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Abstract. An axiomatic characterization of the distance function of a connected graph is
given in this note. The triangle inequality is not contained in this characterization.
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1. Introduction

By a graph is meant here a finite or infinite undirected graph with no loops or

multiple edges. Obviously, if G is a connected graph, then the distance function of

G is a mapping of V (G) × V (G) into the set of all non-negative integers.

In the present note, we assume that V is a nonempty set and f is a mapping of

V × V into the set of all non-negative real numbers. By the well-known definition,

f is a metric on V if it satisfies the following axioms:

(A) f(u, v) = f(v, u) for all u, v ∈ V ;

(B) f(u, v) = 0 if and only if u = v, for all u, v ∈ V ;

(T) [the triangle inequality] f(u, v) 6 f(u, w) + f(w, v) for all u, v, w ∈ V.

It is easy to see that if f is the distance function of a connected graph G with

V (G) = V , then f is a metric on V . D.C.Kay and G.Chartrand [1] found a necessary

and sufficient condition for a metric f on V to be the distance function of a connected

graph G with V (G) = V . In their theorem, the following axioms were used:

(C) f(u, v) is an integer for all u, v ∈ V ;

(D) if f(u, v) > 1, then there exists w ∈ V such that u 6= w 6= v and f(u, v) =

f(u, w) + f(w, v) for all u, v ∈ V (G).
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Theorem A (D. C.Kay and G.Chartrand [1]). Let f be a metric on V . Then

f is the distance function of a connected graph G with V (G) = V if and only if f

satisfies the axioms (C) and (D).

Remark 1. Kay and Chartrand have considered only finite graphs in [1] but their

theorem also holds if V is infinite.

If f satisfies axioms (A) and (B), then we denote by Gf the graph such that

V (Gf ) = V and

the vertices u and v are adjacent in Gf if and only if f(u, v) = 1

for all u, v ∈ V .

Proposition 1. Let f satisfy the axioms (A) and (B). If f is the distance function

of a connected graph G with V (G) = G, then G = Gf .

The proof is obvious.

Proposition 2. If f satisfies the axioms (A), (B), (C), and (D), then there exists

an u − v walk of length f(u, v) in Gf for all u, v ∈ V (G).

The proof is easy.

Proposition 3. Let f satisfy the axioms (A), (B), (C), and (D). Then Gf is

connected. If d denotes the distance function of Gf , then

d(u, v) 6 f(u, v) for all u, v ∈ V .

P r o o f. The proposition immediately follows from Proposition 2. �

The next theorem is a reformulation of a theorem of D.C.Kay and G.Chartrand

[1]. We will present an explicit proof of it.

Theorem B. Let f satisfy the axioms (A), (B), (C), (D), and let d denote the

distance function of Gf . Then f = d if and only if f satisfies the axiom (T).

P r o o f. As we know, if f = d, then f satisfies axiom (T).

Conversely, assume that f satisfies (T). Consider arbitrary u, v ∈ V . Put n =

d(u, v). We will prove that f(u, v) = n. We proceed by induction on n. The case

when n 6 1 is obvious. Let n > 2. Obviously, there exists w ∈ V such that

d(u, w) = 1 and d(w, v) = n − 1. By the induction hypothesis, f(w, v) = n − 1

and, moreover, f(u, w) = 1. Axiom (T) implies that f(u, v) 6 n. As follows from

Proposition 3, f(u, v) > n. Thus f(u, v) = n, which completes the proof. �
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Obviously, the following axiom is stronger than the axiom (D):

(E) if f(u, v) > 1, then there exists w ∈ V such that f(u, v) = f(u, w)+f(w, v) and

(f(u, w) = 1 or f(w, v) = 1) for all u, v ∈ V (G).

In the present note, we will prove that if the axiom (D) is replaced by the axiom (E)

in Theorem B, then the triangle inequality can be replaced by an axiom containing

equalities only. The new axiom is inspired by some results of the present author.

2. New axiom

We will be interested in the following axiom (S):

(S) if f(u, v) = 1 = f(x, y) and f(u, x) = 1 + f(v, x), then f(u, x) = 1 + f(u, y) or

f(u, y) = 1 + f(v, y) or f(v, y) = 1 + f(v, x), for all u, v, x, y ∈ V .

Lemma 1. Let f satisfy the axioms (A), (C), and (T). Then f satisfies the

axiom (S).

P r o o f. Suppose, to the contrary, that there exist u, v, x, y ∈ V such that

f(u, v) = 1 = f(x, y), f(u, x) = 1+f(v, x), f(u, x) 6= 1+f(u, y), f(u, y) 6= 1+f(v, y),

and f(v, y) 6= 1 + f(v, x). Combining the axioms (A) and (T), we get f(u, x) <

1 + f(u, y), f(u, y) < 1 + f(v, y), and f(v, y) < 1 + f(v, x). By virtue of axiom (C),

f(u, x) 6 f(v, x). This is a contradiction with the fact that f(u, x) = 1+f(v, x). �

Remark 2. Axiom (S) can be compared to Axiom VIII of the characterization

of the set of all shortest paths in a connected graph in [3], to Axiom VIII of the

characterization of the interval function of a finite connected graph in [4], to Axiom Y

of the characterization of the interval function of an infinite connected graph in [6],

and to Axiom G of the characterization of the set all steps in a finite connected

graph in [5]. (By the interval function of a graph is meant the interval function in

the sense of H.M.Mulder [2]. By a step in a connected graph G is meant an ordered

triple (u, v, w) of vertices u, v, w in G such that d(u, v) = 1 and d(v, w) = d(u, v)−1,

where d denotes the distance function of G).

Lemma 2. Let f satisfy the axioms (A), and (S), and let u, v, x, y ∈ V . Assume

that f(u, v) = 1 = f(x, y), f(u, y) > 3, f(u, x) = f(u, y)−1, and f(v, x) = f(u, x)−1.

Then f(v, y) = f(u, y) − 1.

P r o o f. Obviously, f(u, x) 6= 1 + f(u, y). Thus, by the axiom (S),

f(u, y) = 1 + f(v, y) or f(v, y) = 1 + f(v, x).

Since f(v, x) = f(u, x) − 1 = f(u, y) − 2, we get f(v, y) = f(u, y) − 1. �
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By an f -path we mean a sequence (u0, . . . , un), where u0, . . . , un ∈ V and n > 0,

such that

f(ui, uj) = j − i for all integers i and j such that 0 6 i 6 j 6 n.

Assume that f satisfies the axioms (A) and (B). Obviously, if (u0, . . . , un) is an

f -path, then (un, . . . , u0) is an f -path as well. Moreover, it is clear that every f -path

is a path in Gf .

Lemma 3. Let f satisfy the axioms (A) and (S). Consider u0, . . . , un−1, un ∈ V

such that n > 3, (u0, . . . , un−1) is an f -path, f(u0, un) = n, and f(un−1, un) = 1.

Then (u0, . . . , un−1, un) is an f -path as well.

P r o o f. As follows from the definition of an f -path, it is sufficient to prove that

(1) f(ui, un) = n − i for all integers i such that 0 6 i 6 n − 2.

We proceed by induction on i. The case when i = 0 is obvious. Assume that

1 6 i 6 n − 2. By the induction hypothesis, f(ui−1, un) = n − i + 1. Put u = ui−1,

v = ui, x = un−1, and y = un. By Lemma 2, f(ui, un) = f(ui−1, un) − 1 = n − i.

Thus (1) is proved. �

Lemma 4. Let f satisfy the axioms (A), (B), (C), (E), (S), and let u, v ∈ V (G).

Then there exists an u − v path α in Gf such that α is an f -path.

P r o o f. Consider arbitrary u, v ∈ V . Put n = f(u, v). We wish to prove that

there exists a u− v path α in Gf such that α is an f -path. We proceed by induction

on n. The case when n = 0 or 1 is obvious. If n = 2, then the result immediately

follows from Axiom (E). Let n > 3. By Axiom (E), there exists w ∈ V such that

f(u, v) = f(u, w) + f(w, v) and (f(u, w) = 1 or f(w, v) = 1).

We first assume that f(w, v) = 1. Then f(u, w) = n − 1. The induction hy-

pothesis implies that there exist u0, . . . , un−1 ∈ V such that u0 = u, un−1 = w, and

(u0, . . . , un−1) is an f -path. Since f(u0, v) = n and f(un−1, v) = 1, Lemma 3 implies

that (u0, . . . , un−1, v) is an f -path as well.

We now assume that f(u, w) = 1. By Axiom (A), f(v, w) = n−1 and f(w, u) = 1.

Then we can prove analogously that there exist v0, . . . , vn−1 ∈ V such that v0 = v,

vn−1 = w and (v0, . . . , vn−1, u) is an f -path. Hence (u, vn−1, . . . , v0) is an f -path,

which completes the proof. �

1104



3. Main result

The next theorem gives a new characterization of the distance function of a con-

nected graph.

Theorem 1. Let f satisfy the axioms (A), (B), and (C), and let d denote the

distance function of Gf . Then f = d if and only if f satisfies the axioms (E) and (S).

P r o o f. If f = d, then f satisfies the axioms (E) and (T). By Lemma 1, f

satisfies the axiom (S).

Conversely, let f satisfy the axioms (E) and (S). Suppose, to the contrary, that

f 6= d. Then there exist r, s ∈ V such that f(r, s) 6= d(r, s) and

(2) f(r0, s0) = d(r0, s0) for all r0, s0 ∈ V such that d(r0, s0) < d(r, s).

Put j = d(r, s) and k = f(r, s). Then j 6= k and therefore, by Proposition 3,

j < k. As follows from Lemma 4, there exist t0, t1, . . . , tk ∈ V such that t0 = r,

tk = s and (t0, t1, . . . , tk) is an f -path. Moreover, there exist tk+1, . . . , tk+j ∈ V

such that tk+j = t0 and (tk+j , . . . , tk+1, tk) is a shortest r − s path in Gf . Put

tk+j+1 = t1, . . . , tk+2j = tj.

Assume that (tj , tj+1, . . . , tj+k) is an f -path. By the definition of an f -path,

f(tj , tj+k) = k. Clearly, tj+k = t0 and (t0, t1, . . . , tj) is also an f -path. We get

f(t0, tj) = j 6= k; a contradiction. Thus (tj , tj+1, . . . , tj+k) is not an f -path.

Recall that (t0, t1, . . . , tk) is an f -path. We see that there exists i, 0 6 i < j, such

that

(ti, ti+1, . . . , ti+k) is an f -path

and

α =df (ti+1, ti+2, . . . , ti+k+1) is not an f -path.

As follows from the definition, (ti+1, . . . , ti+k) is an f -path.

Put u = ti, v = ti+1, x = ti+k, and y = ti+k+1. Obviously, f(u, x) = k,

(3) f(u, v) = 1 = f(x, y) and f(u, x) = 1 + f(v, x).

Since α is not an f -path, Lemma 3 implies that

(4) f(v, y) 6= 1 + f(v, x).

Note that ti+k+j = ti. It is clear that β =df (ti+k+j , . . . , ti+k+1, ti+k) is an u − x

walk in Gf . Hence d(u, x) 6 j. If d(u, x) < j, then, by (2), k = f(u, x) = d(u, x) < j
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and therefore k < j, which is a contradiction. Thus d(u, x) = j. We see that β is

a shortest u − x path in Gf . Since f(u, x) = k, β is not an f -path. Recall that

y = ti+k+1. Since d(u, y) = j − 1, it follows from (2) that f(u, y) = j − 1 and

therefore (ti+k+j , . . . , ti+k+2, ti+k+1) is an f -path. Lemma 3 implies that

(5) f(u, x) 6= 1 + f(u, y).

Combining (3), (4), and (5) with Axiom (E), we get

(6) f(u, y) = 1 + f(v, y).

Since d(u, y) = j − 1, (2) implies that f(u, y) = j − 1. By (6), f(v, y) = j − 2.

As follows from Proposition 3, d(v, y) 6 j − 2. Hence d(v, x) 6 j − 1. By (2),

f(v, x) = d(v, x) 6 j − 1. As follows from (3), f(v, x) = k − 1. We get k 6 j, which

is a contradiction. Thus the theorem is proved. �

Corollary 1. Let f satisfy axioms the (A), (B), and (C). Then f satisfies the

axioms (D) and (T) if and only if f satisfies the axioms (E) and (S).

Remark 3. Let |V | = 4, let V = {r, s, t, u}, and let f satisfy the axioms (A)

and (B). Assume that f(r, u) = f(s, u) = f(t, u) = 1, f(r, s) = f(s, t) = 2, and

f(r, t) = 4. Clearly, Gf is a star. It is easy to see that f satisfies Axioms (D) and

(S) but f is not the distance of Gf . Thus Axiom (E) cannot be replaced by Axiom

(D) in Theorem 1.
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