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Abstract. We give sufficient conditions for the interchange of the operations of limit and
the Birkhoff integral for a sequence (fn) of functions from a measure space to a Banach
space. In one result the equi-integrability of fn’s is involved and we assume fn → f almost
everywhere. The other result resembles the Lebesgue dominated convergence theorem where
the almost uniform convergence of (fn) to f is assumed.
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1. Introduction

Integration of vector valued functions is an important topic of mathematical analy-

sis. A classical exposition of this theory can be found in [5] and [3]; see also the re-

cent monograph [14] including the McShane and Kurzweil-Henstock integrals. The

Birkhoff integral for Banach space valued functions, located strictly between the

Bochner and Pettis integrals, was introduced in 1935 (see [1]). Lately, it has been

investigated by several authors [2], [12], [9], [4], [10], [11]. A generalized version

of the Birkhoff integral, invented by Dobrakov, has been studied in another recent

article [13]. In our paper we will show some convergence theorems for the Birkhoff

integral. One of them is due to Birkhoff and we recall it with the proof formulated in

a new fashion. We give new sufficient conditions for the interchange of the operations

of integral and limit. One theorem assumes equi-integrability of the functions of a

sequence convergent almost everywhere. We also propose a version of the Lebesgue

dominated convergence theorem for the absolute Birkhoff integral.

Let N = {1, 2, . . .}. Throughout the paper, (Ω, S, µ) is a complete measure space

with a σ-finite measure µ, and (X, ‖ · ‖) is a Banach space over R. Let us recall the

original definition of the Birkhoff integral. By a partition of Ω we always mean a
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partition of Ω into (pairwise disjoint) countably many sets from S of finite measure.

For a given partition Γ = (An) of Ω we say that a function f : Ω → X is Γ-summable

if the restrictions f |An are bounded whenever µ(An) > 0 and the set J(f, Γ) =
{

∑

n
f(tn)µ(An) : tn ∈ An

}

consists of sums of unconditionally convergent series.

The function f is called Birkhoff integrable, if for every ε > 0 there is a partition

Γ = (An) of Ω such that f is Γ-summable and diam(J(f, Γ)) < ε. For an integrable

function f , its Birkhoff integral is the unique element of the intersection

⋂

{Co(J(f, Γ)) : f is Γ-summable}

where Co(A) stands for the convex hull of A ⊂ X . The integral will be denoted by
∫

Ω f dµ.

The above definition turns out to be equivalent with the version formulated by

Fremlin [4] and with the notion introduced in [6], [7]. These equivalences were proved

by B. Cascales and J. Rodríguez [2] (they assumed µ(Ω) = 1 but the theorem works

for a σ-finite measure) and, independently, by the second author [10]. If Π and Γ

are partitions of Ω, we say that Γ is finer than Π if each set from Γ is contained in

some set from Π. Now, let us formulate the above-mentioned equivalences.

Proposition 1 ([2], [10]). For a function f : Ω → X , the following conditions are

equivalent:

(i) f is Birkhoff integrable;

(ii) there exists x ∈ X such that for every ε > 0 there is a partition (Ai) of Ω such

that for every choice ti ∈ Ai we have

∥

∥

∥

∥

∑

i

f(ti)µ(Ai) − x

∥

∥

∥

∥

< ε

and the series
∑

i

f(ti)µ(Ai) is unconditionally covergent;

(iii) there exists y ∈ X such that for every ε > 0 there is a partition Π of Ω such

that for any partition Γ = (Ai) finer than Π and for every choice ti ∈ Ai we

have
∥

∥

∥

∥

∑

i

f(ti)µ(Ai) − y

∥

∥

∥

∥

< ε

and the series
∑

i

f(ti)µ(Ai) is unconditionally covergent.

Additionally, x = y =
∫

Ω
f dµ.
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Remark 2. Let us state another condition (ii′) equivalent to Birkhoff integrabil-

ity. This is a Cauchy type condition associated with (ii) (compare also [10] and [2]).

Namely, we have:

The function f is Birkhoff integrable if and only if for every ε > 0 there is a

partition (Ai) of Ω such that

∥

∥

∥

∥

∑

n

f(tn)µ(An) −
∑

n

f(sn)µ(An)

∥

∥

∥

∥

< ε

for arbitrary choices tn, sn ∈ Ai, the series being unconditionally convergent.

We need the following useful characterization [8, Prop. 1.c.1]:

Fact 3. A series
∞
∑

i=1

xi in X is unconditionally convergent if and only if, for

every ε > 0 there is a positive integer k such that
∥

∥

∥

∑

i∈S

xi

∥

∥

∥
< ε for every finite set

S ⊂ N \ {1, . . . , k}.

Now, we give the convergence theorem due to Birkhoff [1] who only sketched the

proof. We provide a new formal demonstration based on Proposition 1, Remark 2

and Fact 3.

Theorem 4. Let µ(Ω) < ∞ and let fn : Ω → X , n ∈ N, be Birkhoff integrable.

If (fn) converges uniformly to f on Ω, then f is Birkhoff integrable and
∫

Ω f dµ =

lim
n→∞

∫

Ω
fn dµ.

P r o o f. We may assume that µ(Ω) = 1. To show the first assertion we use

condition (ii′) from Remark 2. Let ε > 0. Since (fn) converges to f uniformly, pick

N ∈ N such that for all n > N we have

(1) sup
t∈Ω

‖fn(t) − f(t)‖ 6
ε

3
.

Since fN is Birkhoff integrable, by (ii′) we can find a partition (Ei) of Ω such that

(2)

∥

∥

∥

∥

∑

i

fN (ti)µ(Ei) −
∑

i

fN (si)µ(Ei)

∥

∥

∥

∥

6
ε

3

for all ti, si ∈ Ei where the above series are unconditionally convergent.

First we will prove that for any ti ∈ Ei the series
∑

i

f(ti)µ(Ei) is unconditionally

convergent. To this aim we will use Fact 3. Fix any choice ti ∈ Ei and η > 0.
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We will use (1) with ε/3 replaced by η/2, and N replaced by N0. Since the series
∑

i

fN0
(ti)µ(Ei) is unconditionally convergent, pick k ∈ N such that

∥

∥

∥

∥

∑

i∈S

fN0
(ti)µ(Ei)

∥

∥

∥

∥

<
η

2

for every finite set S ⊂ N \ {1, . . . , k}. Now, we have

∥

∥

∥

∥

∑

i∈S

f(ti)µ(Ei)

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

i∈S

(f(ti) − fN0
(ti))µ(Ei)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i∈S

fN0
(ti)µ(Ei)

∥

∥

∥

∥

<
∑

i∈S

‖f(ti) − fN0
(ti)‖µ(Ei) +

η

2
6

η

2

∑

i∈S

µ(Ei) +
η

2
6 η.

Consequently, by Fact 3 the series
∑

i

f(ti)µ(Ei) is unconditionally convergent.

Observe that by (1) we get

∥

∥

∥

∥

∑

i

f(ti)µ(Ei) −
∑

i

fN (ti)µ(Ei)

∥

∥

∥

∥

(3)

6
∑

i

‖f(ti) − fN (ti)‖µ(Ei) 6
ε

3

∑

i

µ(Ei) =
ε

3
.

Now, from (2) and (3) we derive a Cauchy type condition (ii′) (cf. Remark 2) for f .

For any ti, si ∈ Ei, i ∈ N, we have

∥

∥

∥

∥

∑

i

f(ti)µ(Ei) −
∑

i

f(si)µ(Ei)

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

i

f(ti)µ(Ei) −
∑

i

fN(ti)µ(Ei)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

fN (ti)µ(Ei) −
∑

i

fN (si)µ(Ei)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

fN(si)µ(Ei) −
∑

i

f(si)µ(Ei)

∥

∥

∥

∥

6 ε.

Hence f is Birkhoff integrable. To show
∫

Ω
fn dµ →

∫

Ω
f dµ, let ε > 0 and choose

N ∈ N as before. Fix n > N . Since fn and f are Birkhoff integrable, by condition

(iii) from Proposition 1 we can find a partition (Fi) such that for any zi ∈ Fi we

have

∥

∥

∥

∥

∑

i

fn(zi)µ(Fi) −

∫

Ω

fn dµ

∥

∥

∥

∥

6
ε

3
,(4)

∥

∥

∥

∥

∑

i

f(zi)µ(Fi) −

∫

Ω

f dµ

∥

∥

∥

∥

6
ε

3
,(5)

1210



where both the series are unconditionally convergent. As in the proof of (3) we get

(6)

∥

∥

∥

∥

∑

i

f(zi)µ(Fi) −
∑

i

fn(zi)µ(Fi)

∥

∥

∥

∥

6
ε

3
.

Now from (4), (5), (6) it follows that

∥

∥

∥

∥

∫

Ω

fn dµ −

∫

Ω

f dµ

∥

∥

∥

∥

6

∥

∥

∥

∥

∫

Ω

fn dµ −
∑

i

fn(zi)µ(Fi)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

fn(zi)µ(Fi) −
∑

i

f(zi)µ(Fi)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

f(zi)µ(Fi) −

∫

Ω

f dµ

∥

∥

∥

∥

6
ε

3
+

ε

3
+

ε

3
= ε.

�

In the case when X = R, the Birkhoff integral is reduced to the Lebesgue one, and

Theorem 4 is well known. Note that the assumption µ(Ω) < ∞ cannot be omitted.

We say that Birkhoff integrable functions fn : Ω → X , n ∈ N, are equi-Birkhoff

integrable if for every ε > 0 there is a partition (Ai) of Ω such that for every choice

ti ∈ Ai the following conditions hold:

1◦ ‖
∑

i

fn(ti)µ(Ai) −
∫

Ω
fn dµ‖ < ε for all n ∈ N;

2◦ for every η > 0 there are k ∈ N and n0 ∈ N such that ‖
∑

i∈S

fn(ti)µ(Ai)‖ < η for

every finite set S ⊂ N \ {1, . . . , k} and every n > n0.

If a partition (Ai) and a choice ti ∈ Ai are fixed, and condition 2◦ is satisfied, we

say that the series
∑

i

fn(ti)µ(Ai), n ∈ N, are almost equi-unconditionally convergent

(in short, AEU-convergent).

Now, we will show that the equi-integrability of fn’s is more general than the

uniform convergence of (fn) if µ(Ω) < ∞ and fn’s are Birkhoff integrable.

Proposition 5. Let µ(Ω) < ∞ and let fn : Ω → X , n ∈ N, be Birkhoff integrable.

If (fn) converges uniformly to f : Ω → X , then the functions fn, n ∈ N, are equi-

Birkhoff integrable.

P r o o f. Assume that µ(Ω) = 1. Let ε > 0. Pick N1 ∈ N such that

(7) sup
t∈Ω

‖fm(t) − fn(t)‖ <
ε

3
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for all m, n > N1. By Theorem 4, f is Birkhoff integrable and
∫

Ω
f dµ =

lim
n→∞

∫

Ω fn dµ. Pick N2 ∈ N such that

(8)

∥

∥

∥

∥

∫

Ω

fm dµ −

∫

Ω

fn dµ

∥

∥

∥

∥

<
ε

3

for all m, n > N2. Put N = max{N1, N2} and f0 = f . Since the functions f0, . . . , fN

are Birkhoff integrable, using the equivalence (i) ⇐⇒ (iii) in Proposition 1 we find

a partition (Ai) of Ω such that for every choice ti ∈ Ai and any j ∈ {0, . . . , N} we

have

(9)

∥

∥

∥

∥

∑

i

fj(ti)µ(Ai) −

∫

Ω

fj dµ

∥

∥

∥

∥

<
ε

3
,

and the series
∑

i

fj(ti)µ(Ai), j ∈ {0, . . . , N}, are unconditioanally convergent. Fix

ti ∈ Ai and n > N . By (7) we have

∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −
∑

i

fN (ti)µ(Ai)

∥

∥

∥

∥

6
∑

i

‖fn(ti) − fN (ti)‖µ(Ai) <
ε

3
.

Hence by (9), (8) we obtain

∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −

∫

Ω

fn dµ

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −
∑

i

fN (ti)µ(Ai)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

fN (ti)µ(Ai) −

∫

Ω

fN dµ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

Ω

fN dµ −

∫

Ω

fn dµ

∥

∥

∥

∥

<
ε

3
+

ε

3
+

ε

3
= ε.

This together with (9) yields condition 1◦ of equi-integrability. It suffices to prove

condition 2◦. Thus let η > 0 and pick n0 ∈ N such that

sup
t∈Ω

‖fn(t) − f(t)‖ <
η

2

for all n > n0. Since
∑

i

f(ti)µ(Ai) is unconditionally convergent, by Fact 3 pick

k ∈ N such that ‖
∑

i∈S

f(ti)µ(Ai)‖ < η/2 for every finite set S ⊂ N \ {1, . . . , k}. Then

for all n > n0 and every S as above, we have

∥

∥

∥

∥

∑

i∈S

fn(ti)µ(Ai)

∥

∥

∥

∥

6
∑

i∈S

‖fn(ti) − f(ti)‖µ(Ai) +

∥

∥

∥

∥

∑

i∈S

f(ti)µ(Ai)

∥

∥

∥

∥

<
η

2
+

η

2
= η.

�
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In the next theorem we show that the equi-integrability of fn’s and the pointwise

convergence of (fn) guarantee the interchange of limit and integral. Results of that

type are known for the vector-valued Kurzweil-Henstock and McShane integrals on

[a, b]; see [14, Thm 3.5.2].

Theorem 6. Assume that (fn)n∈N is a sequence of Birkhoff integrable func-

tions from Ω to X , convergent almost everywhere to a function f : Ω → X . If the

functions fn, n ∈ N, are equi-Birkhoff integrable then f is Birkhoff integrable and

lim
n→∞

∫

Ω
fn dµ =

∫

Ω
f dµ.

P r o o f. Without loss of generality we may assume that fn → f everywhere on

Ω. Let ε > 0. Since the functions fn, n ∈ N, are equi-Birkhoff integrable, pick a

partition (Ai) of Ω such that for every choice ti ∈ Ai we have

(∀n ∈ N)

∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −

∫

Ω

fn dµ

∥

∥

∥

∥

<
ε

5
,(10)

the series
∑

i

fn(ti)µ(Ai), n ∈ N, are AEU-convergent.(11)

First, observe that by Fact 3 it follows that, for a fixed choice ti ∈ Ai, the series
∑

i

f(ti)µ(Ai) is unconditionally convergent. Indeed, let η > 0 and by (11) pick

k, n0 ∈ N such that
∥

∥

∥

∑

i∈S

fn(ti)µ(Ai)
∥

∥

∥
< η for every finite set S ⊂ N \ {1, . . . , k}

and every n > n0. Letting n → ∞ we have
∥

∥

∥

∑

i∈S

f(ti)µ(Ai)
∥

∥

∥
6 η for every finite set

S ⊂ N \ {1, . . . , k}.

Secondly, we will show that lim
n→∞

∫

Ω fn dµ exists. Let ε > 0 and fix a choice

ti ∈ Ai. Arguing as before, we find k, n0 ∈ N such that
∥

∥

∥

∑

i∈S

f(ti)µ(Ai)
∥

∥

∥
6 ε/5 and

∥

∥

∥

∑

i∈S

fn(ti)µ(Ai)
∥

∥

∥
6 ε/5 for every finite set S ⊂ N \ {1, . . . , k} and each n > n0. It

follows that

(12)

∥

∥

∥

∥

∑

i>k

f(ti)µ(Ai)

∥

∥

∥

∥

6
ε

5
and

∥

∥

∥

∥

∑

i>k

fn(ti)µ(Ai)

∥

∥

∥

∥

6
ε

5
for all n > n0.

Since fn(ti) → f(ti) for each i ∈ {1, . . . , k}, we can find n1 ∈ N such that

(13) ‖fm(ti) − fn(ti)‖ 6
ε

5k(µ(Ai) + 1)
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for all m, n > n1 and i ∈ {1, . . . , k}. Put N = max{n0, n1}. Using (10), (12), (13),

for each n > N we have

∥

∥

∥

∥

∫

Ω

fm dµ −

∫

Ω

fn dµ

∥

∥

∥

∥

6

∥

∥

∥

∥

∫

Ω

fm dµ −
∑

i

fm(ti)µ(Ai)

∥

∥

∥

∥

+
∑

i6k

‖fm(ti) − fn(ti)‖µ(Ai)

+

∥

∥

∥

∥

∑

i>k

fm(ti)µ(Ai)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i>k

fn(ti)µ(Ai)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −

∫

Ω

fn dµ

∥

∥

∥

∥

< 5 ·
ε

5
= ε.

This is a Cauchy condition, so lim
n→∞

∫

Ω
fn dµ = x exists.

Finally, we will show that f is Birkhoff integrable and
∫

Ω f dµ = x. Let ε > 0.

Consider the partition (Ai) and a choice ti ∈ Ai as before. Letting n → ∞ in (13)

we obtain

(14) ‖f(ti) − fn(ti)‖ 6
ε

5k(µ(Ai) + 1)

for all n > N and i ∈ {1, . . . , k}. Now, by (14), (12), (10), for every n > N we have

∥

∥

∥

∥

∑

i

f(ti)µ(Ai) −

∫

Ω

fn dµ

∥

∥

∥

∥

6
∑

i6k

‖f(ti) − fn(ti)‖µ(Ai) +

∥

∥

∥

∥

∑

i>k

f(ti)µ(Ai)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i>k

fn(ti)µ(Ai)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −

∫

Ω

fn dµ

∥

∥

∥

∥

6 4 ·
ε

5
< ε.

Letting n → ∞ we get ‖
∑

i

f(ti)µ(Ai) − x‖ 6 ε. This together with the first part of

the proof shows that x =
∫

Ω
f dµ. �

One can consider a notion analogous to the Birkhoff integral but, in the definition,

the respective series
∑

n
f(tn)µ(An) should be absolutely convergent. Then the cor-

responding versions of Proposition 1 and Remark 2 remain true. This notion will be

called the absolute Birkhoff integral ; it is still more general than the Bochner integral

but essentially more restrictive than the Birkhoff integral (see [7] where this kind of

integral was introduced for functions on [0, 1], and called the Riemann-Lebesgue in-

tegral). Note that real-valued, absolutely Birkhoff integrable functions on Ω coincide

with Lebesgue integrable ones [7, Thms 1.3 and 1.4].

A sequence (fn) of functions fn : Ω → X , n ∈ N, is called convergent to f : Ω → X

almost uniformly if for every ε > 0 there exists an E ∈ S such that µ(E) < ε and

(fn|Ω\E)n∈N converges uniformly to f |Ω\E ; cf. [5, Def. 3.5.1].
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Theorem 7. Let µ(Ω) < ∞. Assume that functions fn : Ω → X , n ∈ N, are

Birkhoff integrable and ‖fn(t)‖ 6 g(t) for all n ∈ N and almost all t ∈ Ω where

g : X → R is Lebesgue integrable. Then the functions fn, n ∈ N, are absolutely

Birkhoff integrable. Moreover, if f : Ω → X and (fn) is convergent to f almost

uniformly then f is absolutely Birkhoff integrable and lim
n→∞

∫

Ω fn dµ =
∫

Ω f dµ.

P r o o f. Let E ∈ S be such that µ(E) = µ(Ω) and ‖fn(t)‖ 6 g(t) for all n ∈ N

and t ∈ E. By assumption, g is absolutely Birkhoff integrable. So let ε > 0 and pick

a partition Π0 of Ω such that for any partition Γ = (Ai) finer than Π0 and for every

choice ti ∈ Ai the series
∑

i

g(ti)µ(Ai) is (absolutely) convergent. Fix n ∈ N and pick

a partition Πn of Ω finer than Π0 such that for any partition Γ = (Ai) finer than Πn

we have
∥

∥

∥

∥

∑

i

fn(ti)µ(Ai) −
∑

i

fn(si)µ(Ai)

∥

∥

∥

∥

< ε

for arbitrary choices ti, si ∈ Ai, the series being unconditionally convergent (cf. Re-

mark 2). If Γ = (Ai) is finer than Πn, then the sets Ai ∩ E together with Ω \ E

constitute a partition of Ω finer than Πn. Hence without loss of generality we may

assume that E = Ω. Then
∑

i

‖fn(ti)‖µ(Ai) 6
∑

i

g(ti)µ(Ai) < ∞

for any Γ = (Ai) finer than Πn and every choice ti ∈ Ai. This implies that fn is

absolutely Birkhoff integrable. Since (fn) is convergent to f almost uniformly, it also

converges to f almost everywhere. Thus ‖fn(t)‖ 6 g(t) for almost all t ∈ Ω. If we

repeat the reasoning used above for fn, we obtain
∑

i

‖f(ti)‖µ(Ai) < ∞

for any Γ = (Ai) finer than Π0 and every choice ti ∈ Ai.

Now, we will show that f is absolutely Birkhoff integrable. Let ε > 0 and consider

Π0 = (Ei) chosen as before. Since g is Π0-summable, the restrictions g|Ei are

bounded whenever µ(Ei) > 0. Let J = {i : µ(Ei) > 0}. Since (fn) is almost

uniformly convergent to f , for every i ∈ J pick a set Ki ∈ S with Ki ⊂ Ei,

µ(Ki) 6 ε/
(

10 ·2i sup
t∈Ei

‖g(t)‖+1
)

and such that fn → f uniformly on Ei \Ki. Then

for every choice ti ∈ Ki we have

∑

i

‖f(ti)‖µ(Ki) =
∑

i∈J

‖f(ti)‖µ(Ki) 6
∑

i∈J

g(ti)µ(Ki)(15)

6
∑

i∈J

g(ti)
ε

10 · 2i sup
t∈Ei

‖g(t)‖ + 1
6

∑

i∈J

ε

10 · 2i
<

ε

10
.
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By Theorem 4, f is Birkhoff integrable on every set Ei \ Ki. Hence for every i pick

a partition (Dij)j of Ei \ Ki such that

(16)

∥

∥

∥

∥

∑

j

f(tij)µ(Dij) −
∑

j

f(sij)µ(Dij)

∥

∥

∥

∥

<
ε

5 · 2i

for any choices tij , sij ∈ Dij . Consider a partition finer than Π0 and (Ki, Dij)ij

simultaneously. Then for any choices ti, si ∈ Ki; tij , sij ∈ Dij , by (15) and (16) we

have

∥

∥

∥

∥

(

∑

i

f(ti)µ(Ki) +
∑

i,j

f(tij)µ(Dij)

)

−

(

∑

i

f(si)µ(Ki) +
∑

i,j

f(sij)µ(Dij)

)∥

∥

∥

∥

6
∑

i

‖f(ti)‖µ(Ki) +
∑

i

‖f(si)‖µ(Ki) +

∥

∥

∥

∥

∑

i,j

f(tij)µ(Dij) −
∑

i,j

f(sij)µ(Dij)

∥

∥

∥

∥

6
ε

10
+

ε

10
+

∑

i

∥

∥

∥

∥

∑

j

f(tij)µ(Dij) −
∑

j

f(sij)µ(Dij)

∥

∥

∥

∥

6
ε

5
+

∑

i

ε

5 · 2i
6

2

5
ε.

This, by the corresponding version of Remark 2, implies that f is absolutely Birkhoff

integrable.

Now, we shall prove that

(17)

∥

∥

∥

∥

∫

F

fn dµ

∥

∥

∥

∥

6

∫

F

g dµ

∥

∥

∥

∥

∫

F

f dµ

∥

∥

∥

∥

6

∫

F

g dµ

for all n ∈ N and F ∈ S. Let ε > 0 and fix n ∈ N, F ∈ S. Choose a partition (Fi) of

F which guarantes that condition (ii) in the corresponding version of Proposition 1

holds true when one considers the absolute Birkhoff integrability of fn and g. Then

for every choice zi ∈ Fi we have

∥

∥

∥

∥

∫

F

fn dµ

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

i

fn(zi)µ(Fi)

∥

∥

∥

∥

+ ε 6
∑

i

‖fn(zi)‖µ(Fi) + ε

6
∑

i

g(zi)µ(Fi) + ε 6

∫

E

g dµ + 2ε.

Hence, by the arbitrariness of ε, we obtain the first inequality in (17). The proof of

the second part of (17) is analogous.

To show that lim
n→∞

∫

Ω
fn dµ =

∫

Ω
f dµ, consider ε > 0 and choose Π0 = (Ei) as in

the proof of the absolute value Birkhoff integrability of f . Modifying that part of

the proof, define the set J as before. Since g is absolutely continous, fix a function

δ : (0, ε) → (0,∞) such that ‖
∫

A
g dµ‖ < η whenever A ∈ S, µ(A) < δ(η), η ∈ (0, ε).
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Then for every i ∈ J pick a set Ki ∈ S with Ki ⊂ Ei, µ(Ki) 6 δ(ε/(5 · 2i)) and

such thatfn → f uniformly on Ei \ Ki. Put K =
⋃

i

Ki and pick N0 ∈ N such that

if K0 =
⋃

i>N0

(Ei \ Ki) then µ(K0) < δ(ε/5). Observe that fn → f uniformly on
⋃

i6N0

(Ei \ Ki) = Ω \ (K ∪K0). By Theorem 6 pick N ∈ N such that for each n > N

we have

(18)

∥

∥

∥

∥

∫

Ω\(K∪K0)

fn dµ −

∫

Ω\(K∪K0)

f dµ

∥

∥

∥

∥

<
ε

5
.

Hence, by (17) and (18), for each n > N we obtain

∥

∥

∥

∥

∫

Ω

fn dµ −

∫

Ω

f dµ

∥

∥

∥

∥

6

∥

∥

∥

∥

∫

K

fn dµ −

∫

K

f dµ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

K0

fn dµ −

∫

K0

f dµ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

Ω\(K∪K0)

fn dµ −

∫

Ω\(K∪K0)

f dµ

∥

∥

∥

∥

6
∑

i

∥

∥

∥

∥

∫

Ki

fn dµ

∥

∥

∥

∥

+
∑

i

∥

∥

∥

∥

∫

Ki

f dµ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

K0

fn dµ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

K0

f dµ

∥

∥

∥

∥

+
ε

5

6 2
∑

i

∫

Ki

g dµ + 2

∫

K0

g dµ +
ε

5
< 2

∑

i

ε

5 · 2i
+

2ε

5
+

ε

5
6 ε.

�

In a particular case we obtain the known Lebesgue type theorem for the Bochner

integral (cf. [5, Thm 3.7.9]).

Corollary 8. Let µ(Ω) < ∞. Assume that functions fn : Ω → X , n ∈ N, are

strongly measurable, Birkhoff integrable, and ‖fn(t)‖ 6 g(t) for all n ∈ N and almost

all t ∈ Ω where g : Ω → R is Lebesgue integrable. Then the functions fn, n ∈ N, are

absolutely Birkhoff integrable, and if fn → f almost everywhere, then f is absolutely

Birkhoff integrable and lim
n→∞

∫

Ω fn dµ =
∫

Ω f dµ.

P r o o f. Note that the functions t 7→ ‖fn(t) − f(t)‖, n ∈ N, are measurable. By

the Egorov theorem, (fn) converges to f almost uniformly. So, Theorem 7 works. �

Now, we will give two examples which show that, in some cases, only one of the

two results, Theorem 4 and Theorem 7, works.

Example 9. Let dimX = ∞. By the Dvoretsky-Rogers theorem [8, Thm 1.c.2],

pick an unconditionally convergent series
∞
∑

i=1

xi, with terms in X , such that
∞
∑

i=1

‖xi‖ =

∞. Let Ω = N, S = P(N) (the power set of N) and µ({i}) = 2−i for i ∈ N. Define
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f : N → X by f(i) = 2ixi, i ∈ N, and let fn = f , n ∈ N. Clearly fn → f uniformly

on N, and f is Birkhoff integrable with
∫

N
f dµ =

∞
∑

i=1

xi. So, Theorem 4 works

but Theorem 7 is not applicable since from
∞
∑

i=1

‖xi‖ = ∞ it follows that f is not

absolutely Birkhoff integrable.

Example 10. Let Ω = (0, 1], let S denote the σ-algebra of Lebesgue measurable

sets and let µ stand for the Lebesgue measure. Put X = l2(Ω), the space of all

functions ϕ from Ω to R that take non-zero values on countable subsets of Ω, with

the norm ‖ϕ‖ = (
∑

x∈Ω

ϕ2(x))1/2. Define et = χ{t}, the characteristic function of {t},

t ∈ Ω. For n ∈ N let fn : Ω → X be given by

fn(t) =

n
∑

i=1

et · χ(1/(i+1),1/i], t ∈ Ω.

Then fn converges almost uniformly to f : Ω → X given by f(t) = et, t ∈ Ω. Of

course, ‖fn(t)‖ 6 1 for all n ∈ N and t ∈ Ω. So, Theorem 7 works. We cannot use

Theorem 4 because from sup
t∈Ω

‖fn(t) − f(t)‖ = 1, n ∈ N, it follows that (fn) does not

converge to f uniformly.
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