖L1(Ω) + ‖θ(t)‖4
L4(Σ)).

We have δ‖θ(t)‖p/p′

W 1,p(Ω) = ‖δ1/(p−1)θ(t)‖p−1
W 1,p(Ω), which, in view of (C.2), is uniformly

bounded in the space Lp′

(0, T ).

With Proposition 2.5 or 2.6 we find that the sequence {‖θδ‖4
L4(Σ)} is bounded in

the space L1(0, T ). Thus, we get

(C.4) ‖θ′δ‖L1(0,T ;[W 1,p
Γ (Ω)]∗) 6 C.

�
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