Czechoslovak Mathematical Journal

G. Indulal; A. Vijayakumar
Equienergetic self-complementary graphs

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 4, 911-919
Persistent URL: http://dml.cz/dmlcz/140430

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

EQUIENERGETIC SELF-COMPLEMENTARY GRAPHS

G. Indulal and A. Vijayakumar, Cochin

(Received September 18, 2006)

Abstract. In this paper equienergetic self-complementary graphs on p vertices for every $p=4 k, k \geqslant 2$ and $p=24 t+1, t \geqslant 3$ are constructed.

Keywords: spectrum, self-complementary graph, energy of graphs
MSC 2010: 05C50

1. INTRODUCTION

Let G be a graph with $|V(G)|=p$ and let A be an adjacency matrix of G. The eigenvalues of A are called the eigenvalues of G and form the spectrum of G denoted by $\operatorname{spec}(G)$ [4]. The energy [3] of $G, E(G)$ is the sum of the absolute values of its eigenvalues. The properties of $E(G)$ are discussed in detail in [7], [8], [9]. Two non-isomorphic graphs with identical spectrum are called cospectral and two noncospectral graphs with the same energy are called equienergetic. In [2] and [5], a pair of equienergetic graphs on p vertices where $p \equiv 0(\bmod 4)$ and $p \equiv 0(\bmod 5)$ are constructed respectively. In [10] we have extended the same to $p=6,14,18$ and to every $p \geqslant 20$. In [12] two classes of equienergetic regular graphs have been obtained and in [11], the energies of some non-regular graphs are studied.

In this paper, we provide a construction of equienergetic self-complementary graphs for every $p=4 k, k \geqslant 2$ and $p=24 t+1, t \geqslant 3$. The energies of some special classes of self-complementary graphs are also discussed.

All graph theoretic terminology are from [1], [4].
We use the following lemmas in this paper.

Lemma 1 [4]. Let G be a graph with an adjacency matrix A and $\operatorname{spec}(G)=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then $\operatorname{det} A=\prod_{i=1}^{p} \lambda_{i}$. Also for any polynomial $P(x) P(\lambda)$ is an eigenvalue of $P(A)$ and hence $\operatorname{det} \stackrel{i=1}{P}(A)=\prod_{i=1}^{p} P\left(\lambda_{i}\right)$.

Lemma 2 [4]. Let M, N, P and Q be matrices with M invertible. Let $S=$ $\left[\begin{array}{cc}M & N \\ P & Q\end{array}\right]$. Then $|S|=|M|\left|Q-P M^{-1} N\right|$ and if M and P commute then $|S|=$ $|M Q-P N|$ where the symbol $|\cdot|$ denotes determinant.

Lemma 2 [12]. Let G be an r-regular connected graph, $r \geqslant 3$ with $\operatorname{spec}(G)=$ $\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then
$\operatorname{spec}\left(L^{2}(G)\right)=\left(\begin{array}{cccccc}4 r-6 & \lambda_{2}+3 r-6 & \ldots & \lambda_{p}+3 r-6 & 2 r-6 & -2 \\ 1 & 1 & \ldots & 1 & \frac{1}{2} p(r-2) & \frac{1}{2} p r(r-2)\end{array}\right)$, $E\left(L^{2}(G)\right)=2 p r(r-2)$ and $E\left(\overline{L^{2}(G)}\right)=(p r-4)(2 r-3)-2$.

Lemma 4 [4]. Let G be an r-regular connected graph on p vertices with A as an adjacency matrix and $r=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ as the distinct eigenvalues. Then there exists a polynomial $P(x)$ such that $P(A)=J$ where J is the all one square matrix of order p and $P(x)$ is given by

$$
P(x)=p \times \frac{\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) \ldots\left(x-\lambda_{m}\right)}{\left(r-\lambda_{2}\right)\left(r-\lambda_{3}\right) \ldots\left(r-\lambda_{m}\right)},
$$

so that $P(r)=p$ and $P\left(\lambda_{i}\right)=0$, for all $\lambda_{i} \neq r$.
Let G be an r-regular connected graph. Then the following constructions [6] result in self-complementary graphs $H_{i}, i=1$ to 4 .

Construction 1. H_{1} : Replace each of the end vertices of P_{4}, the path on 4 vertices, by a copy of G and each of the internal vertices by a copy of \bar{G}. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of P_{4} are adjacent.

Construction 2. H_{2} : Replace each of the end vertices of P_{4}, the path on 4 vertices, by a copy of \bar{G} and each of the internal vertices by a copy of G. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of P_{4} are adjacent.

Construction 3. H_{3} : Replace each of the end vertices of the non-regular selfcomplementary graph F on 5 vertices by a copy of \bar{G}, each of the vertices of degree 3 by a copy of G and the vertex of degree 2 by K_{1}. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of F are adjacent.

Construction 4. H_{4} : Consider the regular self-complementary graph $C_{5}=$ $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$, the cycle on 5 vertices. Replace the vertices v_{1} and v_{5} by a copy of \bar{G}, v_{2} and v_{4} by a copy of G and v_{3} by K_{1}. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of C_{5} are adjacent.

Note. For all non self-complementary graphs G, Constructions 1 and 2 yield non-isomorphic graphs and for any graph $G, H_{1}(G)=H_{2}(\bar{G})$.

2. Equienergetic self-complementary graphs

In this section, we construct a pair of equienergetic self complementary graphs, first for $p=4 k, k \geqslant 2$, and then for $p=24 t+1, t \geqslant 3$.

Theorem 1. Let G be an r-regular connected graph on p vertices with $\operatorname{spec}(G)=$ $\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$ and H_{1} be the self-complementary graph obtained by Construction 1. Then $E\left(H_{1}\right)=2[E(G)+E(\bar{G})-(p-1)]+\sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}+$ $\sqrt{1+4\left(p^{2}+r+r^{2}\right)}$.

Proof. Let G be an r-regular connected graph on p vertices with an adjacency matrix $A, \operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$ and H_{1} be the self-complementary graph obtained by Construction 1. Then the adjacency matrix of H_{1} is $\left[\begin{array}{cccc}A & J & 0 & 0 \\ J & \bar{A} & J & 0 \\ 0 & J & \bar{A} & J \\ 0 & 0 & J & A\end{array}\right]$, so that the characteristic equation of H_{1} is

$$
\left|\begin{array}{cccc}
\lambda I-A & -J & 0 & 0 \\
-J & \lambda I-\bar{A} & -J & 0 \\
0 & -J & \lambda I-\bar{A} & -J \\
0 & 0 & -J & \lambda I-A
\end{array}\right|=0
$$

that is,

$$
\left|\begin{array}{cccc}
-J & \lambda I-\bar{A} & 0 & -J \\
\lambda I-\bar{A} & -J & -J & 0 \\
-J & 0 & \lambda I-A & 0 \\
0 & -J & 0 & \lambda I-A
\end{array}\right|=0
$$

by a sequence of elementary transformations.

But, the last expression by virtue of Lemma 2 is

$$
\left|J^{2}(\lambda I-A)^{2}-\left[(\lambda I-A)(\lambda I-\bar{A})-J^{2}\right]^{2}\right|=0
$$

and so $\prod_{i=1}^{p}\left\{\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\left(\lambda-\lambda_{i}\right)^{2}-\left[\left(\lambda-\lambda_{i}\right)\left(\lambda-P\left(\lambda_{i}\right)+1+\lambda_{i}\right)-\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\right]^{2}\right\}=0$ by Lemmas 1 and 4.

Now, corresponding to the eigenvalue r of G, the eigenvalues of H_{1} are given by

$$
\left\{p^{2}(\lambda-r)^{2}-\left[(\lambda-r)(\lambda-p+1+r)-p^{2}\right]^{2}\right\}=0
$$

by Lemmas 1 and 4. That is,

$$
\left[\lambda^{2}+\lambda-\left(r^{2}+r+p^{2}\right)\right]\left[\lambda^{2}-(2 p-1) \lambda-\left\{(p-r)^{2}+r\right\}\right]=0
$$

So

$$
\lambda=\frac{-1 \pm \sqrt{1+4\left(p^{2}+r+r^{2}\right)}}{2} ; \frac{2 p-1 \pm \sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}}{2} .
$$

The remaining eigenvalues of H_{1} satisfy $\prod_{i=2}^{p}\left[\left(\lambda-\lambda_{i}\right)\left(\lambda+1+\lambda_{i}\right)\right]^{2}=0$. Hence,

$$
\operatorname{spec}\left(H_{1}\right)=\left(\begin{array}{cccc}
\frac{-1 \pm \sqrt{1+4\left(p^{2}+r+r^{2}\right)}}{2} & \frac{2 p-1 \pm \sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}}{2} & \begin{array}{c}
i=2, \ldots, p \\
\text { each } \\
\text { each once }
\end{array} & \begin{array}{c}
i=2, \ldots, p \\
\text { each } \\
\text { twice }
\end{array} \\
\text { ewice }
\end{array}\right) .
$$

Now, the expression for $E\left(H_{1}\right)$ follows.

Theorem 2. Let G be an r-regular connected graph on p vertices with $\operatorname{spec}(G)=$ $\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$ and H_{2} be the self-complementary graph obtained by Construction 2. Then $E\left(H_{2}\right)=2[E(G)+E(\bar{G})-(p-1)]+\sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}+$ $\sqrt{1+4\left(p^{2}+r+r^{2}\right)}$.

Proof. Let A be the adjacency matrix of G. Then the adjacency matrix of H_{2} is

$$
\left[\begin{array}{cccc}
\bar{A} & J & 0 & 0 \\
J & A & J & 0 \\
0 & J & A & J \\
0 & 0 & J & \bar{A}
\end{array}\right]
$$

By a similar computation as in Theorem 1 in which A is replaced by \bar{A}, we get the characteristic equation of H_{2} as

$$
\begin{aligned}
& \prod_{i=1}^{p}\left\{\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\left(\lambda-P\left(\lambda_{i}\right)+\lambda_{i}+1\right)^{2}\right. \\
& \left.\quad-\left[\left(\lambda-\lambda_{i}\right)\left(\lambda-P\left(\lambda_{i}\right)+1+\lambda_{i}\right)-\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\right]^{2}\right\}=0
\end{aligned}
$$

by Lemmas 1,2 and 4 .
Hence

$$
\operatorname{spec}\left(H_{2}\right)=\left(\begin{array}{ccc}
\frac{2 p-1 \pm \sqrt{1+4\left(p^{2}+r+r^{2}\right)}}{2} & \frac{-1 \pm \sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}}{2} & \begin{array}{c}
i=2, \ldots, p
\end{array} \\
\text { each once } & \begin{array}{c}
i=2, \ldots, p \\
\text { each } \\
\text { each once } \\
\text { twice }
\end{array} & \begin{array}{c}
\text { twice }
\end{array}
\end{array}\right) .
$$

Now, the expression for $E\left(H_{2}\right)$ follows.

Corollary 1.

1. If $G=K_{p}$, then $E\left(H_{1}\right)=E\left(H_{2}\right)=2(p-1)+\sqrt{1+4 p^{2}}+\sqrt{8 p^{2}-4 p+1}$.
2. If $G=K_{n, n}$, then $p=2 n$ and $E\left(H_{1}\right)=E\left(H_{2}\right)=2(2 p-3)+\sqrt{5 p^{2}-2 p+1}+$ $\sqrt{5 p^{2}+2 p+1}$.

Theorem 3. For every $p=4 k, k \geqslant 2$, there exists a pair of equienergetic selfcomplementary graphs.

Proof. Let H_{1} and H_{2} be the self-complementary graphs obtained from K_{k} as in Constructions 1 and 2. Then by Theorems 1 and 2, they are equienergetic on $p=4 k$ vertices.

Theorem 4. Let H_{3} be the self-complementary graph obtained from K_{p} by Construction 3. Then $E\left(H_{3}\right)=2(p-1)+\sqrt{4 p^{2}+1}+\sqrt{8 p^{2}+4 p+1}$.

Proof. Let A be the adjacency matrix of K_{p}. Then by Construction 3, the adjacency matrix of H_{3} is

$$
\left[\begin{array}{ccccc}
\bar{A} & J & 0_{p \times 1} & 0 & 0 \\
J & A & J_{p \times 1} & J & 0 \\
0_{1 \times p} & J_{1 \times p} & 0 & J_{1 \times p} & 0 \\
0 & J & J_{p \times 1} & A & J \\
0 & 0 & 0 & J & \bar{A}
\end{array}\right] .
$$

Now, after a sequence of elementary transformations applied to the rows and columns and by Lemma 2, the characteristic equation is

$$
\frac{1}{\lambda^{2 p-1}}\left|\left[\{\lambda(\lambda I-A)-J\}(\lambda I-\bar{A})-\lambda J^{2}\right]^{2}-[(\lambda+1)(\lambda I-\bar{A}) J]^{2}\right|=0 .
$$

Since $G=K_{p}$ is connected and regular, by Lemmas 1 and 4 the characteristic equation of H_{3} is

$$
\lambda^{2 p-1}(\lambda+1)^{2 p-2}\left(\lambda^{2}+\lambda-p^{2}\right)\left[\lambda^{2}-(2 p-1) \lambda-p(p+2)\right]=0
$$

Hence

$$
\operatorname{spec}\left(H_{3}\right)=\left(\begin{array}{cccc}
\frac{-1 \pm \sqrt{4 p^{2}+1}}{2} & \frac{2 p-1 \pm \sqrt{8 p^{2}+4 p+1}}{2} & -1 & 0 \\
\text { each once } & \text { each once } & \begin{array}{c}
\text { each }(2 p-2) \\
\text { times }
\end{array} & \begin{array}{c}
\text { each }(2 p-2) \\
\text { times }
\end{array}
\end{array}\right) .
$$

Now, the expression for $E\left(H_{3}\right)$ follows.

Theorem 5. Let H_{4} be the self-complementary graph obtained from K_{p} by Construction 4. Then $E\left(H_{4}\right)=2(2 p-1)+\sqrt{4 p+1}+\sqrt{8 p^{2}-4 p+1}$.

Proof. Let A be the adjacency matrix of K_{p}. Then by Construction 4, the adjacency matrix of H_{4} is

$$
\left[\begin{array}{ccccc}
\bar{A} & J & 0_{p \times 1} & 0 & J \\
J & A & J_{p \times 1} & 0 & 0 \\
0_{1 \times p} & J_{1 \times p} & 0_{1 \times 1} & J_{1 \times p} & 0 \\
0 & 0 & J_{p \times 1} & A & J \\
J & 0 & 0 & J & \bar{A}
\end{array}\right] .
$$

Now, after a sequence of elementary transformations applied to the rows and columns and by Lemma 2, the characteristic equation is

$$
\begin{aligned}
& \left.\frac{1}{\lambda^{2 p-1}} \right\rvert\,\left[\{\lambda(\lambda I-A)-J\}^{2}+(\lambda-1) J^{2}\right]\left[(\lambda-1) J^{2}+(\lambda I-\bar{A})^{2}\right] \\
&-\lambda J^{2}[\lambda(\lambda I-A)-J+\lambda I-\bar{A}]^{2} \mid=0
\end{aligned}
$$

Since $G=K_{p}$ is connected and regular, by Lemma 4 the characteristic equation of H_{4} is

$$
\lambda^{(2 p-2)}(\lambda+1)^{(2 p-2)}(\lambda-2 p)\left(\lambda^{2}+\lambda-p\right)\left(\lambda^{2}+\lambda-2 p^{2}+p\right)=0 .
$$

Hence

$$
\operatorname{spec}\left(H_{4}\right)=\left(\begin{array}{ccccc}
2 p & \frac{-1 \pm \sqrt{4 p+1}}{2} & \frac{2 p-1 \pm \sqrt{8 p^{2}-4 p+1}}{2} & -1 & 0 \\
\text { each once } & \text { each once } & \text { each once } & \begin{array}{c}
\text { each }(2 p-2) \\
\text { times }
\end{array} & \begin{array}{c}
\text { each }(2 p-2) \\
\text { times }
\end{array}
\end{array}\right) .
$$

Now, the expression for $E\left(H_{4}\right)$ follows.

Corollary 2. Let G be a connected r-regular graph on p vertices with $\operatorname{spec}(G)=$ $\left\{r, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}\right\}$ and H be the self-complementary graph obtained as in Construction 4. Then

$$
E(H)=2[E(G)+E(\bar{G})-(p-1)]+\sqrt{1+4\left(p^{2}+r+r^{2}\right)}+T
$$

where T is the sum of absolute values of roots of the cubic

$$
x^{3}-(2 p-1) x^{2}-\left[p^{2}-2 p(r-1)+r(r+1)\right] x+2 p(2 p-r-1)=0 .
$$

Lemma 5. There exists a pair of non-cospectral cubic graphs on $2 t$ vertices, for every $t \geqslant 3$.

Proof. Let G_{1} and G_{2} be the non-cospectral cubic graphs on six vertices labelled as $\left\{v_{j}\right\}$ and $\left\{u_{j}\right\}, j=1$ to 6 , respectively.

Figure 1. The graphs G_{1} and G_{2}
Now replacing v_{1} and u_{1} in G_{1} and G_{2} by a triangle each we get two cubic graphs \mathscr{H}_{1} and \mathscr{H}_{2} on eight vertices containing one and two triangles respectively as shown in Figure 2. Since the number of triangles in a graph is the negative of half the coefficient of λ^{p-3} in its characteristic polynomial [4], \mathscr{H}_{1} and \mathscr{H}_{2} are non-cospectral.

Figure 2. The graphs \mathscr{H}_{1} and \mathscr{H}_{2}

Replacing any vertex in the newly formed triangle in \mathscr{H}_{1} and \mathscr{H}_{2} by a triangle we get two cubic graphs on ten vertices which are non co-spectral. Repeating this process $(t-3)$ times, we get two cubic graphs on $2 t$ vertices containing one and two triangles respectively. Hence they are non cospectral.

Theorem 6. For every $p=24 t+1, t \geqslant 3$, there exists a pair of equienergetic self-complementary graphs.

Proof. Let G_{1} and G_{2} be the two non co-spectral cubic graphs on $2 t$ vertices given by Lemma 5. Let F_{1} and F_{2} respectively denote their second iterated line graphs. Then F_{1} and F_{2} have $6 t$ vertices each and are 6 -regular with $E\left(F_{1}\right)=$ $E\left(F_{2}\right)=12 t$ and $E\left(\overline{F_{1}}\right)=E\left(\overline{F_{2}}\right)=3(6 t-4)-2$ by Lemma 3. Let \mathscr{F}_{1} and \mathscr{F}_{2} be the self-complementary graphs obtained from F_{1} and F_{2} by Construction 4. Then \mathscr{F}_{1} and \mathscr{F}_{2} are on $p=24 t+1$ vertices and by Corollary $2, E\left(\mathscr{F}_{1}\right)=E\left(\mathscr{F}_{2}\right)=$ $2(24 t-13)+\sqrt{169+144 t^{2}}+T$ where T is the sum of the absolute values of the roots of the cubic $x^{3}-(12 t-1) x^{2}-6\left(6 t^{2}-10 t+7\right) x+12 t(12 t-7)=0$.

Acknowledgement. The authors thank the referee for valuable suggestions. The first author thanks the University Grants Commission (India) for providing fellowship under the FIP.

References

[1] R. Balakrishnan: A Text Book of Graph Theory. Springer, 2000.
[2] R. Balakrishnan: The energy of a graph. Linear Algebra Appl. 387 (2004), 287-295.
[3] C. A. Coulson:, Proc. Cambridge Phil. Soc. 36 (1940), 201-203.
[4] D. M. Cvetkovic, M. Doob and H. Sachs: Spectra of Graphs-Theory and Applications. Academic Press, 1980.
[5] D. Stevanović: Energy and NEPS of graphs. Linear Multilinear Algebra 53 (2005), 67-74.
[6] A. Farrugia: Self-complementary graphs and generalisations: A comprehensive reference manual. M. Sc. Thesis, University of Malta, 1999.
[7] I. Gutman: The energy of a graph. Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978), 1-22.
[8] I. Gutman: The energy of a graph: old and new results (A.Betten, A. Kohnert, R.Laue, A. Wassermann, eds.). Algebraic Combinatorics and Applications, Springer, 2000, pp. 196-211.
[9] I. Gutman: Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology. J. Serb. Chem. Soc. 70 (2005), 441-456.
[10] G. Indulal and A. Vijayakumar: On a pair of equienergetic graphs. MATCH Commun. Math. Comput. Chem. 55 (2006), 83-90.
[11] G. Indulal and A. Vijayakumar: Energies of some non-regular graphs. J. Math. Chem 42 (2007), 377-386.
[12] H. S. Ramane, I. Gutman, H. B. Walikar and S. B. Halkarni: Another class of equienergetic graphs. Kragujevac. J. Math. 26 (2004), 15-18.

Authors' addresses: G. Indulal, Lecturer Selection Grade, Department of Mathematics, St.Aloysius College, Edathua, Kerala, India, e-mail: indulalgopal@rediffmail.com, A. Vijayakumar, Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India, e-mail: vijay@cusat.ac.in.

