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Abstract. For any nontrivial connected graph F and any graph G, the F -degree of a
vertex v in G is the number of copies of F in G containing v. G is called F -continuous if
and only if the F -degrees of any two adjacent vertices in G differ by at most 1; G is F -regular

if the F -degrees of all vertices in G are the same. This paper classifies all P4-continuous
graphs with girth greater than 3. We show that for any nontrivial connected graph F other
than the star K1,k, k > 1, there exists a regular graph that is not F -continuous. If F is
2-connected, then there exists a regular F -continuous graph that is not F -regular.
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1. Introduction

Chartrand et al. in [1] consider the general case of integer-valued functions f

defined on a metric space of objects associated with a particular graph G. Such

a function is continuous if and only if |f(x) − f(y)| 6 1 for every two adjacent

elements x and y in the metric space. When the metric space is the vertex set of G,

a continuous function defined on V (G) is, in fact, a labeling of the vertices of G with

nonnegative integers such that the labels of any two vertices v and u connected with

an edge differ by at most 1. Such a labeling is referred to as a continuous labeling.

Degree-continuous graphs provide an example of graphs with a certain type of a

continuous labeling. A graph G is called degree-continuous if |deg(v) − deg(v′)| 6 1

for every pair {v, v′} of adjacent vertices of G. For more information on degree-

continuous graphs see [5].

This paper is concerned with graphs G = (V, E) together with a different contin-

uous labeling. Given any nontrivial connected graph F , and any vertex v ∈ V (G),

the F -degree of v in G, denoted F -degG(v), is the number of copies (not necessarily

induced) of F in G containing v. Thus, the degree of v, denoted degG(v), and the

51



P2-degree of v are the same where Pn denotes the path on n vertices. When no

confusion is possible, we write F -deg(v) instead of F -degG(v), and deg(v) instead

of degG(v). A graph G is F -continuous (or F -degree continuous) if and only if the

F -degrees of any two adjacent vertices in V (G) differ by at most 1. If, in addition,

F -deg(v) = r for all v ∈ V (G), then, G is F -regular of degree r.

Without loss of generality we can assume that G, as well as F , is nontrivial and

connected; we do not allow loops or multiple edges. If no copy of F can be found in

G, then F -deg(v) = 0 for all v ∈ V (G), and trivially, G is F -continuous and even F -

regular. The girth g(G) of a graph G is the minimum among all cycle lengths taken

over all cycles in G; the circumference c(G) of G is the length of the largest cycle

appearing in G. If G has no cycles, by default g(G) = ∞. The distance between

any two vertices of G is the length of the shortest path between them; the diameter

d(G) of G is the largest over all distances between pairs of vertices in G.

The concept of F -degree was introduced by Chartrand et al. [2] in 1987; results

on F -continuous graphs can be found in [3]. In addition to determining all P3-

continuous graphs, Chartrand, Jarrett et al. [3] show that if G is F -continuous for

all nontrivial connected graphs F , then, G = Pn or G is regular. However, there

are nontrivial connected graphs F such that there exists a regular graph G that

is not F -continuous. Certainly, if F = K1,k, k > 2, and G is an r-regular graph,

then K1,k-deg(v) = (k + 1)
(

r
k

)

for every v ∈ V (G). Thus, there is no regular graph

which is not K1,k-continuous. In the case when F is a 2-connected graph, however,

Chartrand et al. construct a regular graph that is not F -continuous [3].

In Section 3, we extend the above result from 2-connected graphs F to all non-

trivial connected graphs other than K1,k, k > 2, confirming a conjecture in [3].

Furthermore, we show that for every 2-connected graph F , there exists a regular

F -continuous graph that is not F -regular. We begin, in Section 2, by classifying all

P4-continuous graphs that contain no triangles.

2. P4-continuous graphs

This section is entirely devoted to the case of F = P4. All P2-continuous graphs

have been studied in [5], and all P3-continuous graphs have been classified in [3]. We

determine all P4-continuous graphs with girth greater than 3.

Let H and K denote the graphs on five and four vertices, respectively, shown in

Figure 1. Our main result is given below.

Theorem 2.1. Let G be a connected P4-continuous graph with girth g(G) > 3

and minimum degree δ. Then, G is isomorphic to one of H , Pn, K1,n, for some

integer n > 1, or G is δ-regular.
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Figure 1. Two P4-continuous graphs: acyclic graph H on 5 vertices and graph K on 4 ver-
tices

Before we prove Theorem 2.1, we consider some special cases.

Lemma 2.2. Let G be a connected P4-continuous graph, and let C3 denote the

cycle on 3 vertices.

(i) If P4-deg(v) = 0 for some vertex v of G, then G ∼= C3 or K1,n for some integer

n > 1.

(ii) If P4-deg(v) = 1 for some vertex v of G, then G ∼= H or Pn for some integer

n > 4.

(iii) If deg(v) = 1 for some vertex v of G and G contains a copy of P4, then G ∼=

H, K or Pn for some integer n > 4.

P r o o f. (i) The distance between any two vertices x and y of G is less than or

equal to the length of a path from x to y passing through v. Since G is connected,

such a path always exists; it must be that d(G) 6 2 and the result follows.

(ii) Since v is contained in a copy of P4, there exists a vertex u adjacent to v

with deg(u) > 1; i.e. {u, w} ∈ E(G) for some vertex w other than v. For any vertex

x adjacent to v other than u, 〈w, u, v, x〉 is a copy of P4. Therefore, deg(v) = 1

or deg(v) = 2. If deg(v) = 2, no new edges or vertices can be added without

contradicting P4-deg(v) = 1. It must be that G ∼= P4. Suppose that deg(v) = 1 and

let 〈v, u, w, y1〉 be the copy of P4 containing v. Now, no new edges adjacent to w can

be added; u can only be adjacent to a new vertex y2 in which case G ∼= H and no

additional edges are present. Otherwise, it must be that G ∼= P4 or a new vertex y2

is adjacent to y1. Again, either G ∼= P5 or there is a new vertex y3 that can only be

adjacent to y2. Repeating the same procedure we see that G ∼= Pn for some integer

n > 4.

(iii) Let u be the only vertex adjacent to v. Denote by G′ the graph with vertex

set V (G) − v and edge set E(G) − {v, u}. A copy of P4 in G that contains v must

necessarily contain u as well. Any copy of P4 that contains u but does not contain

v must lie entirely in G′. Therefore, P4-degG′(u) = 0 or 1. If P4-degG′(u) = 0, then,

by (i), either G′ ∼= C3 and G ∼= K, or G′ ∼= K1,n and G is P4-continuous and contains

a copy of P4 only if G ∼= P4 or G ∼= H . If P4-degG′(u) = 1, then, by (ii), G′ ∼= H or
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G′ ∼= Pn, n > 4. It is easy to see that the only way for G to be P4-continuous in this

case is if G ∼= H or G ∼= Pn, n > 5. �

P r o o f of Theorem 2.1. By Lemma 2.2, we may assume that δ > 2 and that G

contains a copy of P4. Let v be a vertex of G of degree δ, and let u1, . . . , uδ ∈ V (G)

denote the neighbours of v where deg(ui) := di + 1. For each i, let ui,1, . . . , ui,di
∈

V (G) denote the di neighbours of ui other than v with deg(ui,j) := di,j + 1 for

j = 1, . . . , di. Certainly not all ui,j have to be distinct. Define

ci :=

di
∑

j=1

di,j

and without loss of generality assume that c1 > ci for i = 2, . . . , δ.

Since G contains no triangles, the P4-degree of a vertex in G depends only on the

degrees of all vertices of distance two or less from the given vertex. If A denotes the

number of copies of P4 in G that contain both v and u1, then

P4-deg(v) = A +

δ
∑

i=2

ci + (δ − 2)

δ
∑

i=2

di,

P4-deg(u1) > A + c1(d1 − 1) + c1(δ − 1) = A + c1(d1 + δ − 2)

since each neighbour of u1,j, j = 1, . . . , d1, must have degree at least δ. For each

i = 2, . . . , δ, c1 > ci > di(δ − 1), leading to

c1 >

δ
∑

i=2

di.

It must be that

P4-deg(v) 6 A + c1(δ − 1) + c1(δ − 2) = A + c1(2δ − 3)

and since d1 > δ − 1,

1 > P4-deg(u1) − P4-deg(v) > c1(d1 − δ + 1) > d1(δ − 1)(d1 − δ + 1).

The above inequality does not hold when d1 > δ − 1 since δ > 2; we must have

d1 = δ − 1 and deg(u1) = δ. Then,

(1) P4-deg(v) 6 A + c1(2δ − 3) 6 P4-deg(u1).
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If equality holds in the first part of (1), then c1 = ci for all i = 2, . . . , δ, and by the

same argument as above applied to ci, deg(ui) = δ. All neighbours of the arbitrary

vertex v of degree δ must also have degree δ, showing that G is δ-regular.

Otherwise, equality must hold in the second part of (1). Assume that ck < c1 for

some k, 2 6 k 6 j. Since G is P4-continuous, P4-deg(v) = A + c1(2δ − 3) − 1, and

then,

A +
δ

∑

i=2

ci + (δ − 2)
δ

∑

i=2

di = A + c1(2δ − 3) − 1,

ck + c1(δ − 2) + c1(δ − 2) > c1(2δ − 3) − 1,

ck > c1 − 1.

Thus, ck = c1 − 1 and ci = c1 for all i 6= k. Our argument, then, applies to all ci,

i 6= k, and shows that deg(ui) = δ for all i 6= k. Then, dk > di for all i = 1, . . . , δ

since di = δ − 1 is the smallest possible when i 6= k. We get,

A + c1(2δ − 3) − 1 = A + c1 − 1 + c1(δ − 2) + (δ − 2)

δ
∑

i=2

di,

c1 =

δ
∑

i=2

di,

c1 6 dk(δ − 1).

But then, ck > dk(δ−1) > c1 which contradicts the fact that ck = c1−1. Therefore,

it must be that c1 = ci for all i = 2, . . . , δ and as before G is δ-regular. �

To complete the classification of P4-continuous graphs of girth other than three,

we conclude this section with a closer look at regular graphs.

Lemma 2.3. Let n > 4 be a positive integer. Let G be an r-regular connected

graph with g(G) > n − 1. Then, for every v ∈ V (G),

Pn-deg(v) =
nr(r − 1)n−2

2
− n Cn−1-deg(v)

where Cn−1 is the cycle on n − 1 vertices.

P r o o f. Fix v ∈ V (G). If g(G) > n, then Cn−1-deg(v) = 0, and for v to be at

position i of the path, 1 6 i 6 n, we have r choices for the first edge incident to v

and r − 1 choices for each additional edge of Pn. Finally, since there are n possible

positions for v and since Pn is symmetric, the result follows. If g(G) = n − 1, we

are counting illegitimate copies of Pn whenever v lies on a copy of Cn−1. Moreover,

every such false copy of Pn is counted exactly n times. �
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Corollary 2.4. Let n > 4 be a positive integer. A regular connected graph G

with g(G) > n − 1 is Pn-continuous if and only if it is Cn−1-regular.

Corollary 2.5. An r-regular graphG with girth g(G) > 3 is always P4-continuous

and, in fact, P4-regular of degree 2r(r − 1)2. An r-regular graph with girth equal

to 3 is P4-continuous if and only if it is C3-regular. There does not exist a regular

P4-continuous graph that is not P4-regular.

Open Problem 2.6. Determine all P4-continuous graphs with girth 3 and mini-

mum degree at least 2.

3. F -continuous graphs and regular graphs

In this section we examine F -continuous and F -regular graphs for a general

graph F . Using a counting argument similar to the one used in the proof of

Lemma 2.3 we can consider the case when F is any tree.

Lemma 3.1. Let T be a tree with diameter d(T ) = d > 3 and let G be an

r-regular connected graph with g(G) > d + 1. Then, G is T -regular.

P r o o f. Fix v0 ∈ V (G). When v0 is contained in a copy T ′ of T in G, v0 is

identified with a vertex t′ of T ′. Think of T ′ as a rooted tree with root t′ and say that

v0 lies in a copy of T in position T ′. There exists a set of rooted trees T1, T2, . . . , Ta

that satisfy

1. Ti is isomorphic to T as undirected graphs for i = 1, 2, . . . , a, and

2. For any graph H , and any vertex v ∈ V (H),

T -degH(v) =

a
∑

i=1

ni(H, v)

where ni(H, v) denotes the number of times v lies in a copy of T in H in

position Ti.

The integer a depends only on the structure of T . In the case of the tree P4, for

example, a = 3 and Figure 2 shows the set of three rooted trees.

Figure 2. Set of three rooted trees for P4
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We want to show that T -degG(v0) is constant. For each i = 1, 2, . . . , a,

ni(G, v0) =

(

r

degTi
(ti)

)

∏

u∈V (Ti), u6=ti

(

r − 1

degTi
(u) − 1

)

where ti ∈ V (Ti) denotes the root of Ti. The correctness of the counting argument

is guaranteed by g(G) > d + 1 which is large enough to never mistake a cyclic graph

in G for a copy of T . Therefore, ni(G, v0), i = 1, 2, . . . , a, is a function of r and

the structure of T showing that T -degG(v0) will remain the same irrespective of the

choice of vertex v0 of G. �

We make use of the following result of Erdös and Sachs, the proof of which can be

found in [4].

Lemma 3.2 [4]. For every two integers r > 2 and g > 3, there exists an r-regular

graph G with g(G) = g.

The next theorem solves an open problem posed in [3].

Theorem 3.3. Given any nontrivial connected graph F other than the star K1,k,

k > 1, there exists a regular graph that is not F -continuous.

P r o o f. Chartrand et al. in [3] have resolved the case of 2-connected graphs F .

It will suffice, then, to construct a regular graph with the desired property for any

other possible F , falling into two categories.

Case 1 : F is a tree.

Let d(F ) = d, d > 3, and |V (F )| = n. Note that d < 3 implies that F is a star

graph. As hinted by Lemma 3.1, the idea is to construct a regular graph of girth d

which contains exactly one copy of Cd. We start with a copy of F to avoid designing

a regular graph that is trivially F -continuous because all of its F -degrees are zero.

Pick two vertices x and y of F distance d apart and let the path P , passing through

vertices x, v1, v2, . . . , vd−1, y in that order, be a path of length d. Denote by ∆ the

highest degree of a vertex in F and set r = 4∆. We will construct an r-regular graph

that is not F -continuous.

Attach a single cycle Cd to the vertex x of a copy of F by identifying x with a

vertex on the cycle. Each vertex of this new graph, that we will call H , has a degree

less than or equal to ∆ + 2 < r. Collectively, for the vertices in the copy of F we

need additional

nr − 2 −
∑

v∈V (F )

degF (v)
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edges, in order to make all of them have degree r in the new graph we are creating.

For the vertices in the cycle Cd, excluding x, we need (d−1)(r−2) more edges. Note

that

(d − 1)(r − 2) + nr − 2 −
∑

v∈V (F )

degF (v) = r(n + d − 1) − 2d −
∑

v∈V (F )

degF (v) = 2q

is even since r is even. By Lemma 3.2, there exists an r-regular graph J with

g(J) = d + 1. Take q distinct copies of J and remove the same edge {s, t} in each

copy. Then, glue each of those graphs to H by adding the edges {s, u} and {t, w},

where u and w are vertices of H in such a way that will complete the degree of each

vertex to r. Denote the new r-regular graph by G. Certainly G contains no cycles

of length less than d + 1 except the single cycle Cd we started with. If G′ is any

r-regular graph with g(G′) > d + 1, Lemma 3.1 will imply that F -degG′(v) = A

for all v ∈ V (G′) and some positive constant A. Since we have the cycle Cd in G,

however, the F -degree of some vertices of G will be less than A since A would count

some cyclic graphs as copies of F .

Consider the adjacent vertices x and v1 of G. Despite the edges we added to H ,

v1 does not lie directly on the cycle Cd, and therefore, no double counting will occur

and F -degG(v1) = A. However, the same counting procedure applied to F -degG(x)

will consider the cycle Cd as an acyclic path of length d at least twice, once in either

direction. Then, F -degG(x) 6 A − 2, making the F -degrees of x and v1 differ by

more than 1; we have shown that G is not F -continuous.

Case 2 : F is not a tree.

Let c(F ) = c and say that F has m cycles Cc. For each v ∈ V (F ), define the

proximity of v in F , denoted proxF (v), to be the length of a shortest path from v

to a vertex on any of the m cycles Cc in F . If v lies on one of the m cycles, then

proxF (v) = 0. Also, let

p = max{proxF (v) : v ∈ V (F )}.

Identify two copies F1 and F2 of F at the same vertex x, where proxF (x) = p. Add

an additional vertex y and the edge {x, y}, and denote the resulting graph by H .

Let r be the largest degree of a vertex in H . Using H , we will construct an r-regular

graph G that is not F -continuous. In particular, our goal is to make F -degG(y) = 0

while F -degG(x) > 2.

Using Lemma 3.2, there exists an r-regular graph J of girth g = max {c + 1, p}.

Note that

∑

u∈V (H),u6=x,y

(r − degH(u)) = 2
∑

u∈V (F ),u6=x

(r − degF (u)) = 2q
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is even. Let J1, J2, . . . , Jq be q disjoint copies of J . Remove the same edge, say {s, t}

from each copy. Then, glue each copy Ji − {s, t} to H by adding the edges {s, v1}

and {t, v2} where v1 is a vertex of F1, v2 is the corresponding vertex of F2, and

v1, v2 6= x. Continue to glue the copies of J until all vertices of H , except possibly x

and y, have degree r.

Next, we deal with the vertices x and y. Let b = degF (x). Note that degH(x) =

2b + 1 and degH(y) = 1. Take r − (2b + 1) more copies of J , remove the same edge

{s, t}, and attach each copy to H by adding the edges {x, s} and {y, t}. In the graph

we have constructed so far, all vertices will have degree r, except possibly the vertex

y that will have degree r − 2b. So, finally, take b copies of J , remove the same edge

{s, t}, and glue each copy to our graph by the edges {y, s} and {y, t}. Denote the

final graph by G. Certainly G is r-regular and the only cycles Cc in G are the 2m

such cycles in F1 and F2. Furthermore, since F1 and F2 contain the vertex x, it is

clear that F -degG(x) > 2. We are left to show that F -degG(y) = 0.

Assume on the contrary that y is contained in a copy F ′ of F , where F ′ is a

subgraph of G. Then, F ′ must containm of the 2m cycles Cc in G. By our definition

of p, proxF ′(y) 6 p.

However, if we remove the vertex x from G, G is no longer connected, and all of

the cycles of type Cc will lie in a different component than the vertex y. Also, since

g(J) > p, the shortest distance from x to a cycle Cc in G remains p. That is, any

shortest path from y to a cycle Cc must start with the edge {y, x} and continue with

a path from x to a cycle Cc. Thus,

proxG(y) > 1 + p

which is impossible because proxF ′(y) > proxG(y). Therefore, x and y are adjacent

vertices of G whose F -degrees differ by more than 1; G is not F -continuous. �

Chartrand et al. in [3] pose yet another open problem concerning regular graphs.

They question whether for every nontrivial connected graph F , F 6= K1,k for k > 1,

there exists a regular F -continuous graph which is not F -regular. In [3] they answer

this question in the affirmative if F is any nontrivial complete graph Kn. Here, we

show that the answer is still affirmative if F is any 2-connected graph - a graph which

remains connected after removing any two of its vertices and their adjacent edges.

Theorem 3.4. For every nontrivial 2-connected graph F , there exists a regular

F -continuous graph that is not F -regular.

P r o o f. Let c(F ) = c and take two disjoint copies F1 and F2 of F . Add a new

vertex y and two new edges {y, x1} and {y, x2}, where x1 is a vertex in F1 and x2 is
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the corresponding vertex in F2. Denote the graph constructed so far by H . If ∆(H)

is the largest degree of a vertex in H , let r = 4∆(H). We will add edges and vertices

to H to convert it to an r-regular graph. Observe that

r − 2 + 2

(

∑

v∈V (F )

r − degF (v)

)

− 2 = 2q

is even since r is even. Using q disjoint copies of an r-regular graph J with g(J) = c+1

we can transform H into an r-regular graph G with girth c using the same approach

as in the proof

of Theorem 3.3. The only cycles of length c in G would be the ones in F1 and

F2. This and the fact that F is 2-connected guarantees that F1 and F2 are the only

copies of F in G. Then, F -degG(y) = 0 while F -degG(x1) = F -degG(x2) = 1 and

there is no vertex in G that is contained in both F1 and F2. Therefore, G is not

F -regular but it is F -continuous. �

When F is not 2-connected, however, the same result does not necessarily hold.

In particular, when F = P4 there does not exist a regular P4-continuous graph that

is not P4-regular as seen in Corollary 2.5.

Open Problem 3.5. For every integer n > 5, does there exist a regular Pn-

continuous graph that is not Pn-regular?

Open Problem 3.6. Given any nontrivial connected graph F that is not 2-

connected, does there exist a regular F -continuous graph that is not F -regular?
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