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Introduction

In this paper the congruence relations and ideals of partially ordered quasigroups

(and especially of Riesz quasigroups) are studied. It is shown that the convex directed

congruence relations (see 2.1. Definition) of a Riesz quasigroup Q form a distributive

sublattice in the lattice of all congruence relations of Q. Further, some results valid

to partially ordered groups (which were proved by Fuchs [5]) are generalized to

partially ordered loops and Riesz quasigroups. Namely, it is shown that there exists

a one-to-one correspondence between the o-ideals of a partially ordered loop Q and

all normal convex subgroupoids S of Q such that S ⊆ Q+, 1 ∈ S (see 4.9. Theorem)

and also, that o-ideals of a Riesz loop Q form a distributive sublattice in the lattice

of all normal subloops of Q (see 4.11. Theorem).

The l-ideals of lattice ordered commutative loops were investigated by Naik,

Swammy, and Misra [8].

The notion of a Riesz quasigroup generalizes the notion of a Riesz group. The

foundations of the theory of Riesz groups were laid by Fuchs [5]. Properties of some

types of Riesz quasigroups have been studied by Testov in [10].
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1. Preliminaries

A quasigroup is an algebra (Q, ·, \, /) with three binary operations satisfying the

identities

y \ (y · x) ≈ x; (x · y)/y ≈ x,(Q1)

y · (y \ x) ≈ x; (x/y) · y ≈ x.(Q2)

The identities (Q1), (Q2) imply that, given x, y ∈ Q, the equations y · z = x and

z · y = x have unique solutions z = y \ x and z = x/y, respectively (see e.g. [3]).

A loop is a quasigroup (Q, ·, \, /) with an identity element for (Q, ·), i.e., an algebra

(Q, ·, \, /, 1) that satisfies (Q1), (Q2) and x · 1 ≈ 1 · x ≈ x. Every group is a loop,

where x/y = x ·y−1 and y \x = y−1 ·x. For the basic notions concerning quasigroups

cf. Belousov [1].

Let (Q, ·, \, /) be a quasigroup. For any a ∈ Q we denote by La and Ra the

mappings of Q onto itself defined by the rules La(x) = ax,Ra(x) = xa. Clearly La

and Ra are bijections of Q to itself and L
−1
a (x) = a \ x, R−1

a (x) = x/a. To make the

notation easier we will often use Lax,Rax instead of La(x), Ra(x).

Let (Q, ·, \, /) be a quasigroup. Any congruence relation θ on (Q, ·, \, /) satisfies

(1) xθy ⇔ xzθyz ⇔ zxθzy.

Conversely, if an equivalence relation θ on Q satisfies (1), then θ is a congruence

relation on (Q, ·, \, /). A quotient-quasigroup of a quasigroup (Q, ·, \, /) over its

congruence relation θ will be denoted by Q/θ and its elements by [a]θ (i.e., [a]θ =

{x ∈ Q : xθa}).

Let α, β be two congruence relations on a quasigroup (Q, ·, \, /). Similarly to

equivalence relations we define α 6 β if aαb implies aβb; a(α ∧ β)b if aαb and aβb;

a(α∨ β)b if there exist z1, z2, . . . , zn such that aαz1βz2αz3 . . . znβb. Then α∧ β and

α ∨ β are congruence relations on (Q, ·, \, /). Kiokemeister [6; Theorem 1.3] showed

that the lattice of all congruences on a quasigroup is modular. However, there is a

stronger result: The variety of quasigroups is congruence-permutable (see [3], p. 79).

Hence

α ∨ β = αβ = βα

for any congruences α and β on a quasigroup.

From [6; Theorem 1.2] we have
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1.1. Lemma. Let (Q, ·, \, /) be a quasigroup, a, b ∈ Q. Let α, β be congruence

relations on (Q, ·, \, /). Then [ab](αβ) = [a]α · [b]β.

A quasigroup (Q, ·, \, /) with a binary relation 6 will be called a partially ordered

quasigroup (po-quasigroup) if (cf. e.g. [2])

(i) (Q,6) is a partially ordered set;

(ii) for all x, y, a ∈ Q, x 6 y ⇔ ax 6 ay ⇔ xa 6 ya.

The po-quasigroup Q is called a partially ordered loop (po-loop) if the set Q with

respect to the quasigroup operations is a loop. In the case Q is a po-loop we use the

notation Q+ = {x ∈ Q : x > 1}, Q− = {x ∈ Q : x 6 1}.

Let Q be a po-quasigroup and let x, y, a ∈ Q. Using (ii) we obtain (see [4;

Lemma 3.1])

(P) x 6 y ⇒ x/a 6 y/a, a \ x 6 a \ y, a/y 6 a/x, y \ a 6 x \ a.

A partially ordered quasigroup (loop) Q is called a lattice ordered quasigroup

(loop), if it has a lattice-order.

A partially ordered quasigroup (loop) Q is said to be a directed quasigroup (loop)

if Q is a directed set (i.e., for each a, b ∈ Q there exist c, d ∈ Q such that c 6 a, b

and a, b 6 d).

1.2. Lemma. Let Q be a po-quasigroup, h ∈ Q. Then Q is directed if for each

a ∈ Q there exists d ∈ Q such that a 6 d and h 6 d.

P r o o f. Let a, b ∈ Q. There exist x, y ∈ Q such that a = hx, b = yx. By

assumption there is d such that d > h, y. Hence dx > a, b. Further, take elements

u, v ∈ Q such that a = h/u and b = h/v (since Q is a quasigroup, such elements

exist). There is z ∈ Q, z > u, v. Hence, according to (P), h/z 6 a, b. �

1.3. Lemma. Let Q be a partially ordered loop. Then the following assertions

are equivalent:

(i) Q is a directed loop;

(ii) for each x ∈ Q there exist u ∈ Q+, v ∈ Q− such that x = uv;

(iii) for each x ∈ Q there exist p, q ∈ Q+ such that x = p/q.

P r o o f. (i)⇔ (ii) This equivalence immediately follows from [4; Lemma 3.4].

(i)⇔ (iii) Assume that Q is a directed loop, x ∈ Q. There exists q ∈ Q such that

1 6 q and x \ 1 6 q. Then xq ∈ Q+, and thus x = p/q, where p, q ∈ Q+. Conversely,

let x, y ∈ Q. By assumption, x = p/q, y = r/s, where p, q, r, s ∈ Q+. Obviously,

p 6 (pr)q and r 6 (pr)s. Hence x, y 6 pr and thus, by 1.2, we can conclude that Q

is a directed loop. �
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2. Congruence relations on partially ordered quasigroups

By a congruence relation on a partially ordered quasigroup Q such an equivalence

relation θ on the set Q will be meant for which the conditions (1) hold (clearly, θ is

a congruence on (Q, ·, \, /)).

2.1. Definition. Let Q be a po-quasigroup. A congruence relation θ on Q is

said to be

(i) a directed congruence relation on Q if there exists a ∈ Q such that [a]θ is a

directed subset of Q;

(ii) a convex congruence relation on Q if there exists a ∈ Q such that [a]θ is a

convex subset of Q.

2.2. Lemma. Let Q be a po-quasigroup. If θ is a directed (or convex) congru-

ence relation on Q, then [x]θ is a directed (or convex, respectively) subset of Q for

each x ∈ Q.

P r o o f. Assume that θ is a directed congruence relation on Q. Then there exists

a ∈ Q such that [a]θ is a directed subset of Q. Take any x ∈ Q and x1, x2 ∈ [x]θ.

There exist c, b ∈ Q such that x1 = ca and x2 = cb. From x1θx2 it follows that aθb.

Since [a]θ is a directed set, there are b1, b2 ∈ [a]θ such that b1 6 a, b and a, b 6 b2.

Hence cb1 6 ca, cb 6 cb2. Obviously, cb1, cb2 ∈ [x1]θ = [x]θ, thus we can conclude

that [x]θ is a directed subset of Q.

Now, suppose that θ is a convex congruence relation on Q. Thus there exists a ∈ Q

such that [a]θ is a convex subset of Q. Let x, z ∈ Q, x1, x2 ∈ [x]θ, x1 6 z 6 x2. There

exist c, b ∈ Q such that x1 = ca, x2 = cb. From x1θx2 we get aθb. According to (P),

ca 6 z 6 cb implies a 6 c \ z 6 b. Therefore, from convexity of [a]θ, c \ z ∈ [a]θ.

Thus zθca, i.e., z ∈ [x]θ. �

Let Q be a po-quasigroup, h ∈ Q. Let α be a congruence relation on Q. For the

proof that α is a convex congruence relation on Q it is sufficient to prove that for

all x ∈ [h]α and z ∈ Q the condition h 6 z 6 x implies z ∈ [h]α. Indeed, assume

that a, b ∈ [h]α, z ∈ Q and a 6 z 6 b. There exist c, d ∈ Q such that a = hc and

b = dc. Then h 6 z/c 6 d. Since dc ∈ [hc]α, we have d ∈ [h]α. Thus z/c ∈ [h]α,

which yields z ∈ [hc]α = [a]α.

Let Q be a po-quasigroup, h ∈ Q and let α be a congruence relation on Q. By

(α, h)+ we denote the set {x ∈ [h]α : x > h}.
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2.3. Lemma. Let α, β be two directed congruence relations on a po-quasigroup

Q and let h ∈ Q. If (α, h)+ ⊆ (β, h)+, then [h]α ⊆ [h]β.

P r o o f. Take some elements a, b ∈ Q such that ba = h (it is obvious that

such elements exist) and define x ◦ y = R−1
a x · L−1

b y. For all x, y ∈ Q we denote

by z = x ⋌ y (or z = y ⋋ x) the solution of the equation x = z ◦ y (or x = y ◦ z,

respectively). It is known that Q with respect to the operations ◦, ⋋ and ⋌ is a loop

with the identity element h = ba (see e.g. [1]). Further, it is a routine to verify that

(Q, ◦,⋋,⋌) with respect to the relation 6, which is defined for the po-quasigroup

Q, is a partially ordered loop. Let us denote this po-loop by Q0. Clearly, α, β are

directed congruence relations on Q0. Since h is the identity element for Q0, [h]α and

[h]β are directed subloops of Q0. By 1.3, each element x from [h]α (or [h]β) can be

written in the form of x = p/q, where p, q ∈ (α, h)+ (or p, q ∈ (β, h)+, respectively).

This yields that for Q0 the inclusion (α, h)+ ⊆ (β, h)+ implies [h]α ⊆ [h]β. Clearly,

it is also true for a po-quasigroup Q. �

We immediately have

2.4. Lemma. Let α, β be two convex congruence relations on a partially ordered

quasigroup Q. Then α ∧ β is a convex congruence relation on Q, too.

2.5. Lemma. Let Q be a po-quasigroup and let α, β be two directed congruence

relations on Q. Then α ∨ β is a directed congruence relation on Q.

P r o o f. Since α ∨ β = αβ, it suffices to show that [x](αβ) is a directed subset

of Q for some element x ∈ Q. Let c, d ∈ [x](αβ). There exist a, b ∈ Q such that

x = ab. Then, by 1.1, c, d ∈ [a]α · [b]β. Thus c = a1b1, d = a2b2, where ai ∈ [a]α,

bi ∈ [b]β (i = 1, 2). Since α, β are directed, there exist a0 ∈ [a]α, b0 ∈ [b]β such that

a0 > ai, b0 > bi for each i = 1, 2. Hence a0b0 > c, d and evidently a0b0 ∈ [ab](αβ).

Analogously, there exists z ∈ [ab](αβ) such that z 6 c, d. �

Let Q be a po-quasigroup, θ a congruence relation on Q. Let us define

(2) [x]θ 6 [y]θ if and only if there exist x0 ∈ [x]θ, y0 ∈ [y]θ such that x0 6 y0.

2.6. Theorem. Let Q be a partially ordered quasigroup. Let θ be a congruence

relation on Q. A quotient-quasigroup Q/θ with the relation defined by (2) is a

partially ordered quasigroup if and only if θ is a convex congruence relation on Q.

P r o o f. If the quotient-quasigroup Q/θ with the relation defined by (2) is a

po-quasigroup, then we immediately obtain that θ is a convex congruence relation

on Q. To prove the converse, assume that θ is a convex congruence relation on Q.
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Since θ is a congruence relation on (Q, ·, \, /), it is clear that Q/θ is a quasigroup. It

only remains to show that Q/θ is a po-quasigroup. To prove this we claim first the

following statement:

(3) [x]θ 6 [y]θ iff for each x′ ∈ [x]θ there exists y′ ∈ [y]θ such that x′ 6 y′.

We take any element a ∈ Q. Let [x]θ 6 [y]θ. Then there exist x0 ∈ [x]θ and y0 ∈ [y]θ

such that x0 6 y0. Let x
′ ∈ [x]θ. There is b ∈ Q such that x′ = R−1

a b · L−1
a x0.

Since x′θx0, we have R
−1
a b · L−1

a x0 θ R−1
a a2 · L−1

a x0. Therefore bθa
2, and hence

R−1
a b · L−1

a y0 θ y0. Denote y
′ = R−1

a b ·L−1
a y0. Obviously y

′ ∈ [y]θ and from x0 6 y0
we obtain x′ 6 y′. Thus (3) is valid. Further, we are going to show that 6 is a

partial order on Q/θ. Evidently 6 is reflexive over Q/θ. Let [x]θ 6 [y]θ and at the

same time [y]θ 6 [x]θ. Then, by (3), there exist y′ ∈ [y]θ and x′ ∈ [x]θ such that

x 6 y′ 6 x′. Hence, from convexity of [x]θ, we get y′ ∈ [x]θ, and thus [x]θ = [y]θ.

The relation 6 is antisymmetric. To prove that 6 is transitive over Q/θ we proceed

similarly.

Now, let [x]θ, [y]θ, [z]θ ∈ Q/θ. It is trivial to prove that [x]θ 6 [y]θ implies

[x]θ · [z]θ 6 [y]θ · [z]θ (and also, [z]θ · [x]θ 6 [z]θ · [y]θ). Let [x]θ · [z]θ 6 [y]θ · [z]θ. Then

there exists b ∈ [yz]θ such that xz 6 b. Take c ∈ Q such that b = cz. Apparently,

c ∈ [y]θ and x 6 c. Hence [x]θ 6 [y]θ. Analogously, [z]θ · [x]θ 6 [z]θ · [y]θ implies

[x]θ 6 [y]θ. Thus we can conclude that Q/θ is a po-quasigroup. �

The relationships between convex directed congruence relations on a lattice or-

dered quasigroup Q and congruence relations on Q with Substitution Property

(SP) xθy ⇒ (x ∨ z) θ (y ∨ z) and (x ∧ z) θ (y ∧ z) for each z ∈ Q

are established by the following

2.7. Lemma. A congruence relation θ on a lattice ordered quasigroup Q is

directed and convex if and only if it has the Substitution Property (SP ).

P r o o f. Let θ be a convex directed congruence relation on a lattice ordered

quasigroup Q. By 2.6, Q/θ is a po-quasigroup. Clearly, [x]θ, [y]θ 6 [x∨y]θ. Assume

that [x]θ, [y]θ 6 [z]θ 6 [x ∨ y]θ. Then there exist z1, z2 ∈ [z]θ such that x 6 z1,

y 6 z2. Since θ is directed, there is z0 ∈ [z]θ such that z1, z2 6 z0. Hence x, y 6 z0,

which yields that x∨ y 6 z0. Therefore [x∨ y]θ 6 [z]θ. However, also [z]θ 6 [x∨ y]θ.

Therefore [z]θ = [x∨y]θ. Hence [x]θ∨[y]θ = [x∨y]θ. Analogously, [x]θ∧[y]θ = [x∧y]θ.

Now, it is easy to verify that [x]θ = [y]θ implies [x∨ z]θ = [y∨ z]θ, [x∧ z]θ = [y ∧ z]θ

for each z ∈ Q.
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Conversely, let θ be a congruence relation on a lattice ordered quasigroup Q.

Suppose that (SP) holds and take any element h ∈ Q. Clearly, if x, y ∈ [h]θ, then

x∨y, x∧y ∈ [h]θ. Thus [h]θ is a directed subset of Q. Now, assume that x 6 z 6 y,

x, y ∈ [h]θ, z ∈ Q. Then z = (x ∨ z) θ (y ∨ z) = y, which yields that z ∈ [h]θ. Thus

θ is a convex congruence relation on Q. �

From 2.6 and 2.7 we obtain

2.8. Theorem. Let Q be a lattice ordered quasigroup, θ a convex directed con-

gruence relation on Q. Then the quotient-quasigroup Q/θ with the relation defined

by (2) is a lattice ordered quasigroup.

3. Congruence relations on a Riesz quasigroup

The notion of a Riesz quasigroup generalizes the notion of a Riesz group, which was

studied by Fuchs [5]. Further, some results on varietes, radical classes and torsion

classes of Riesz groups have been established by Lihová [7]. Properties of some types

of Riesz quasigroups have been studied by Testov in [10]. This section deals with

congruence relations on Riesz quasigroups.

3.1. Definition. A partially ordered quasigroup Q is called a Riesz quasigroup

if it is directed and satisfies the interpolation property

for all ai, bj ∈ Q where ai 6 bj, i, j ∈ {1, 2},(IP)

there exists c ∈ Q such that ai 6 c 6 bj .

Every Riesz group is a Riesz quasigroup. To show an example of a Riesz quasigroup

which is not a Riesz group we put (cf. [10]): Q = R2 (R is the set of all real

numbers) with the operation (x, y) · (u, v) = (x + u, 1

2
(y + v)) and the relation

(x, y) < (u, v) ⇔ x < u.

3.2. Remark. Take any element e from a partially ordered quasigroup Q. If we

want to verify the validity of the condition (IP) in Q, it is sufficient to consider such

elements a1, b1, b2 ∈ Q that e 6 b1, b2 and a1 6 b1, b2.

3.3. Lemma. Let Q be a directed quasigroup. Let e be any element from Q.

The following conditions are equivalent:

(i) Q is a Riesz quasigroup;

(ii) the intervals [e, a] are multiplicative:

[e, a] · [e, b] = [e2, ab];
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(iii) if a ∈ Q satisfies

e2 6 a 6 b1b2 with bi > e

then there exist a1, a2 ∈ Q such that

a = a1a2, where e 6 ai 6 bi (i = 1, 2).

P r o o f. (i) ⇒ (ii). Let Q be a Riesz quasigroup, a, b ∈ Q, e 6 a, b. Clearly

[e, a] · [e, b] ⊆ [e2, ab]. To prove the converse, let x ∈ [e2, ab]. There exist u, v ∈ Q

such that a = R−1
e u and b = L−1

e v. Then e2 6 x 6 R−1
e u · L−1

e v. This yields that

x/L−1
e v 6 R−1

e u and e 6 R−1
e x. From e 6 b = L−1

e v we get R−1
e x · e 6 R−1

e x ·L−1
e v,

and hence x/L−1
e v 6 R−1

e x. Thus e, x/L−1
e v 6 R−1

e u and e, x/L−1
e v 6 R−1

e x. By

(IP) there is y ∈ Q such that e, x/L−1
e v 6 R−1

e y 6 R−1
e u,R−1

e x. Since R−1
e y ∈

[e,R−1
e u] and x = R−1

e y · R−1
e y \ x, to complete the proof it suffices to verify that

R−1
e y \x ∈ [e, L−1

e v]. From x/L−1
e v 6 R−1

e y 6 R−1
e x it follows that x 6 R−1

e y ·L−1
e v

and y 6 x. The former relation yields R−1
e y \ x 6 L−1

e v and from the latter relation

we have R−1
e y · e 6 x, which implies e 6 R−1

e y \ x. Thus R−1
e y \ x ∈ [e, L−1

e v] and

the proof is complete.

(ii) ⇒ (iii). The proof is trivial.

(iii) ⇒ (i). Assume that e, a 6 b1 and e, a 6 b2. From e 6 b1 it follows e
2 6 Reb1

and from a 6 b2 we obtain Reb1 6 b2 · a \Reb1. Thus

(∗) e2 6 Reb1 6 b2 · a \Reb1.

By assumption we have e 6 b2 and from a 6 b1 we obtain e 6 a \ Reb1. Thus, by

(iii), (∗) yields that there exist c1, c2 ∈ Q such that Reb1 = c1c2, where e 6 c1 6 b2
and e 6 c2 6 a \ Reb1. Using that c2 = c1 \ Reb1 we get e 6 c1 \ Reb1 6 a \ Reb1.

Therefore a 6 c1 6 b1. At the same time e 6 c1 6 b2 and thus we can conclude that

c1 is an element which satisfies our requirements. �

3.4. Lemma. Let α, β be two convex directed congruence relations on a Riesz

quasigroup Q. Then also α ∨ β and α ∧ β are both directed and convex.

P r o o f. By 2.5, α∨β is directed. Let e ∈ Q. We are going to show that [e2](αβ)

is a convex subset ofQ. We will do it by proving that e2 6 z 6 x, x ∈ [e2](αβ) implies

z ∈ [e2](αβ). In view of 1.1, if x ∈ [e2](αβ), then x = ab, where a ∈ [e]α, b ∈ [e]β.

Since α, β are directed, there are c ∈ [e]α and d ∈ [e]β such that c > e, a and

d > e, b. Obviously cd > x. Thus, if e2 6 z 6 x, x ∈ [e2](αβ), then e2 6 z 6 cd,

where c ∈ [e]α, d ∈ [e]β and c, d > e. By 3.3 there exist c1, d1 such that z = c1d1,
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e 6 c1 6 c, e 6 d1 6 d. From convexity of α, β we get c1 ∈ [e]α, d1 ∈ [e]β. Hence

z = c1d1 ∈ [e2](αβ). Thus αβ (i.e. α ∨ β) is convex.

Now we turn our attention to α ∧ β. By 2.4, α ∧ β is convex. We are going to

prove that α ∧ β is directed. Let e ∈ Q, x, y ∈ [e](α ∧ β). Since α, β are directed,

there exist c ∈ [e]α and d ∈ [e]β such that c > x, y and d > x, y. By (IP) there is

u ∈ Q such that x 6 u 6 c, x 6 u 6 d and, from convexity of α and β, u ∈ [e](α∧β).

Analogously, there exists v ∈ [e](α ∧ β) such that v 6 x, y. �

3.5. Theorem. The convex directed congruence relations of a Riesz quasigroup

Q form a distributive sublattice in the lattice of all congruence relations of Q.

P r o o f. In view of 3.4 it is sufficient to verify the distributive law

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

for convex directed congruence relations on Q. Let us denote δ = α ∧ (β ∨ γ) and

ω = (α ∧ β) ∨ (α ∧ γ). It is easy to show that ω 6 δ. It only remains to prove

δ 6 ω. In fact, by [6; Lemma 1.4], to complete the proof it is sufficient to establish

the inclusion δ[x] ⊆ ω[x] for some element x of Q.

Let h ∈ Q. We are going to show that (δ, h2)+ ⊆ (ω, h2)+. Then, by 2.3, [h2]δ ⊆

[h2]ω. Let x ∈ (δ, h2)+. Then x ∈ [h2]α and at the same time x ∈ [h2](βγ). Thus

x = bc, where b ∈ [h]β, c ∈ [h]γ. Since α, β are directed, there exist b1 ∈ [h]β and

c1 ∈ [h]γ such that b1 > h, b and c1 > h, c. Applying 3.3 to h2 6 x = bc 6 b1c1
we infer that x = b0c0, where h 6 b0 6 b1 and h 6 c0 6 c1. From convexity of

β, γ we have b0 ∈ [h]β, c0 ∈ [h]γ. Further, it is easy to see that h 6 b0 6 x/h and

h 6 c0 6 h \ x. Hence, from convexity of α, we have b0, c0 ∈ [h]α. Summarizing, we

conclude that h2 6 x = b0c0 ∈ [h](α ∧ β) · [h](α ∧ γ) and therefore x ∈ (ω, h2)+, as

desired. �

3.6. Corollary. The congruence relations of a lattice ordered quasigroup Q

with Substitution Property (SP) form a distributive sublattice in the lattice of all

congruence relations of Q.

If Q is a Riesz quasigroup and θ is a convex congruence relation on Q, then

the quotient-quasigroup Q/θ with the relation (2) need not be a Riesz quasigroup.

Nonetheless, a proof similar to that for Riesz groups (see [5; Proposition 5.3]) can

be applied to obtain the following
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3.7. Theorem. Let Q be a Riesz quasigroup, θ a convex directed congruence

relation on Q. Then the quotient-quasigroup Q/θ with the relation (2) is a Riesz

quasigroup.

4. Ideals of partially ordered loops

Let (Q, ·, \, /, 1) be a loop. A subalgebra of (Q, ·, \, /, 1) will be called a subloop

of (Q, ·, \, /, 1). Let S ⊆ Q. If S, with · restricted to S, is a groupoid, we say that

S is a subgroupoid of Q. A subgroupoid (a subloop) S of Q will be called a normal

subgroupoid (a normal subloop) of Q if for all x, y ∈ Q the following assertions are

valid:

xS = Sx, xy · S = x · yS and S · xy = Sx · y.

Let M be a subset of Q. By 〈M〉 we denote the subloop generated by M (i.e., the

intersection of all subloops of Q which contain M).

4.1. Lemma. Let S be a normal subgroupoid of a loop Q. Then 〈S〉 =

{p/q : p, q ∈ S}.

P r o o f. Let us denote M = {p/q : p, q ∈ S}. Clearly M ⊆ 〈S〉. Conversely,

since S ⊆ M (each element p ∈ S can be written in the form pp/p), it is sufficient

to prove that M is a subloop of Q. Clearly 1 ∈ M . Let u, v ∈ M . Then u = a/b,

v = c/d, where a, b, c, d ∈ S. We are going to show that uv ∈M . There exist s, r ∈ Q

such that

(3) v · ds = vd · b

and

(4) uv · r = u(v · ds).

The element s (or r) is positively determined by (3) (or (4), respectively). Since

b ∈ S and since S is a normal subgroupoid of Q, there exists b′ ∈ S such that

vd · b = v · db′. From (3) we obtain v · ds = v · db′. Thus s ∈ S, and hence ds ∈ S.

Also, since S is normal in Q, from (4) we get r ∈ S. Let us denote

(5) p = uv · r.

By (4) and (3) we can write

p = u(v · ds) = u(vd · b) = u · cb.
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Since c ∈ S and S is a normal subgroupoid ofQ, there is c′ ∈ S such that u·cb = ub·c′.

Thus p = ub · c′ = (a/b · b)c′ = ac′, and therefore p ∈ S. Now, using (5), we can

conclude that uv ∈M .

Let z = u \ v, u, v ∈ M . There exist a, b, c, d ∈ S such that u = a/b, v = c/d.

From uz = v = c/d we have uz · d = c. Since S is normal in Q and since d ∈ S,

there is d′ ∈ S such that ud′ · z = c. The elements u, d′ belong to M , therefore

ud′ ∈ M . Thus ud′ = p/q where p, q ∈ S and we can write c = p/q · z. Further,

there exists y ∈ Q with cy = pz. Then (p/q · z)y = (p/q · q)z. Since q ∈ S, there is

q′ ∈ S such that (p/q · q)z = (p/q · z)q′. Thus (p/q · z)y = (p/q · z)q′, which yields

y = q′, and therefore y ∈ S. Hence pz = cy ∈ S. Then there exists s ∈ S such that

z = p \ s. Since S is normal in Q, there is p′ ∈ S such that p · p \ s = p \ s · p′, which

yields s/p′ = p \ s. Therefore z ∈ M , i.e., u \ v ∈ M . Analogously, u/v ∈ M for all

u, v ∈M . �

Now, let Q be a partially ordered loop with an identity 1. We recall that by Q+

(or Q−) we have denoted the set {x ∈ Q : x > 1} (or {x ∈ Q : x 6 1}, respectively).

Clearly, Q+ andQ− are normal subgroupoids ofQ, but, ifQ is a non-trivially ordered

loop, they are not subloops of Q.

A subgroupoid (a subloop) H of a po-loop Q is said to be convex, if a 6 z 6 b,

a, b ∈ H , implies z ∈ H . If H is a subloop of Q, then to prove that H is a convex

subloop of Q it is sufficient to show that 1 6 z 6 b, b ∈ H , implies z ∈ H .

4.2. Lemma. If S is a normal convex subgroupoid of Q, then 〈S〉 is a convex

subloop of Q.

P r o o f. Suppose that 1 6 z 6 p/q, where p, q ∈ S. Then q 6 zq 6 p and

therefore, from convexity of S, we have zq ∈ S. Thus z ∈ 〈S〉. �

4.3. Lemma. Let S be a normal convex subgroupoid of Q, S ⊆ Q+ and 1 ∈ S.

Then S = 〈S〉+.

P r o o f. Clearly S ⊆ 〈S〉+. To prove the converse inclusion, let s ∈ 〈S〉+. Then

s = p/q, where p, q ∈ S ⊆ Q+. Thus 1 6 s 6 p and therefore, by convexity of S,

s ∈ S. �

From 4.3, 4.1 and 1.3 we immediately obtain

4.4. Lemma. Let S be a normal convex subgroupoid of Q, S ⊆ Q+ and 1 ∈ S.

Then 〈S〉 is a directed loop.
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4.5. Lemma. Let S be a normal convex subgroupoid of Q, S ⊆ Q+ and 1 ∈ S.

Then 〈S〉 is a normal subloop of Q.

P r o o f. First, we are going to show that 〈S〉− is a normal subgroupoid of

Q. To prove the inclusion x〈S〉− ⊆ 〈S〉−x, let a ∈ x〈S〉−. There exist u ∈ 〈S〉−

and v ∈ Q such that a = xu = vx. Clearly, u \ 1 ∈ 〈S〉+ and therefore, by 4.3,

u \ 1 ∈ S. Since S is normal in Q, there is p ∈ S such that x(u · u \ 1) = xu · p. Thus

x = vx · p = p′v · x, where p′ ∈ S. Hence p′v = 1 and, since p′ ∈ S ⊆ Q+, v ∈ 〈S〉−.

We have x〈S〉− ⊆ 〈S〉−x. An analogous proof holds for the converse inclusion.

Using methods similar to those above we can prove relations 〈S〉− · xy = 〈S〉−x · y

and xy · 〈S〉− = x · y〈S〉−.

Now, we continue by proving the assertion of the lemma. Since 〈S〉 is directed,

〈S〉 = {uv : u ∈ S, v ∈ 〈S〉−}. Thus provided z ∈ x〈S〉 we get z = x · uv, where

u ∈ S, v ∈ 〈S〉−. Using the fact that S and 〈S〉− are normal in Q we obtain

z = u′v′ · x, where u′ ∈ S and v′ ∈ 〈S〉−. Hence z ∈ 〈S〉x. Analogously, z ∈ 〈S〉x

implies z ∈ x〈S〉. Similarly we obtain xy · 〈S〉 = x · y〈S〉 and 〈S〉 · xy = 〈S〉x · y. �

Analogously to the case of partially ordered groups we introduce

4.6. Definition. An o-ideal of a partially ordered loop Q is any normal convex

directed subloop A of Q.

From 4.2, 4.4 and 4.5 we obtain

4.7. Lemma. Let S be a normal convex subgroupoid of Q, S ⊆ Q+ and 1 ∈ S.

Then 〈S〉 is an o-ideal of Q.

4.8. Lemma. Let A be an o-ideal of Q. Let S = A ∩Q+. Then S is a normal

convex subgroupoid of Q and 〈S〉 = A.

P r o o f. Since A is a directed subloop of Q, A = 〈A+〉 = 〈S〉. Further, A,Q+

are convex, normal in Q, therefore S = A ∩Q+ is convex and normal in Q, too. �

4.9. Theorem. There exists a one-to-one correspondence between the o-ideals

A of a partially ordered loop Q and all normal convex subgroupoids S of Q such that

S ⊆ Q+, 1 ∈ S.

P r o o f. Consider mappings given by

ϕ : A 7→ Q+ ∩A and ψ : S 7→ 〈S〉,

where A is an o-ideal ofQ and S is a normal convex subgroupoid ofQ, S ⊆ Q+, 1 ∈ S.

By 4.8, ψϕ is the identity (the product rule for mappings is given by multiplying

from right to left) and by 4.7, 4.3, ϕψ is the identity. �
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Let Q be a lattice ordered loop. An l-ideal of a lattice ordered loop Q is any normal

convex subloop A of Q which is a sublattice of Q. It is routine to verify that an o-

ideal of a lattice ordered loop is nothing else than an l-ideal. The l-ideals of lattice

ordered commutative loops were investigated by Naik, Swammy, and Misra. They

proved ([8,Theorem 9] or [9, Lemma 6]) that there is a one-to-one correspondence

between congruence relations with the Substitution Property (SP) and l-ideals of a

commutative lattice ordered loop.

Using the methods from [9] we can prove

4.10. Theorem. There exists a one-to-one correspondence between the o-ideals

of a partially ordered loop Q and all convex directed congruence relations on Q. This

correspondence is given by the rules

ϕ : A 7→ θA and ψ : θ 7→ [1]θ,

where A is an o-ideal of Q, θA = {(x, y) ∈ Q×Q : x/y ∈ A}.

It is not difficult to verify that the partial order on the set of all congruence rela-

tions and the partial order on the set of all o-ideals (ideals are ordered by inclusion)

are preserved by the correspondence from 4.10. Thus, using 3.5 and 4.10 we have

4.11. Theorem. The o-ideals of a Riesz loop Q form a distributive sublattice

in the lattice of all normal subloops of Q.

The last theorem generalizes the analogous result valid for Riesz groups (see [5;

Theorem 5.6]).
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