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Abstract. We consider a quasilinear parabolic problem with time dependent coefficients
oscillating rapidly in the space variable. The existence and uniqueness results are proved
by using Rothe’s method combined with the technique of two-scale convergence.
Moreover, we derive a concrete homogenization algorithm for giving a unique and com-

putable approximation of the solution.
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1. Introduction

Over the years PDEs with periodic rapidly oscillating coefficients have been stud-

ied by several authors, see e.g. [1], [2], [3], [4], [13], [14], [16], and [19]. These problems

were mostly solved by using the method of multiple scale expansion or some math-

ematically based homogenization techniques, e.g. G-convergence, Γ-convergence or

two scale convergence. However, recently J. Vala (see [18]) used Rothe’s method

(for more details on this method see e.g. [6], [7], [17]) and the technique of two scale

convergence to solve a non-linear parabolic problem. In that paper the coefficient of

the time derivative and that of the differential operator do not depend on time. In

*The first author’s research was financed by The Ghana Government Scholarship Secre-
tariat and I.S.P. of Uppsala University, Sweden.
The research of the second and third authors were supported by the Research Plan
MSM4977751301 of the Ministry of Education, Youth and Sports of the Czech Republic.
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the present paper we continue this research for the corresponding quasilinear equa-

tion and solve the more general case when the coefficients also depend on time. In

particular, this requires a partly new technique of proof. Moreover, we derive the

corresponding homogenization result (see Theorem 3.1) and homogenization algo-

rithm (see Corollary 3.3), which are useful for concrete numerical solutions of the

actual problem.

The problem considered has the following form:

(1.1)















a(x, x/ε, t)
∂uε

∂t
−∇ · (b(x, x/ε, t)∇uε) = f(x, x/ε, t, uε) in Ω × (0, T ),

uε(x, 0) = u0 in Ω,

uε(x, t) = 0 on ∂Ω × (0, T ),

where ε > 0 is a small parameter, Ω ⊂ R
3 is a bounded domain with smooth

boundary, T < ∞, a and b are functions defined in Ω × R
3 × (0, T ) and the right-

hand side function f is defined in Ω × R
3 × (0, T ) × R. The function u0 is defined

in Ω.

The paper is organized as follows: In Section 2 we present the necessary defini-

tions and lemmas which are connected with two-scale convergence. In addition, we

state some necessary assumptions and give a brief description of Rothe’s method.

Our main results are stated and discussed in Section 3 and the proofs are given in

Section 4.

2. Preliminaries

In this section we first give some definitions and lemmas associated with two-scale

convergence. Moreover, the space variable is represented by x ∈ Ω ⊂ R
3 while

t ∈ I = [0, T ] ⊂ R represents the time. The cell of periodicity is denoted by Y

(i.e. the unit cube in R
3). Moreover, we will use the space C∞

per(Y ) and W 1,2
per(Y )

of subspaces of C∞(R3) and W 1,2(R3), respectively, whose elements are periodic

functions with periodicity Y .

Definition 2.1. Let u0 be an element of L2(Ω × Y ) and let ε > 0. We say that

a sequence uε from L2(Ω) two-scale converges weakly to u0 if

lim
ε→0

∫

Ω

uε(x)ψ(x, x/ε) dx =

∫

Ω

∫

Y

u0(x, y)ψ(x, y) dy dx ∀ψ ∈ C∞

0 (Ω, C∞

per(Y ));

briefly uε 2
⇀ u0.

Let us note that we can replace C∞

0 (Ω, C∞

per(Y )) by L2(Ω, C
∞

per(Y )) in the defini-

tion, using the obvious density argument.
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Definition 2.2. Let u0 be an element of L2(Ω× Y ). We say that a sequence uε

from L2(Ω) two-scale converges strongly to u0 if uε 2
⇀ u0 and in addition

lim
ε→0

∫

Ω

|uε(x)|2 dx =

∫

Ω

∫

Y

|u0(x, y)|2 dy dx;

briefly uε 2
→ u0.

Lemma 2.3 ([2, Lemma 2.3]). If uε 2
→ u0 and vε 2

⇀ v0, where u0, v0 ∈ L2(Ω×Y ),

then also

lim
ε→0

∫

Ω

uε(x)vε(x) dx =

∫

Ω

∫

Y

u0(x, y)v0(x, y) dy dx.

In the sequel H = L2(Ω) and V = W 1,2
0 (Ω).

Lemma 2.4. Let {uε} be a bounded sequence in the space C0,1(I,H)∩L∞(I, V ).

Then there exist functions u ∈ C0,1(I,H)∩L∞(I, V ) and ũ ∈ L∞(I, L2(Ω,W
1,2
per(Y )))

such that up to a subsequence,

a) uε(t) ⇀ u(t) in V for every t ∈ I,

b) uε → u in C(I,H),

c) uε(t)
2
⇀ u(t) for every t ∈ I,

d) ∇uε(t)
2
⇀ ∇u(t) + ∇Y ũ(t) for every t ∈ I,

e) (∂uε/∂t)(t)
2
⇀ (∂u/∂t)(t) for every t ∈ I.

P r o o f. The lemma can be proved analogously to Lemma 5 in [18], and, thus,

we leave out the details. �

To prove the uniqueness of the solution of the problem we will use the following

Gronwall type lemma.

Lemma 2.5 ([15, Theorem 1.2.2]). Let u and f be continuous and nonnegative

functions defined on J = [α, β], and let C be a nonnegative constant. Then the

inequality

u(t) 6 C +

∫ t

α

f(s)u(s) ds, t ∈ J,

implies that

u(t) 6 C exp

(
∫ t

α

f(s) ds

)

, t ∈ J.

Now we present a brief description of Rothe’s method for the situation at hand.

Using this method, we can solve the following parabolic problem, which is the weak
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form of problem (1.1):

uε(t) ∈ V :
(

aε(t)
∂uε(t)

∂t
, v

)

+ 〈bε(t)u
ε(t), v〉 = (fε(t, u

ε(t)), v) for all v ∈ V,(2.1)

uε(0) = u0,

where

uε(t) := uε(x, t), aε(t) := a(x, x/ε, t), bε(t) := b(x, x/ε, t),(2.2)

fε(t, u
ε(t)) := f(x, x/ε, t, uε(x, t))

for a fixed ε, and (·, ·) denotes the scalar product in H and

(2.3) 〈bε(t)u
ε(t), v〉 =

∫

Ω

bε(t)∇u
ε(t) · ∇v dx.

We also need the following technical assumptions on the functions a, b, f , and u0 in

order to be able to solve problem (1.1).

Assumption 2.6. Let C1, C2 be positive numbers and y ∈ R
3. Then

(A1) the functions a, b satisfy the following conditions: for all t ∈ (0, T ), we

have

C1 6 w(x, y, t) 6 C2 for almost all x ∈ Ω,

‖w(·, y, t) − w(·, y, τ)‖L∞(Ω) 6 C2|t− τ | for all τ ∈ (0, T ),

where w = a (or w = b);

(A2) the function f satisfies the following condition:

‖f(·, y, t, u)− f(·, y, τ, v)‖H 6 C2(|t− τ | + ‖u− v‖H)

for all t, τ ∈ I and u, v ∈ H ;

(A3) the function u0 from V is such that:

∇ · (b(x, y, 0)∇u0) ∈ H.

(Here we write b(x, y, 0), which is the limit of b(x, y, t) as t → 0, since the

existence of this limit is guaranteed by (A1).) Moreover, it is supposed

that the functions a, b, f are Y -periodic in the second variable y.

308



Rothe’s method. Let h be a positive number. We divide the interval I = [0, T ]

into subintervals I1, I2, . . . , In (Ij = [tj−1, tj), tj = jh, j = 1, 2, . . . , n − 1, and

In = [tn−1, T ], where 0 < T − tn−1 6 h) such that the interval I is covered by these

intervals. Taking into account the initial condition of problem (2.1), we put

z0 = u0

for t0 = 0 and successively for j = 1, 2, . . . , n define vector functions zj which are

weak solutions of the elliptic problems

(2.4) zj ∈ V :
1

h
(ajzj, v) + 〈bjzj , v〉 =

(

fj(zj−1) +
aj

h
zj−1, v

)

for all v ∈ V,

where aj = aε(tj), bj = bε(tj) and fj(zj−1) = fε(tj , zj−1). We obtain these problems,

if we replace the derivative ∂uε(t)/∂t by the differential quotient (zj − zj−1)/h at

the points t = tj , j = 1, 2, . . . , n, in (2.1).

Let j = 1. Then problem (2.4) takes the form

z1 ∈ V :
1

h
(a1z1, v) + 〈b1z1, v〉 =

(

f1(z0) +
a0

h
z0, v

)

for all v ∈ V,

and it has exactly one solution (by virtue of Assumption 2.6 and as a consequence

of the theory of elliptic boundary value problems; see e.g. [5]). Next we solve prob-

lem (2.4) for j = 2, i.e.

z2 ∈ V :
1

h
(a2z2, v) + 〈b2z2, v〉 =

(

f2(z1) +
1

h
a1z1, v

)

for all v ∈ V.

Repeating the above procedure for j = 3, . . . , n, we get functions z1, z2, . . . , zn ∈ V

which are uniquely determined. It is thus possible to construct the Rothe func-

tion un(t) as a function from I to V defined by

(2.5) un(t) = zj−1 +
t− tj−1

h
(zj − zj−1), t ∈ Ij , j = 1, 2, . . . , n.

Hence, we obtain a sequence {un(t)}∞n=1 which is called Rothe’s sequence of approxi-

mative solutions of problem (2.1). Intuitively, we can expect that if n→ ∞, then this

sequence will converge to some function uε(t), which is a solution of problem (2.1).

In the next section we will in particular present and prove that this in fact holds

in a special sense. Roughly speaking, first we use Rothe’s method to prove the

existence of uε(t) as n → ∞ (see Theorem 3.4). After that we use the technique of

two-scale convergence to prove that uε(t) actually converges to a unique function u(t)

as ε→ 0 and this is the approximative (homogenized) solution of (1.1) we are looking
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for (see Theorem 3.1 (a)). As expected this solution can be calculated by using a

homogenization algorithm (see our Theorem 3.1 (b) and Corollary 3.3).

We are now ready to present and prove our main results.

3. Main results

In this section, the notation Ω, Y , V , H , and I have the same meaning as in our

previous sections and, moreover, the functions ã(x, t) and f̃(x, t, u) are defined by

ã(x, t) :=

∫

Y

a(x, y, t) dy and f̃(x, t, u) :=

∫

Y

f(x, y, t, u) dy.

Our main result reads:

Theorem 3.1. Let Assumption 2.6 be satisfied. Then

(a) problem (1.1) has a unique solution, and this solution can be approximated by a

unique function u ∈ C0,1(I,H)∩L∞(I, V ) such that ũ ∈ L∞(I, L2(Ω,W
1,2
per(Y )))

and

∫

Ω

ã(x, t)
∂u

∂t
(x, t)v(x) dx(3.1)

+

∫

Ω

∫

Y

b(x, y, t)(∇u(x, t) + ∇Y ũ(x, y, t)) · ∇v(x) dy dx

=

∫

Ω

f̃(x, t, u(x, t))v(x) dx

for all v ∈ V and at almost every time t ∈ I, and u(x, 0) = u0(x) for almost

every x ∈ Ω;

(b) the unique solution u(x, t) in (a) can be obtained by solving the equation

(3.2) ã(x, t)
∂u

∂t
(x, t) −∇ · (B(x, t)∇u(x, t)) = f̃(x, t, u(x, t)),

where the matrix B(x, t) = (bij(x, t))i,j=1,2,3 is defined by





b1j(x, t)

b2j(x, t)

b3j(x, t)



 =

∫

Y

b(ej + ∇Y wj) dy





b12(x, t)

b22(x, t)

b32(x, t)



 =

∫

Y

b(e2 + ∇Y w2) dy,(3.3)





b13(x, t)

b23(x, t)

b33(x, t)



 =

∫

Y

b(e3 + ∇Y w3) dy
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and wi ∈ L∞(I, L2(Ω,W
1,2
per(Y ))), i = 1, 2, 3, are the solutions of the local

problems

(3.4)



























∫

Y

b(x, y, t)(e1 + ∇Y w1) · ∇v(y) dy = 0,

∫

Y

b(x, y, t)(e2 + ∇Y w2) · ∇v(y) dy = 0,

∫

Y

b(x, y, t)(e3 + ∇Y w3) · ∇v(y) dy = 0

for all v ∈ C∞

per(Y ), where {e1, e2, e2} is the canonical basis in R
3.

R em a r k 3.2. For the case when the coefficients a, b and the right-hand side f

do not depend on t, Theorem 3.1 (a) coincides with that of Vala [18] in the quasilinear

case. Moreover, Theorem 3.1 (b) is well suited to be directly applied for obtaining a

good approximation of the solution of (1.1).

More exactly, we obtain the following homogenization algorithm for deriving an

approximative solution of equation (1.1):

Corollary 3.3 (Homogenization algorithm). An approximative solution of equa-

tion (1.1) can be obtained in the following way:

Step 1: Solve the local problems (3.4).

Step 2: Insert the solutions of the local problems into (3.3) and compute the

homogenized coefficient B(x, t).

Step 3: Solve the homogenized equation (3.2), which gives the approximative

solution u(x, t) we are looking for.

In order to be able to prove Theorem 3.1 we need the following crucial result of

independent interest:

Theorem 3.4. Let Assumption 2.6 be satisfied. Then there exists a function

uε ∈ C0,1(I,H) ∩ L∞(I, V ) which solves (1.1) and has the following properties (for

each fixed ε > 0):

1. ‖uε‖L∞(I, V ) 6 C, ‖∂uε/∂t‖L∞(I,H) 6 C,

2. uε(0) = u0,

3.
∫

Ω

a(x, x/ε, t)
∂u

∂t

ε

(x, t)v(x) dx+

∫

Ω

b(x, x/ε, t)∇uε(x, t) · ∇v(x) dx(3.5)

=

∫

Ω

f(x, x/ε, t, uε(x, t))v(x) dx

for all v ∈ V = W 1,2
0 (Ω) and at almost every time t ∈ I, where C does not

depend on ε.
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4. Proofs

P r o o f of Theorem 3.4. Let us consider the integral identity (2.4), i.e.

(4.1)
1

h
(aj(zj − zj−1), v) + 〈bjzj , v〉 = (fj(zj−1), v) for all v ∈ V.

We choose v = zj − zj−1 in (4.1). Then we get that

1

h
(aj(zj − zj−1), zj − zj−1) + 〈bjzj, zj − zj−1〉 = (fj(zj−1), zj − zj−1)

for j = 1, 2, . . . , n. By applying the Schwarz inequality to the right-hand side of the

last equality we obtain that

1

h
(aj(zj − zj−1), zj − zj−1) + 〈bjzj , zj − zj−1〉 6 ‖fj(zj−1)‖H‖zj − zj−1‖H .

Hence, according to (A1) and (A2) of Assumption 2.6, we find that

C1

h
‖zj − zj−1‖

2
H + 〈bjzj , zj − zj−1〉 6 C2(jh+ ‖zj−1‖H)‖zj − zj−1‖H .

By applying first the trivial inequality ab 6 a2/2θ + b2θ/2 (for θ = 2C1/hC2 > 0)

followed by (a+ b)2 6 2(a2 + b2) to the right-hand side of the last estimate, we get

that

〈bjzj , zj − zj−1〉 6
hC2

2

4C1
(T + ‖zj−1‖H)2,

i.e.

(4.2) 〈bjzj , zj − zj−1〉 6
hC2

2

2C1
(T 2 + ‖zj−1‖

2
H).

According to the Poincaré inequality, (2.3), and (A1) of Assumption 2.6 we have

that

(4.3) ‖zj−1‖H 6 C∗‖zj−1‖V 6 C∗

[ 1

C1
〈bj−1zj−1, zj−1〉

]1/2

and

|〈(bj−1 − bj)zj−1, zj−1〉| 6
C2h

C1
〈bj−1zj−1, zj−1〉,

so that

(4.4) −
C2h

C1
〈bj−1zj−1, zj−1〉 6 〈(bj−1 − bj)zj−1, zj−1〉.
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Inserting (4.3) into (4.2), we see that

(4.5) 〈bjzj, zj − zj−1〉 6
hC2

2

2C1

(

T 2 +
[C2

∗

C1
〈bj−1zj−1, zj−1〉

])

.

Moreover, we estimate the left-hand side of (4.2) as follows:

〈bjzj, zj − zj−1〉(4.6)

=
1

2

[

〈bjzj, zj〉 + 〈bj(zj − zj−1), zj − zj−1〉 − 〈bjzj−1, zj−1〉
]

=
1

2
[〈bjzj , zj〉 + 〈bj(zj − zj−1), zj − zj−1〉 + 〈(bj−1 − bj)zj−1, zj−1〉

− 〈bj−1zj−1, zj−1〉]

>
1

2
[〈bjzj , zj〉 + 〈(bj−1 − bj)zj−1, zj−1〉 − 〈bj−1zj−1, zj−1〉].

Inserting (4.4) into (4.6) and simplifying, we find that

(4.7) 〈bjzj, zj − zj−1〉 >
1

2

[

〈bjzj , zj〉 −
(

1 +
C2

C1
h
)

〈bj−1zj−1, zj−1〉
]

.

From (4.5) and (4.7) it follows that

1

2

[

〈bjzj, zj〉 −
(

1 +
C2

C1
h
)

〈bj−1zj−1, zj−1〉
]

6
hC2

2

2C1

(

T 2 +
C2

∗

C1
〈bj−1zj−1, zj−1〉

)

.

By choosing now C <∞ such that

C2
2

C1
T 2

6 C and
C2

∗
C2

2 + C2C1

C2
1

6 C,

we find that

〈bjzj, zj〉 6 Ch+ (1 + Ch)〈bj−1zj−1, zj−1〉.

Hence, using repeatedly this and the fact that ln(1 + t) 6 t, t > 0 yields that

〈bjzj , zj〉 6 Ch+ (1 + Ch)〈bj−1zj−1, zj−1〉

6 Ch+ Ch(1 + Ch) + (1 + Ch)2〈bj−2zj−2, zj−2〉

6 . . . 6 (1 + Ch)j + (1 + Ch)j〈b0z0, z0〉

= ej ln(1+Ch) + ej ln(1+Ch)〈b0z0, z0〉

6 eCT + eCT 〈b0z0, z0〉.
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By virtue of (A1) and (A3) of Assumption 2.6 we get that

(4.8) ‖zj‖V 6 C3 for all j = 1, 2, . . . , n,

where C3 does not depend on j and n.

From this estimate we obtain the uniform boundedness of Rothe’s sequence, i.e. ac-

cording to (2.5) and (4.8) it is obvious that

(4.9) ‖un(t)‖2
V 6 max

j
‖zj‖

2
V 6 C2

3 .

This estimate implies that the first estimate of the theorem holds.

Next we estimate the derivative of the Rothe’s sequence, i.e. {∂un(t)/∂t}, which

is also connected to the proof of the second estimate of the theorem. To this end we

consider the identity (4.1), i.e.

1

h
(aj(zj − zj−1), v) + 〈bjzj , v〉 = (fj(zj−1), v) for all v ∈ V.

Subtracting from this identity the same identity written for j − 1 and putting v =

zj − zj−1, we obtain that

1

h
(aj(zj − zj−1) − aj−1(zj−1 − zj−2), zj − zj−1)(4.10)

+ 〈bjzj − bj−1zj−1, zj − zj−1〉

= (fj(zj−1) − fj−1(zj−2), zj − zj−1).

We will separately estimate all terms of (4.10). Let us begin with the first term on

the left-hand side. To estimate it we use the inequalities

(aj−1u, u) − 2(aj−1u, v) + (aj−1v, v) > 0 for all u, v ∈ V

and
∣

∣

∣1 −
aj−1(x)

aj(x)

∣

∣

∣ 6
C2

C1
h for a.e. x ∈ Ω

(for all j = 1, 2, . . . , n), which immediately follows from (A1) of Assumption 2.6. By

using these estimates we find that

1

h
(aj(zj − zj−1) − aj−1(zj−1 − zj−2), zj − zj−1)(4.11)

=
1

2h
(aj(zj − zj−1), zj − zj−1) +

1

2h
[(aj−1(zj − zj−1), zj − zj−1)

− 2(aj−1(zj−1 − zj−2), zj − zj−1) + (aj−1(zj−1 − zj−2), zj−1 − zj−2)]

+
1

2h
((aj − aj−1)(zj − zj−1), zj − zj−1)

−
1

2h
(aj−1(zj−1 − zj−2), zj−1 − zj−2)
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>
1

2h
(aj(zj − zj−1), zj − zj−1) +

1

2h

(

aj

(

1 −
aj−1

aj

)

(zj − zj−1), zj − zj−1

)

−
1

2h
(aj−1(zj−1 − zj−2), zj−1 − zj−2)

>
1

2h

(

1 −
C2

C1
h
)

(aj(zj − zj−1), zj − zj−1)

−
1

2h
(aj−1(zj−1 − zj−2), zj−1 − zj−2).

Next we use (A1) of Assumption 2.6 to obtain that

|〈(bj−1 − bj)zj−1, zj − zj−1〉| 6 C2h

∫

Ω

|∇zj−1||∇(zj − zj−1)| dx(4.12)

6 C2h‖∇zj−1‖H‖∇(zj − zj−1)‖

6 C2h‖zj−1‖V ‖zj − zj−1‖V ,

which implies that

(4.13) −〈(bj−1 − bj)zj−1, zj − zj−1〉 > −C2h‖zj−1‖V ‖zj − zj−1‖V .

Thus, by using again (A1) of Assumption 2.6, (4.13), and (4.8), we can estimate the

second term on the left-hand side of (4.10) as follows:

〈bjzj − bj−1zj−1, zj − zj−1〉(4.14)

= 〈bj(zj − zj−1), zj − zj−1〉 − 〈(bj−1 − bj)zj−1, zj − zj−1〉

> C1‖zj − zj−1‖
2
V − C2h‖zj−1‖V ‖zj − zj−1‖V

= C1

[

‖zj − zj−1‖V −
C2h

2C1
‖zj−1‖V

]2

− C1

[C2h

2C1
‖zj−1‖V

]2

> −
C2

2C
2
3

4C1
h2.

Moreover, for the right-hand side of (4.10) we use the Schwarz inequality, (A2) in

Assumption 2.6, and elementary inequalities to find that

(fj(zj−1) − fj−1(zj−2), zj − zj−1)(4.15)

6 ‖fj(zj−1) − fj−1(zj−2)‖H‖zj − zj−1‖H

6 C2(h+ ‖zj−1 − zj−2‖H)‖zj − zj−1‖H

6 C2h
2 + C2‖zj−1 − zj−2‖

2
H +

C2

2
‖zj − zj−1‖

2
H .
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By using (A1) of Assumption 2.6 we see that

(aj−1(zj−1 − zj−2), zj−1 − zj−2)

=

∫

Ω

aj−1(zj−1 − zj−2)(zj−1 − zj−2) dx

> C1

∫

Ω

|zj−1 − zj−2|
2

dx = C1 ‖zj−1 − zj−2‖
2
H ,

i.e.

(4.16) ‖zj−1 − zj−2‖
2
H 6

1

C1
(aj−1(zj−1 − zj−2), zj−1 − zj−2).

Similarly

(4.17) ‖zj − zj−1‖
2
H 6

1

C1
(aj(zj − zj−1), zj − zj−1).

Inserting (4.17) and (4.16) into (4.15) we see that

(fj(zj−1) − fj−1(zj−2), zj − zj−1)(4.18)

6 C2h
2 +

C2

C1
(aj−1(zj−1 − zj−2), zj−1 − zj−2)

+
C2

2C1
(aj(zj − zj−1), zj − zj−1).

Now, according to (4.11), (4.14), (4.18), and (4.10) we get that

1

2h

(

1 −
C2

C1
h
)

(aj(zj − zj−1), zj − zj−1)(4.19)

−
1

2h
(aj−1(zj−1 − zj−2), zj−1 − zj−2) −

C2
2C

2
3

4C1
h2

6 C2h
2 +

C2

C1
(aj−1(zj−1 − zj−2), zj−1 − zj−2)

+
C2

2C1
(aj(zj − zj−1), zj − zj−1).

If we denote αj = h−2(aj(zj − zj−1), zj − zj−1) and insert it into (4.19) we find that

(

1 −
C2

C1
h
)

αj − αj−1 −
hC2

2C
2
3

2C1
6 2C2h+

2C2h

C1
αj−1 +

C2h

C1
αj ,

i.e.,

αj − αj−1 6 h
[(C2

2C
2
3

2C1
+ 2C2

)

+
2C2

C1
(αj + αj−1)

]

(4.20)

6 h[C + C(αj + αj−1)] = Ch[1 + αj + αj−1],
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where C <∞ is chosen such that

C2
2C

2
3

2C1
+ 2C2 6 C and

2C2

C1
6 C.

Simplifying further, we see that the last estimate takes the form

αj 6
1 + Ch

1 − Ch
αj−1 +

Ch

1 − Ch
.

By using this estimate repeatedly together with another elementary estimate, we get

that

(4.21) αj 6

(1 + Ch

1 − Ch

)j−1

α1 +
(1 + Ch

1 − Ch

)j−1

.

Without loss of generality it can be supposed that h is less than 1/2C, which enables

us to make the estimate

(1 + Ch

1 − Ch

)j−1

= e(j−1) ln(1+2Ch/(1−Ch))(4.22)

6 e2C(j−1)h/(1−Ch) 6 e2CT/(1−Ch) 6 e4CT .

Our next goal is to estimate α1 in a similar way. First we rewrite the identity (4.1)

for j = 1 and put v = z1 − z0, i.e.

(4.23)
1

h
(a1(z1 − z0), z1 − z0) + 〈b1z1, z1 − z0〉 = (f1(z0), z1 − z0).

According to (4.12) for j = 1 we have that

(4.24) 〈(b1 − b0)z0, z1 − z0〉 > −C2h‖z0‖V ‖z1 − z0‖V .

Moreover, by using Green’s formula and the Schwarz inequality, we have that

|〈b0z0, z1 − z0〉| =

∣

∣

∣

∣

∫

Ω

b0∇z0 · ∇(z1 − z0) dx

∣

∣

∣

∣

(4.25)

=

∣

∣

∣

∣

−

∫

Ω

∇ · (b0∇z0)(z1 − z0) dx

∣

∣

∣

∣

6 ‖∇ · (b0∇z0)‖H‖z1 − z0‖H

6 h‖∇ · (b0∇z0)‖H

∥

∥

∥

z1 − z0
h

∥

∥

∥

H
.

From (4.17) we see that

C1

h2
‖zj − zj−1‖

2
H 6

1

h2
(aj(zj − zj−1), zj − zj−1) = αj ,
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so that, in particular for j = 1,

(4.26)
∥

∥

∥

z1 − z0
h

∥

∥

∥

H
6

√

α1

C1
.

Also, according to (4.8) and Assumption 2.6 we have that

(4.27) ‖zj‖V 6 C3 for all j = 0, 1, . . . , n,

so that, in particular,

(4.28) ‖z1 − z0‖V 6 ‖z1‖V + ‖z0‖V 6 2C3.

Thus, by using (4.24)–(4.28), we can estimate the second term on the left-hand side

of (4.23) in the following way:

〈b1z1, z1 − z0〉 = 〈b1(z1 − z0), z1 − z0〉 + 〈b1z0, z1 − z0〉(4.29)

> 〈b1z0, z1 − z0〉

= 〈(b1 − b0)z0, z1 − z0〉 + 〈b0z0, z1 − z0〉

> − C2h‖z0‖V ‖z1 − z0‖V − h‖∇ · (b0∇z0) ‖H

∥

∥

∥

z1 − z0
h

∥

∥

∥

H

> − 2C2C
2
3h−

C4

C
1/2
1

α
1/2
1 h.

By using the Schwarz inequality, (A2) of Assumption 2.6, and (4.26) the right-hand

side of (4.23) can be estimated as follows:

(4.30) (f1(z0), z1 − z0) 6 ‖f1(z0)‖H‖z1 − z0‖H 6
C5

C
1/2
1

α
1/2
1 h.

Inserting (4.29) and (4.30) into (4.23), we see that

α1 − 2C2C
2
3 −

C4

C
1/2
1

α
1/2
1 6

C5

C
1/2
1

α
1/2
1 ,

i.e.

α1 6 C0 + C0α
1/2
1 ,

which implies that

(4.31) α1 6 2C0 + C2
0 ,
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where C0 <∞ is chosen such that

2C2C
2
3 6 C0 and

C4 + C5

C
1/2
1

6 C0.

Hence, from (4.21), (4.22), and (4.31) we see that

αj 6 e4CT (1 + C0)
2

:= C6 <∞.

Therefore, according to (4.17),

C1

∥

∥

∥

zj − zj−1

h

∥

∥

∥

2

H
6

1

h2
(aj(zj − zj−1), zj − zj−1) = αj 6 C6 <∞.

Thus, it follows that
∥

∥

∥

zj − zj−1

h

∥

∥

∥

H
6 C∗.

The last estimate proves the uniform boundedness of the derivative of Rothe’s func-

tions, i.e. (see (2.5))

(4.32) max
t∈[0,T ]

∥

∥

∥

∂un

∂t
(t)

∥

∥

∥

H
= max

j=1,2,...,n

∥

∥

∥

zj − zj−1

h

∥

∥

∥

H
6 C∗.

Next, let us introduce the sequence

vεn(t) = un(t), t ∈ I, n = 1, 2, . . . ,

where {εn}
∞

n=1 is a parameter sequence such that εn → 0 is equivalent to n→ ∞.

According to (4.9) and (4.32) it follows that the sequence vεn(t) satisfies the condi-

tions of Lemma 2.4. Therefore, in particular, we obtain that there exists a function

v ∈ C0,1(I,H) ∩ L∞(I, V ) and, up to a subsequence,

a) vεn(t) ⇀ v(t) in V for every t ∈ I,

b) vεn → v in C(I,H),

e) (∂vεn/∂t)(t)
2
⇀ (∂v/∂t)(t) for every t ∈ I.

This together with the definition of vεn yields that

a∗) un(t) ⇀ u(t) = v(t) in V for every t ∈ I,

b∗) un → u in C(I,H),

e∗) (∂un/∂t)(t)
2
⇀ (∂u/∂t)(t) for every t ∈ I.

The statements a∗) and b∗) are obvious. To obtain e∗) we use the definitions of

weak and two scale convergence.
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According to (4.9), (4.32), and a∗), b∗), e∗) there exist u ∈ C0,1(I,H)∩L∞(I, V )

with the time derivative ∂u/∂t ∈ L∞(I,H) which are also bounded by these con-

stants. Moreover, since Rothe’s sequence is uniformly convergent, we obtain that

u(0) = u0. This implies the correctness of the first two properties of the theorem.

Now we notice that all the above considerations have been done for a fixed ε,

which implies that the obtained limit function u(t) also depends on ε. Thus, we will

in the sequel use the notation uε(t) instead of u(t).

Now we will prove that the function uε also has the third property from the

theorem, i.e. the integral identity (3.5) holds. To this end we introduce step func-

tions ūn, ān, and b̄n defined in I such that

zj = ūn(t), aj = ān(t), bj = b̄n(t),

and

fn(t, ·) = fj(·)

for t ∈ Ij , j = 1, 2, 3, . . . , n, and we rewrite the integral identity (4.1) as

(4.33)
(

ān(t)
∂un(t)

∂t
, v(t)

)

+ 〈b̄n(t)ūn(t), v(t)〉 = (fn(t, ūn(t− h)), v(t)),

where v ∈ L∞(I, V ). In view of a∗), b∗), e∗) above, and Assumption 2.6 we get that

(

ān(t)
∂un

∂t
(t), v(t)

)

→
(

aε(t)
∂uε

∂t
(t), v(t)

)

,(4.34)

〈b̄n(t)ūn(t), v(t)〉 → 〈bε(t)u
ε(t), v(t)〉,

(fn(t, ūn(t− h)), v(t)) → (fε(t, u
ε(t)), v(t))

as n → ∞, for each fixed ε and almost all t ∈ I, since ‖ān(t) − a(t)‖L∞(Ω) → 0,

‖b̄n(t) − b(t)‖L∞(Ω) → 0, and ‖fn(t, ūn(t − h)) − f(t, u(t))‖H → 0 as n → ∞.

Moreover, to get the limits (4.34) we use also that ūn(t − h) → u(t) in H , which

follows from the estimate

‖ūn(t− h) − un(t)‖H = ‖un(tj−1) − un(t)‖H

=

∥

∥

∥

∥

∫ t

tj−1

∂un(τ)

∂t
dτ

∥

∥

∥

∥

H

6

∫ t

t−h

∥

∥

∥

∂un(τ)

∂t

∥

∥

∥

H
dτ 6 Ch

for t ∈ Ĩj = (tj−1, tj ], j = 1, 2, . . . , n. Taking the limit on both sides of equal-

ity (4.33), we obtain the identity

(

aε(t)
∂uε

∂t
(t), v(t)

)

+ 〈bε(t)u
ε(t), v(t)〉 = (fε(t, u

ε(t)), v(t)),
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which is the same as
∫

Ω

a(x, x/ε, t)
∂u

∂t

ε

(x, t)v(x) dx+

∫

Ω

b(x, x/ε, t)∇uε(x, t) · ∇v(x) dx(4.35)

=

∫

Ω

f(x, x/ε, t, uε(x, t))v(x) dx

for all v ∈ V = W 1,2
0 (Ω) and almost all t ∈ I. This shows that the function uε

satisfies the integral identity (3.5), and Theorem 3.4 is proved. �

P r o o f of Theorem 3.1. Existence. (a) We will use Lemma 2.3 and Lem-

ma 2.4, which involves the notion of two-scale convergence, to obtain the homog-

enized equation corresponding to problem (1.1). We note that by Theorem 3.4 and

Lemma 2.4 there exists a certain u ∈ C0,1(I,H)∩L∞(I, V ) with the time derivative

∂u/∂t ∈ L∞(I,H), and a certain ũ ∈ L∞(I, L2(Ω,W
1,2
per(Y ))) attained as limits of uε

and ∂uε/∂t in the sense of Lemma 2.4. It remains to prove that these limits satisfy

the weak formulation (3.1) of the theorem.

Let us choose an arbitrary v ∈ V and introduce

ωε(t) := ωε(x, t) = a(x, x/ε, t)v(x)

and

ω(t) := ω(x, y, t) = a(x, y, t)v(x).

Evidently ωε(t)
2
→ ω(t). By using assertion e) of Lemma 2.4 and Lemma 2.3, we

find that

lim
ε→0

∫

Ω

a(x, x/ε, t)
∂u

∂t

ε

(x, t)v(x) dx(4.36)

= lim
ε→0

∫

Ω

ωε(x, t)
∂u

∂t

ε

(x, t) dx =

∫

Ω

∫

Y

ω(x, y, t)
∂u

∂t
(x, t) dy dx

=

∫

Ω

∫

Y

a(x, y, t)
∂u

∂t
(x, t)v(x) dy dx.

This shows that the first integral in (4.35) tends to the corresponding one in (3.1)

as ε→ 0. Next we evaluate the limit of the right-hand side of (4.35) when ε→ 0 as

follows:

lim
ε→0

∫

Ω

f(x, x/ε, t, uε(x, t)) v(x) dx(4.37)

=

∫

Ω

∫

Y

f(x, y, t, u(x, t))v(x) dy dx

− lim
ε→0

∫

Ω

(f(x, x/ε, t, u(x, t)) − f(x, x/ε, t, uε(x, t)))v(x) dx

− lim
ε→0

∫

Ω

(∫

Y

f(x, y, t, u(x, t)) dy − f(x, x/ε, t, u(x, t))

)

v(x) dx;
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here the last two integrals converge to zero as ε → 0. The second integral on the

right-hand side converges to zero, since f satisfies (A2) of Assumption 2.6 and the

sequence uε(t) converges strongly to u(t) in H . The convergence to zero of the third

integral on the right-hand side follows from the definition of two-scale convergence.

It also holds that

lim
ε→0

∫

Ω

b(x, x/ε, t)∇uε(x, t) · ∇v(x) dx(4.38)

=

∫

Ω

∫

Y

b(x, y, t)(∇u(x, t) + ∇Y ũ(x, y, t)) · ∇v(x) dy dx.

This statement holds according to Lemma 2.3, since bε(t)
2
→ b(t), which follows

from Definitions 2.1 and 2.2, and ∇uε(t)
2
⇀ ∇u(t) +∇Y ũ(t), which follows from the

assertion d) of Lemma 2.4.

By combining (4.35)–(4.38), we find that the function u satisfies the equality
∫

Ω

ã(x, t)
∂u

∂t
(x, t)v(x) dx(4.39)

+

∫

Ω

∫

Y

b(x, y, t)(∇u(x, t) + ∇Y ũ(x, y, t)) · ∇v(x) dy dx

=

∫

Ω

f̃(x, t, u(x, t))v(x) dx,

and (4.39) coincides with (3.1), so we are done.

(b) Let us now choose for the test function v in (3.5) (i.e. (4.35)) a function

εψ(x)v(x/ε), where ψ ∈ C∞

0 (Ω) and v ∈ C∞

per(Y ). Then we get that

ε

∫

Ω

a(x, x/ε, t)
∂u

∂t

ε

(x, t)ψ(x)v(x/ε) dx

+

∫

Ω

(b(x, x/ε, t)∇uε(x, t)) · ∇[εψ(x)v(x/ε)] dx

= ε

∫

Ω

f(x, x/ε, t, uε(x, t))ψ(x)v(x/ε) dx.

Simplifying we see that

ε

∫

Ω

a(x, x/ε, t)
∂u

∂t

ε

(x, t)ψ(x)v(x/ε) dx

+

∫

Ω

b(x, x/ε, t)∇uε(x, t) · [ψ(x)∇v(x/ε)] dx

+ ε

∫

Ω

(b(x, x/ε, t)∇uε(x, t)) · [∇ψ(x)v(x/ε)] dx

= ε

∫

Ω

f(x, x/ε, t, uε(x, t))ψ(x)v(x/ε) dx.

322



As ε→ 0 we find that
∫

Ω

∫

Y

[b(x, y, t)(∇u(x, t) + ∇Y ũ(x, y, t))] · [ψ(x)∇v(y)] dy dx = 0.

Since ψ ∈ C∞

0 (Ω) is arbitrary, we have that (for a.e. x) ũ(x, y, t) is the unique solution

of the following periodic problem: Find ũ ∈ L∞(I, L2(Ω,W
1,2
per(Y ))) such that

∫

Y

[b(x, y, t)(∇u(x, t) + ∇Y ũ(x, y, t))] · ∇v(y) dy = 0

for almost all x ∈ Ω. Rearranging we find that

∫

Y

[b(x, y, t)∇Y ũ(x, y, t)] · ∇v(y) dy(4.40)

= −

∫

Y

[b(x, y, t)∇u(x, t)] · ∇v(y) dy

= −

∫

Y

b(x, y, t)
∂u

∂x1

∂v(y)

∂y1
dy −

∫

Y

b(x, y, t)
∂u

∂x2

∂v(y)

∂y2
dy

−

∫

Y

b(x, y, t)
∂u

∂x3

∂v(y)

∂y3
dy.

By linearity

(4.41) ũ(x, y, t) = w1(x, y, t)
∂u

∂x1
+ w2(x, y, t)

∂u

∂x2
+ w3(x, y, t)

∂u

∂x3
,

where wi ∈ L∞(I, L2(Ω,W
1,2
per(Y ))) (i = 1, 2, 3) are the solutions of the following

local problems:

(4.42)



























∫

Y

b(x, y, t)(∇Y w1 + e1) · ∇v(y) dy = 0,

∫

Y

b(x, y, t)(∇Y w2 + e2) · ∇v(y) dy = 0,

∫

Y

b(x, y, t)(∇Y w3 + e3) · ∇v(y) dy = 0.

Finally, to obtain the homogenized equation, we insert (4.41) into (4.39) to get

∫

Ω

∫

Y

a(x, y, t)
∂u

∂t
(x, t) v(x) dy dx(4.43)

+

∫

Ω

∫

Y

b(x, y, t)
(

∇u(x, t) + ∇Y w1
∂u

∂x1
+ ∇Y w2

∂u

∂x2
+ ∇Y w3

∂u

∂x3

)

×∇v(x) dy dx

=

∫

Ω

∫

Y

f(x, y, t, u(x, t))v(x) dy dx.
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Moreover, we note that the second term on the left-hand side can be written as

∫

Ω

∫

Y

b(x, y, t)
( ∂u

∂x1
e1 +

∂u

∂x2
e2 +

∂u

∂x3
e3(4.44)

+ ∇Y w1
∂u

∂x1
+ ∇Y w2

∂u

∂x2
+ ∇Y w3

∂u

∂x3

)

· ∇v(x) dy dx

=

∫

Ω

{

∂u

∂x1

(∫

Y

b(x, y, t)(e1 + ∇Y w1) dy

)

+
∂u

∂x2

(∫

Y

b(x, y, t)(e2 + ∇Y w2) dy

)

+
∂u

∂x3

(∫

Y

b(x, y, t)(e3 + ∇Y w3) dy

)}

· ∇v(x) dx

=

∫

Ω







∂u

∂x1





b11(x, t)

b21(x, t)

b31(x, t)



 +
∂u

∂x2





b12(x, t)

b22(x, t)

b32(x, t)





+
∂u

∂x3





b13(x, t)

b23(x, t)

b33(x, t)











· ∇v(x) dx

=

∫

Ω

(B(x, t)∇u(x, t)) · ∇v(x) dx,

where the matrix B(x, t) = (bij(x, t))i,j=1,2,3 is defined by





b1j(x, t)

b2j(x, t)

b3j(x, t)



 =

∫

Y

b(x, y, t)(ej + ∇Y wj) dy for j = 1, 2, 3

and (3.3) is proved. By inserting (4.44) into (4.43), we see that

∫

Ω

∫

Y

a(x, y, t)
∂u

∂t
(x, t)v(x) dy dx+

∫

Ω

(B(x, t)∇u(x, t)) · ∇v(x) dx(4.45)

=

∫

Ω

∫

Y

f(x, y, t, u(x, t))v(x) dy dx.

Introducing the notation

f̃(x, t, u(x, t)) =

∫

Y

f(x, y, t, u(x, t)) dy

and ã(x, t) =

∫

Y

a(x, y, t) dy,
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the equality (4.45) takes the form

∫

Ω

ã(x, t)
∂u

∂t
(x, t)v(x) dx+

∫

Ω

(B(x, t)∇u(x, t)) · ∇v(x) dx(4.46)

=

∫

Ω

f̃(x, t, u(x, t))v(x) dx,

which is the weak form of

ã(x, t)
∂u

∂t
(x, t) −∇ · (B(x, t)∇u(x, t)) = f̃(x, t, u(x, t)).

The proof of existence of the solution is complete.

Uniqueness. Assume that u1 and u2 are solutions of problem (3.2), i.e. ui ∈

C0,1(I,H) ∩ L∞(I, V ) is such that ui(0) = u0 and

∫

Ω

ã(x, t)
∂ui

∂t
(x, t)v(x) dx+

∫

Ω

(B(x, t)∇ui(x, t)) · ∇v(x) dx(4.47)

=

∫

Ω

f̃(x, t, ui(x, t))v(x) dx,

(i = 1, 2). If we denote u(t) = u1(t) − u2(t), then u(0) = 0. Subtracting the

identity (4.47) written for i = 2 from the same identity written for i = 1 and

choosing v = u, we get that

∫

Ω

ã(x, t)
∂u

∂t
(x, t)u(x, t) dx+

∫

Ω

(B(x, t)∇u(x, t)) · ∇u(x, t) dx(4.48)

=

∫

Ω

[f̃(x, t, u1(x, t)) − f̃(x, t, u2(x, t))]u(x, t) dx.

By using the assumption on f (see (A2) of Assumption 2.6) we estimate the right-

hand side as
∫

Ω

[f̃(x, t, u1(x, t)) − f̃(x, t, u2(x, t))]u(x, t) dx 6 C2

∫

Ω

u(x, t)2 dx.

From this and from (4.48) we get that

∫

Ω

ã(x, t)
∂u

∂t
(x, t)u(x, t) dx+

∫

Ω

(B(x, t)∇u(x, t)) · ∇u(x, t) dx 6 C2

∫

Ω

(u(x, t))2 dx.

From the nonnegativity of the second term (which is guaranteed by (A1) of Assump-

tion 2.6) on the left-hand side of the last estimate we obtain that

∫

Ω

ã(x, t)
∂u

∂t
(x, t)u(x, t) dx 6 C2

∫

Ω

(u(x, t))2 dx.
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Now we integrate both sides with respect to t from 0 to τ , i.e.

(4.49)

∫ τ

0

∫

Ω

ã(x, t)
∂u

∂t
(x, t)u(x, t) dxdt 6 C2

∫ τ

0

∫

Ω

(u(x, t))2 dxdt.

According to (A1) of Assumption 2.6 we can estimate the left-hand side of (4.49)

as

∫ τ

0

∫

Ω

ã(x, t)
∂u

∂t
(x, t)u(x, t) dxdt

=
1

2

∫

Ω

∫ τ

0

ã(x, t)
∂(u(x, t)2)

∂t
dt dx

=
1

2

∫

Ω

ã(x, τ)u(x, τ)2 dx−
1

2

∫

Ω

∫ τ

0

∂ã(x, t)

∂t
u(x, t)2 dt dx

>
C1

2

∫

Ω

u(x, τ)2 dx−
C2

2

∫ τ

0

∫

Ω

u(x, t)2 dxdt.

This together with (4.49) yields that

∫

Ω

u(x, τ)2 dx 6
3C2

C1

∫ τ

0

∫

Ω

u(x, t)2 dxdt,

i.e.

‖u(τ)‖2
H 6

3C2

C1

∫ τ

0

‖u(t)‖2
H dt.

Hence, by applying Lemma 2.5 we get that

u(t) = 0, i.e. u1(t) = u2(t) for a.e. t ∈ I.

This proves the uniqueness of the solution of the homogenized equation (3.2).

The uniqueness of the solution implies that not only some subsequence of {uε}

converges to the solution, but also the whole sequence converges. The proof is

complete. �

References

[1] G. Allaire: Two-scale convergence and homogenization of periodic structures. School on
Homogenization, ICTP, Trieste, September 6–17, 1993.

[2] G. Allaire: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992),
1482–1518.

[3] A. Almqvist, E.K. Essel, L.-E. Persson, P. Wall: Homogenization of the unstationary
incompressible Reynolds equation. Tribol. Int. 40 (2007), 1344–1350.

[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou: Asymptotic Analysis for Periodic Struc-
tures. North-Holland, Amsterdam, 1978.

326



[5] S. Fučík, A. Kufner: Nonlinear Differential Equations. Elsevier Scientific Publishing
Company, Amsterdam-Oxford-New York, 1980.

[6] J. Kačur: Method of Rothe and nonlinear parabolic boundary value problems of arbi-
trary order. Czech. Math. J. 28 (1978), 507–524.

[7] J. Kačur: Method of Rothe in Evolution Equations. B.G. Teubner Verlagsgesellschaft,
Leipzig, 1985.

[8] K. Kuliev: Parabolic problems on non-cylindrical domains. The method of Rothe. PhD.
Thesis. Faculty of Applied Sciences, University of West Bohemia, Pilsen, 2007.

[9] K. Kuliev, L.-E. Persson: An extension of Rothe’s method to non-cylindrical domains.
Appl. Math. 52 (2007), 365–389.

[10] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.
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