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NONCIRCULANT TOEPLITZ MATRICES

ALL OF WHOSE POWERS ARE TOEPLITZ

Kent Griffin, Santa Monica, Jeffrey L. Stuart, Tacoma,

Michael J. Tsatsomeros, Pullman

(Received March 31, 2007)

Abstract. Let a, b and c be fixed complex numbers. Let Mn(a, b, c) be the n×n Toeplitz
matrix all of whose entries above the diagonal are a, all of whose entries below the diagonal
are b, and all of whose entries on the diagonal are c. For 1 6 k 6 n, each k × k principal
minor of Mn(a, b, c) has the same value. We find explicit and recursive formulae for the
principal minors and the characteristic polynomial of Mn(a, b, c). We also show that all
complex polynomials in Mn(a, b, c) are Toeplitz matrices. In particular, the inverse of
Mn(a, b, c) is a Toeplitz matrix when it exists.
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1. Introduction

For each positive integer n and for all a, b, c ∈ C, let Mn(a, b, c) denote the n × n

Toeplitz matrix with all entries above the diagonal equal to a, all entries below the

diagonal equal to b, and all entries on the diagonal equal to c. Thus, for example,

M3(a, b, c) =





c a a

b c a

b b c



 .

Using the observation that each k × k principal minor of Mn(a, b, c) is just

Mk(a, b, c), in Section 2, we show that det(Mn(a, b, c)) satisfies a linear recurrence

relation. We solve that relation to obtain a simple formula for the determinant of

Mn(a, b, c) and to obtain the characteristic polynomial of Mn(a, b, c). We also study
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the sequence of principal minors for Mn(a, b, c) for special choices of a, b and c.

In Section 3, we show that every positive integer power of Mn(a, b, c) is a Toeplitz

matrix, and consequently, that every complex polynomial in Mn(a, b, c) is a Toeplitz

matrix. In particular, when Mn(a, b, c) is invertible, its inverse is a Toeplitz matrix.

2. The principal minor sequence and the characteristic

polynomial for Mn(a, b, c)

For a matrix A, A(1|1] will denote the column vector obtained by deleting the first

entry of the first column of A. A[1|1) will denote the row vector obtained by deleting

the first entry from the first row of A. A(1) will denote the principal submatrix

obtained from A by deleting the first row and the first column of A.

Lemma 1. Let a, b, c ∈ C. For each positive integer n, let Mn = Mn(a, b, c).

Then det(M1) = c, det(M2) = c2 − ab, and for n > 3,

det(Mn) = (2c − a − b) det(Mn−1) − (a − c)(b − c) det(Mn−2).

P r o o f. Let n > 3. Let H be obtained from Mn by performing two elementary

operations: Subtract the second row of Mn from the first row of Mn, and subtract

the second column of the resulting matrix from the first column of the resulting

matrix. Thus


















2c− a − b a − c 0 0 . . . 0
b − c

0
0 Mn−1

...
0



















and det(Mn) = det(H). Apply minor-cofactor expansion to the first row of H and

then to the first column of the H(1|2). �

Solving the second order linear recursion for the determinant in the previous lemma

yields

Theorem 2. Let a, b, c ∈ C. For each positive integer n, let Mn = Mn(a, b, c).

If a = b = c, then det(M1) = c, and det(Mn) = 0 for n > 2.

If a = b 6= c, then for n > 1,

det(Mn) = [c + a(n − 1)](c − a)n−1,

and Mn is nonsingular unless n = 1 − c/a, in which case, Mn is singular.
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If a 6= b, then for n > 1,

det(Mn) =
b

b − a
(c − a)n − a

b − a
(c − b)n,

and Mn is nonsingular unless

b(c − a)n = a(c − b)n.

P r o o f. It is well known that the second order linear recurrence ak = pak−1 +

qak−2 for k > 3, where p and q are constants, with initial conditions a1 and a2

specified, has a unique solution. The solution is obtained as follows. Let r1 and

r2 be the roots of the quadratic x2 − px− q = 0. When r1 6= r2, the general solution

is ak = s1(r1)
k−1 + s2(r2)

k−1 where s1 and s2 are constants chosen so that ak has

the specified initial values a1 and a2. When r1 = r2, let r denote the common root.

If r 6= 0, then the general solution is ak = [a1 + s(k − 1)]rk−1 where s = a2/r − a1.

When r = 0, it follows that p = q = 0, and we have ak = 0 for k > 3.

¿From Lemma 1, we have p = 2c−a− b = (c−a)+(c− b) and q = −(c−a)(c− b).

Thus the quadratic is

x2 − ((c − a) + (c − b))x + (c − a)(c − b) = 0.

Clearly, the roots are c − a and c − b, so the roots are distinct exactly when a 6= b.

When a = b, the common value for the roots is r = c − a. It remains to examine

the initial conditions. Direct substitution shows that a1 = det(M1) = c, and a2 =

det(M2) = c2 − ab. Using these initial conditions leads to the specified values of s1

and s2.

The singularity conditions follow from simple algebra. �

Theorem 3. Let a, b, c ∈ C. For n > 1, let pn(x) denote the characteristic

polynomial of Mn(a, b, c). Then pn(x) satisfies the recursion relationship

pn(x) = (2x − 2c + a + b)pn−1(x) − (x − a + c)(x − b + c)pn−2(x)

with p1(x) = x − c and p2(x) = c2ab. Alternatively, pn(x) can be expressed as

pn(x) = xn −
n

∑

k=1

(−1)k

(

n

k

)

[det(Mk(a, b, c))]xn−k.

When a = b,

pn(x) = [x − c − a(n − 1)](x − c + a)n−1.
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When a 6= b,

pn(x) =
b

b − a
(x + a − c)n − a

b − a
(x + b − c)n.

P r o o f. Since pn(x) = det(xIn − A) = det(Mn(−a,−b, x − c)), apply Theo-

rem 2 and simplify. The recurrence relationship is obtained from Lemma 1. Finally,

the coefficients in the sum of powers of x come from the well-known fact that the

coefficient of xn−k in the characteristic polynomial for the n × n matrix A is, up

to a factor of (−1)k, the sum of all k × k principal minors of A. Since each of the

k × k principal minors of Mn(a, b, c) has value det(Mk(a, b, c)), and since there are
(

n
k

)

such minors, the result follows. �

The following result is an immediate consequence of the well-known Gershgorin

Circles Theorem:

Theorem 4. Let a, b, c ∈ C. Let n be a positive integer. If λ is an eigenvalue of

Mn(a, b, c), then

|λ − c| 6 (n − 1)max{|a|, |b|}.

In particular, if |c| > (n − 1)max{|a|, |b|}, then Mn(a, b, c) is nonsingular.

What can be said about the rank of Mn(a, b, c) when the matrix is singular?

Observe that rank(Mn(a, b, c)) must be n− 1 unless Mn−1(a, b, c) is also singular.

This leads to the following result:

Theorem 5. Let a, b, c ∈ C. For each positive integer n, let Mn = Mn(a, b, c)

(i) If a = b = c, then rank(Mn) = 1 if c 6= 0, and rank(Mn) = 0 if c = 0

(ii) If a = b 6= c, then rank(Mn) = n except when n = 1 − c/a, in which case,

rank(Mn) = n − 1.

(iii) If a 6= b, then rank(Mn) = n unless

(1) b(c − a)n = a(c − b)n.

If the equality holds, then rank(Mn) = n − 1.

P r o o f. All but the last part of (iii) follow immediately from Theorem 2.

Suppose that equality (1) holds, that a 6= b, and that ab = 0. Then equality (1)

forces c = 0, and the result follows from the fact that Mn is strictly triangular with

either all entries below the diagonal or all entries above the diagonal nonzero.

Suppose that equality (1) holds, that a 6= b, and that ab 6= 0. Since c−a and c− b

are distinct, it follows from equality (1) that c − a 6= 0 and c − b 6= 0. Thus

(c − a

c − b

)n

=
b

a
6= 0.
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If rank(Mn) < n − 1, then Mn−1(a, b, c) is singular, and hence,

(c − a

c − b

)n−1

=
b

a
6= 0.

Then
c − a

c − b
= 1,

which implies a = b, a contradiction. �

When are a and b themselves the roots of the recursion relationship for the deter-

minant?

Exactly when {a, b} = {c − a, c − b}. This is equivalent to a + b = c. We note

several interesting cases when a + b = c.

Lemma 6. Let a ∈ C. For each positive integer n, let Nn = Mn(a,−a, 0). If

a = 0, then det(Nn) = 0 for all n > 1. If a 6= 0, then

det(Nk) =

{

0 if k is odd,

ak if k is even.

Finally, when a 6= 0 and k is odd, rank(Nk) = k − 1, and the null space of Nk is

spanned by the vector v = [ 1 −1 1 −1 . . . 1 −1 1 ]T .

P r o o f. Applying Theorems 2 and 4 with b = −a and c = 0 yields the formulae

for det(Nk) and the rank result. When k is odd, each odd numbered row of Nk

contains an even number of −1 entries, followed by 0, followed by an even number of

1 entries. Consequently, the alternating sum in the dot product of the row with v is

zero. When k is odd, the first and last entry of each even numbered row of Nk have

opposite signs in the dot product with v, and hence cancel each other, leaving an

even number of consecutive −1 entries and an even number of consecutive 1 entries;

thus the remaining terms produce an alternating sum summing to zero. �

Lemma 7. Let ϕ = (1 +
√

5)/2, the golden ratio. For each positive integer n,

let Pn = Mn(ϕ, 1 − ϕ, 1) and let Qn = Mn(−ϕ, ϕ − 1, 0). Then det(Pn) is the

(n+1)st Fibonacci number Fn+1, and det(Qn) is the (n−1)st Fibonacci number Fn−1,

where the Fibonacci sequence is given its classical indexing starting with F0 = 0 and

F1 = F2 = 1.

P r o o f. For Pn, the choice of a, b and c yields p = q = 1 in the proof of

Theorem 2. So the recursion for det(Pn) is

det(Pn) = det(Qn−1) + det(Qn−2), n > 3
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with the initial conditions

det(M1) = 1 and det(M2) = 1 − ϕ(1 − ϕ) = 2.

For Qn, the choice of a, b and c again yields p = q = 1, so we again get the Fibonacci

recursion. This time the initial conditions are

det(M1) = 0 and det(M2) = 0 − (−ϕ)(ϕ − 1) = 1.

�

The well-known matrix generator for the Fibonacci numbers is

[

1 1

1 0

]k

=

[

Fk Fk−1

Fk−1 Fk−2

]

where

[

1 1

1 0

]

is a Hessenberg Toeplitz matrix whose eigenvalues are ϕ and −ϕ.

Thus the matrices Mn(ϕ, 1−ϕ, 1) and Mn(−ϕ, ϕ− 1, 0) provide another connection

between matrices, the Fibonacci sequence, and the golden ratio.

Which principal minor sequences s = (s1, s2, . . . , sn) can be obtained from a matrix

of the form Mn(a, b, c)?

Clearly, we must have s1 = c and s2 = c2 − ab, and sk = psk−1 + qsk−2 for

2 6 k 6 n where p = 2c− a− b and q = −(a− c)(b − c). Since the initial conditions

together with p and q completely determine the sequences, what we are really asking

is which 4-tuples (s1, s2, p, q) can be realized by appropriate choices of a, b and c.

Since s1 = c and s2 = c2 − ab, we must have ab = s2
1 − s2. Given p, we must have

a + b = 2c − p. Finally, since

q = −(c − a)(c − b) = (c2 − ab) − (2c − a − b)c = s2 − ps1,

the value for a realizable q is dependent on the choices for s1, s2 and p. Specifically,

we have shown that:

Theorem 8. Given a1, a2, p, q ∈ C, the linear recursion ak = pak−1 + qak−2 for

k > 2 with initial conditions a1 and a2 can be realized as the sequence of principal

minors for a matrix Mn(a, b, c) exactly when q = a2 − pa1. In this case, the linear

recursion and the initial conditions are achieved by setting c = a1, and by setting a

and b to be the roots of x2 + (p − 2a1)x + (a2
1 − a2) = 0.

As a special but interesting case, we determine matrices all of whose principal

minors of every order have the value x where x is an arbitrary complex number.
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Theorem 9. For all positive integers n and for all x ∈ C, all of the principal

minors of Rn = Mn(x, x − 1, x) are equal to x.

P r o o f. By Lemma 1, for n > 3,

det(Rn) = (2x − x − (x − 1)) det(Rn−1) − (x − x)((x − 1) − x) det(Rn−2)

= det(Rn−1)

with det(R1) = x and det(R2) = x2 − x(x − 1) = x. �

Remark 10. In [3] the inverse problem of constructing a matrix from its principal

minors is considered. Under certain conditions, this problem has a solution that is

produced by the algorithm pm2mat. When x 6∈ {0, 1}, the matrix Mn(x, x − 1, x)

in Theorem 9 is (up to diagonal similarity and transposition) the output of the

algorithm pm2mat in [3] when all principal minors are required to equal x.

Moreover, in agreement with the above comment, Mn(x, x − 1, x) and Mn(x − 1,

x, x) are the only choices of matrices of the form Mn(a, b, c) with the property that

all principal minors equal x. Indeed, it must be that c = x; enforcing the 2 × 2 and

3 × 3 principal minors be equal to x imposes that

ab = x(x − 1) and a + b = 2x − 1

whose only solutions are (a = x, b = x − 1) or (a = x − 1, b = x).

Finally note, that by Theorem 8, the Fibonacci sequence cannot be obtained as

Fn = Mn(a, b, c) for any a, b, c ∈ C, since this indexing corresponds to the 4-tuple

(1, 1, 1, 1), and q 6= 1 − (1)(1).

3. Powers of Mn(a, b, c) are Toeplitz matrices

We begin this section by recalling some definitions and by stating several elemen-

tary results.

The n × n matrix A is said to be persymmetric if JnAT Jn = A where Jn is the

n × n permutation matrix with ones on the cross-diagonal.

Observe that Jn = JT
n = J−1

n , and that if en denotes the n × 1 vector of ones,

then Jnen = en and eT
nJ = eT

n .

The n × n matrix A = [aij ] is said to be Toeplitz if there exist 2n − 1 scalars

a
−n+1, a

−n+2, . . . , a
−1, a0, a1, . . . , an−2, an−1

such that aij = ai−j . That is, the entries on each diagonal of a Toeplitz matrix

descending from left to right have a common value.
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Lemma 11. Let A be a persymmetric matrix. Then Ak is persymmetric for

every positive integer k. If A−1 exists, then Ak is persymmetric for every negative

integer k.

Note that every Toeplitz matrix is persymmetric. The following result is a partial

converse.

Lemma 12 [4, Lemma 1]. Let A be an n × n persymmetric matrix with n > 2.

Then A is a Toeplitz matrix if and only if A(1) is persymmetric.

Theorem 13. For all positive integers n, for all polynomials p(x) in C[x], and

for all a, b, c ∈ C, the matrix p(Mn(a, b, c)) is a Toeplitz matrix. In particular, all

positive integer powers of Mn(a, b, c) are Toeplitz matrices. Further, if Mn(a, b, c) is

invertible, then its inverse is a Toeplitz matrix.

P r o o f. Since the set of n×n Toeplitz matrices is a subspace of the set of n×n

complex matrices, it suffices to prove that each positive integer power of Mn(a, b, c)

is a Toeplitz matrix in order to prove the result for polynomials in Mn(a, b, c). Since

the inverse of a matrix, when it exists, is a polynomial in the matrix, the result on

inverses is clear. Since cIn is a Toeplitz matrix, Mn(a, b, c) is a Toeplitz matrix if

and only if Mn(a, b, c)− cIn = Mn(a, b, 0) is a Toeplitz matrix. Since the kth power

of Mn(a, b, c) is a polynomial in In and positive integer powers of Mn(a, b, 0), it

suffices to prove that all positive integers powers ofMn(a, b, 0) are Toeplitz matrices.

If a 6= 0, then Mn(a, b, 0) = aMn(1, b/a, 0), and consequently, the kth power of

Mn(a, b, c) is a Toeplitz matrix if and only if the kth power of Mn(1, b/a, 0) is a

Toeplitz matrix. If a = 0, then Mn(0, b, 0) = bMn(0, 1, 0), and all powers of the

nilpotent matrix Mn(0, 1, 0) are known to be Toeplitz matrices. Thus it suffices to

prove that an arbitrary positive integer power of N = Mn(1, b, 0) is a Toeplitz matrix

when b 6= 0.

Since A is a Toeplitz matrix, A and A(1) are persymmetric, and Ak is persym-

metric for every positive integer k. We will use induction on k to prove that Ak is

a Toeplitz matrix. Specifically, for each k, we will prove that Ak(1) is persymmetric

and that bJn−1(A
k[1|1))T = Ak(1|1]. Clearly, when k = 1, A(1) is persymmetric by

Lemma 11, and bJn−1(A[1|1))T = bJn−1(e
T
n−1)

T = ben−1 = A(1|1]. Suppose that

the induction hypothesis holds for k. Observe that

A =

[

0 eT
n−1

ben−1 A(1)

]

and that we can write Ak as

Ak =

[

α uT

v M

]

,
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where α ∈ C, u and v are (n − 1) × 1 vectors and M = Ak(1). By the induction

hypothesis, bJn−1u = v, andM is persymmetric. Writing Ak+1 = AAk = AkA gives

Ak+1 =

[

eT v eT M

αbe + A(1)M beuT + A(1)M

]

=

[

buT e αeT + uT A(1)

bMe veT + MA(1)

]

.

Since M is persymmetric, JMT = MJ . Thus

bJn−1(A
k+1[1|1))T = bJ(eT M)T = bJMT e = bMJe = bMe = Ak+1(1|1].

Next,

J(Ak+1(1))T J = J(beuT + A(1)M)T J = bJueT J + JMT (A(1))T J

= (bJu)eT + MJ(A(1))T J.

Since A(1) is persymmetric and since, by the induction hypothesis, bJu = v,

J(Ak+1(1))T J = veT + MA(1) = Ak+1(1).

Thus Ak+1(1) is persymmetric. Thus the induction hypothesis holds for k + 1. By

the principle of induction, we have the desired result, that Ak(1) is persymmetric

for all positive integers k. By applying Lemma 11, we conclude that that Ak is a

Toeplitz matrix for all positive integers k. �

Note added just prior to publication: Theorem 13 also follows from Theorem 1.3

of [5].
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