Czechoslovak Mathematical Journal

Anna Draganova
Results on F-continuous graphs

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 1, 51-60

Persistent URL: http://dml.cz/dmlcz/140463

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

RESULTS ON F-CONTINUOUS GRAPHS

Anna Draganova, Santa Clarita

(Received August 9, 2006)

Abstract

For any nontrivial connected graph F and any graph G, the F-degree of a vertex v in G is the number of copies of F in G containing $v . G$ is called F-continuous if and only if the F-degrees of any two adjacent vertices in G differ by at most $1 ; G$ is F-regular if the F-degrees of all vertices in G are the same. This paper classifies all P_{4}-continuous graphs with girth greater than 3 . We show that for any nontrivial connected graph F other than the star $K_{1, k}, k \geqslant 1$, there exists a regular graph that is not F-continuous. If F is 2 -connected, then there exists a regular F-continuous graph that is not F-regular.

Keywords: continuous, F-continuous, F-regular, regular graph
MSC 2010: 05C12, 05C78

1. Introduction

Chartrand et al. in [1] consider the general case of integer-valued functions f defined on a metric space of objects associated with a particular graph G. Such a function is continuous if and only if $|f(x)-f(y)| \leqslant 1$ for every two adjacent elements x and y in the metric space. When the metric space is the vertex set of G, a continuous function defined on $V(G)$ is, in fact, a labeling of the vertices of G with nonnegative integers such that the labels of any two vertices v and u connected with an edge differ by at most 1 . Such a labeling is referred to as a continuous labeling. Degree-continuous graphs provide an example of graphs with a certain type of a continuous labeling. A graph G is called degree-continuous if $\left|\operatorname{deg}(v)-\operatorname{deg}\left(v^{\prime}\right)\right| \leqslant 1$ for every pair $\left\{v, v^{\prime}\right\}$ of adjacent vertices of G. For more information on degreecontinuous graphs see [5].

This paper is concerned with graphs $G=(V, E)$ together with a different continuous labeling. Given any nontrivial connected graph F, and any vertex $v \in V(G)$, the F-degree of v in G, denoted F - $\operatorname{deg}_{G}(v)$, is the number of copies (not necessarily induced) of F in G containing v. Thus, the degree of v, denoted $\operatorname{deg}_{G}(v)$, and the
P_{2}-degree of v are the same where P_{n} denotes the path on n vertices. When no confusion is possible, we write $F-\operatorname{deg}(v)$ instead of $F-\operatorname{deg}_{G}(v)$, and $\operatorname{deg}(v)$ instead of $\operatorname{deg}_{G}(v)$. A graph G is F-continuous (or F-degree continuous) if and only if the F-degrees of any two adjacent vertices in $V(G)$ differ by at most 1. If, in addition, $F-\operatorname{deg}(v)=r$ for all $v \in V(G)$, then, G is F-regular of degree r.

Without loss of generality we can assume that G, as well as F, is nontrivial and connected; we do not allow loops or multiple edges. If no copy of F can be found in G, then $F-\operatorname{deg}(v)=0$ for all $v \in V(G)$, and trivially, G is F-continuous and even F regular. The girth $g(G)$ of a graph G is the minimum among all cycle lengths taken over all cycles in G; the circumference $c(G)$ of G is the length of the largest cycle appearing in G. If G has no cycles, by default $g(G)=\infty$. The distance between any two vertices of G is the length of the shortest path between them; the diameter $d(G)$ of G is the largest over all distances between pairs of vertices in G.

The concept of F-degree was introduced by Chartrand et al. [2] in 1987; results on F-continuous graphs can be found in [3]. In addition to determining all P_{3} continuous graphs, Chartrand, Jarrett et al. [3] show that if G is F-continuous for all nontrivial connected graphs F, then, $G=P_{n}$ or G is regular. However, there are nontrivial connected graphs F such that there exists a regular graph G that is not F-continuous. Certainly, if $F=K_{1, k}, k \geqslant 2$, and G is an r-regular graph, then $K_{1, k}-\operatorname{deg}(v)=(k+1)\binom{r}{k}$ for every $v \in V(G)$. Thus, there is no regular graph which is not $K_{1, k}$-continuous. In the case when F is a 2 -connected graph, however, Chartrand et al. construct a regular graph that is not F-continuous [3].

In Section 3, we extend the above result from 2-connected graphs F to all nontrivial connected graphs other than $K_{1, k}, k \geqslant 2$, confirming a conjecture in [3]. Furthermore, we show that for every 2-connected graph F, there exists a regular F-continuous graph that is not F-regular. We begin, in Section 2, by classifying all P_{4}-continuous graphs that contain no triangles.

2. P_{4}-CONTINUOUS GRAPHS

This section is entirely devoted to the case of $F=P_{4}$. All P_{2}-continuous graphs have been studied in [5], and all P_{3}-continuous graphs have been classified in [3]. We determine all P_{4}-continuous graphs with girth greater than 3 .

Let H and K denote the graphs on five and four vertices, respectively, shown in Figure 1. Our main result is given below.

Theorem 2.1. Let G be a connected P_{4}-continuous graph with girth $g(G)>3$ and minimum degree δ. Then, G is isomorphic to one of $H, P_{n}, K_{1, n}$, for some integer $n \geqslant 1$, or G is δ-regular.

Figure 1. Two P_{4}-continuous graphs: acyclic graph H on 5 vertices and graph K on 4 vertices

Before we prove Theorem 2.1, we consider some special cases.

Lemma 2.2. Let G be a connected P_{4}-continuous graph, and let C_{3} denote the cycle on 3 vertices.
(i) If $P_{4}-\operatorname{deg}(v)=0$ for some vertex v of G, then $G \cong C_{3}$ or $K_{1, n}$ for some integer $n \geqslant 1$.
(ii) If $P_{4}-\operatorname{deg}(v)=1$ for some vertex v of G, then $G \cong H$ or P_{n} for some integer $n \geqslant 4$.
(iii) If $\operatorname{deg}(v)=1$ for some vertex v of G and G contains a copy of P_{4}, then $G \cong$ H, K or P_{n} for some integer $n \geqslant 4$.

Proof. (i) The distance between any two vertices x and y of G is less than or equal to the length of a path from x to y passing through v. Since G is connected, such a path always exists; it must be that $d(G) \leqslant 2$ and the result follows.
(ii) Since v is contained in a copy of P_{4}, there exists a vertex u adjacent to v with $\operatorname{deg}(u)>1$; i.e. $\{u, w\} \in E(G)$ for some vertex w other than v. For any vertex x adjacent to v other than $u,\langle w, u, v, x\rangle$ is a copy of P_{4}. Therefore, $\operatorname{deg}(v)=1$ or $\operatorname{deg}(v)=2$. If $\operatorname{deg}(v)=2$, no new edges or vertices can be added without contradicting $P_{4}-\operatorname{deg}(v)=1$. It must be that $G \cong P_{4}$. Suppose that $\operatorname{deg}(v)=1$ and let $\left\langle v, u, w, y_{1}\right\rangle$ be the copy of P_{4} containing v. Now, no new edges adjacent to w can be added; u can only be adjacent to a new vertex y_{2} in which case $G \cong H$ and no additional edges are present. Otherwise, it must be that $G \cong P_{4}$ or a new vertex y_{2} is adjacent to y_{1}. Again, either $G \cong P_{5}$ or there is a new vertex y_{3} that can only be adjacent to y_{2}. Repeating the same procedure we see that $G \cong P_{n}$ for some integer $n \geqslant 4$.
(iii) Let u be the only vertex adjacent to v. Denote by G^{\prime} the graph with vertex set $V(G)-v$ and edge set $E(G)-\{v, u\}$. A copy of P_{4} in G that contains v must necessarily contain u as well. Any copy of P_{4} that contains u but does not contain v must lie entirely in G^{\prime}. Therefore, $P_{4}-\operatorname{deg}_{G^{\prime}}(u)=0$ or 1 . If $P_{4}-\operatorname{deg}_{G^{\prime}}(u)=0$, then, by (i), either $G^{\prime} \cong C_{3}$ and $G \cong K$, or $G^{\prime} \cong K_{1, n}$ and G is P_{4}-continuous and contains a copy of P_{4} only if $G \cong P_{4}$ or $G \cong H$. If $P_{4}-\operatorname{deg}_{G^{\prime}}(u)=1$, then, by (ii), $G^{\prime} \cong H$ or
$G^{\prime} \cong P_{n}, n \geqslant 4$. It is easy to see that the only way for G to be P_{4}-continuous in this case is if $G \cong H$ or $G \cong P_{n}, n \geqslant 5$.

Pro of of Theorem 2.1. By Lemma 2.2, we may assume that $\delta \geqslant 2$ and that G contains a copy of P_{4}. Let v be a vertex of G of degree δ, and let $u_{1}, \ldots, u_{\delta} \in V(G)$ denote the neighbours of v where $\operatorname{deg}\left(u_{i}\right):=d_{i}+1$. For each i, let $u_{i, 1}, \ldots, u_{i, d_{i}} \in$ $V(G)$ denote the d_{i} neighbours of u_{i} other than v with $\operatorname{deg}\left(u_{i, j}\right):=d_{i, j}+1$ for $j=1, \ldots, d_{i}$. Certainly not all $u_{i, j}$ have to be distinct. Define

$$
c_{i}:=\sum_{j=1}^{d_{i}} d_{i, j}
$$

and without loss of generality assume that $c_{1} \geqslant c_{i}$ for $i=2, \ldots, \delta$.
Since G contains no triangles, the P_{4}-degree of a vertex in G depends only on the degrees of all vertices of distance two or less from the given vertex. If A denotes the number of copies of P_{4} in G that contain both v and u_{1}, then

$$
\begin{aligned}
P_{4}-\operatorname{deg}(v) & =A+\sum_{i=2}^{\delta} c_{i}+(\delta-2) \sum_{i=2}^{\delta} d_{i}, \\
P_{4}-\operatorname{deg}\left(u_{1}\right) & \geqslant A+c_{1}\left(d_{1}-1\right)+c_{1}(\delta-1)=A+c_{1}\left(d_{1}+\delta-2\right)
\end{aligned}
$$

since each neighbour of $u_{1, j}, j=1, \ldots, d_{1}$, must have degree at least δ. For each $i=2, \ldots, \delta, c_{1} \geqslant c_{i} \geqslant d_{i}(\delta-1)$, leading to

$$
c_{1} \geqslant \sum_{i=2}^{\delta} d_{i} .
$$

It must be that

$$
P_{4}-\operatorname{deg}(v) \leqslant A+c_{1}(\delta-1)+c_{1}(\delta-2)=A+c_{1}(2 \delta-3)
$$

and since $d_{1} \geqslant \delta-1$,

$$
1 \geqslant P_{4}-\operatorname{deg}\left(u_{1}\right)-P_{4}-\operatorname{deg}(v) \geqslant c_{1}\left(d_{1}-\delta+1\right) \geqslant d_{1}(\delta-1)\left(d_{1}-\delta+1\right)
$$

The above inequality does not hold when $d_{1}>\delta-1$ since $\delta \geqslant 2$; we must have $d_{1}=\delta-1$ and $\operatorname{deg}\left(u_{1}\right)=\delta$. Then,

$$
\begin{equation*}
P_{4}-\operatorname{deg}(v) \leqslant A+c_{1}(2 \delta-3) \leqslant P_{4}-\operatorname{deg}\left(u_{1}\right) . \tag{1}
\end{equation*}
$$

If equality holds in the first part of (1), then $c_{1}=c_{i}$ for all $i=2, \ldots, \delta$, and by the same argument as above applied to $c_{i}, \operatorname{deg}\left(u_{i}\right)=\delta$. All neighbours of the arbitrary vertex v of degree δ must also have degree δ, showing that G is δ-regular.

Otherwise, equality must hold in the second part of (1). Assume that $c_{k}<c_{1}$ for some $k, 2 \leqslant k \leqslant j$. Since G is P_{4}-continuous, $P_{4}-\operatorname{deg}(v)=A+c_{1}(2 \delta-3)-1$, and then,

$$
\begin{aligned}
A+\sum_{i=2}^{\delta} c_{i}+(\delta-2) \sum_{i=2}^{\delta} d_{i} & =A+c_{1}(2 \delta-3)-1 \\
c_{k}+c_{1}(\delta-2)+c_{1}(\delta-2) & \geqslant c_{1}(2 \delta-3)-1 \\
c_{k} & \geqslant c_{1}-1
\end{aligned}
$$

Thus, $c_{k}=c_{1}-1$ and $c_{i}=c_{1}$ for all $i \neq k$. Our argument, then, applies to all c_{i}, $i \neq k$, and shows that $\operatorname{deg}\left(u_{i}\right)=\delta$ for all $i \neq k$. Then, $d_{k} \geqslant d_{i}$ for all $i=1, \ldots, \delta$ since $d_{i}=\delta-1$ is the smallest possible when $i \neq k$. We get,

$$
\begin{aligned}
A+c_{1}(2 \delta-3)-1 & =A+c_{1}-1+c_{1}(\delta-2)+(\delta-2) \sum_{i=2}^{\delta} d_{i} \\
c_{1} & =\sum_{i=2}^{\delta} d_{i}, \\
c_{1} & \leqslant d_{k}(\delta-1) .
\end{aligned}
$$

But then, $c_{k} \geqslant d_{k}(\delta-1) \geqslant c_{1}$ which contradicts the fact that $c_{k}=c_{1}-1$. Therefore, it must be that $c_{1}=c_{i}$ for all $i=2, \ldots, \delta$ and as before G is δ-regular.

To complete the classification of P_{4}-continuous graphs of girth other than three, we conclude this section with a closer look at regular graphs.

Lemma 2.3. Let $n \geqslant 4$ be a positive integer. Let G be an r-regular connected graph with $g(G) \geqslant n-1$. Then, for every $v \in V(G)$,

$$
P_{n}-\operatorname{deg}(v)=\frac{n r(r-1)^{n-2}}{2}-n C_{n-1}-\operatorname{deg}(v)
$$

where C_{n-1} is the cycle on $n-1$ vertices.
Proof. Fix $v \in V(G)$. If $g(G) \geqslant n$, then $C_{n-1}-\operatorname{deg}(v)=0$, and for v to be at position i of the path, $1 \leqslant i \leqslant n$, we have r choices for the first edge incident to v and $r-1$ choices for each additional edge of P_{n}. Finally, since there are n possible positions for v and since P_{n} is symmetric, the result follows. If $g(G)=n-1$, we are counting illegitimate copies of P_{n} whenever v lies on a copy of C_{n-1}. Moreover, every such false copy of P_{n} is counted exactly n times.

Corollary 2.4. Let $n \geqslant 4$ be a positive integer. A regular connected graph G with $g(G) \geqslant n-1$ is P_{n}-continuous if and only if it is C_{n-1}-regular.

Corollary 2.5. An r-regular graph G with girth $g(G)>3$ is always P_{4}-continuous and, in fact, P_{4}-regular of degree $2 r(r-1)^{2}$. An r-regular graph with girth equal to 3 is P_{4}-continuous if and only if it is C_{3}-regular. There does not exist a regular P_{4}-continuous graph that is not P_{4}-regular.

Open Problem 2.6. Determine all P_{4}-continuous graphs with girth 3 and minimum degree at least 2 .

3. F-CONTINUOUS GRaphS And REGULAR GRaphS

In this section we examine F-continuous and F-regular graphs for a general graph F. Using a counting argument similar to the one used in the proof of Lemma 2.3 we can consider the case when F is any tree.

Lemma 3.1. Let T be a tree with diameter $d(T)=d \geqslant 3$ and let G be an r-regular connected graph with $g(G) \geqslant d+1$. Then, G is T-regular.

Proof. Fix $v_{0} \in V(G)$. When v_{0} is contained in a copy T^{\prime} of T in G, v_{0} is identified with a vertex t^{\prime} of T^{\prime}. Think of T^{\prime} as a rooted tree with root t^{\prime} and say that v_{0} lies in a copy of T in position T^{\prime}. There exists a set of rooted trees $T_{1}, T_{2}, \ldots, T_{a}$ that satisfy

1. T_{i} is isomorphic to T as undirected graphs for $i=1,2, \ldots, a$, and
2. For any graph H, and any vertex $v \in V(H)$,

$$
T-\operatorname{deg}_{H}(v)=\sum_{i=1}^{a} n_{i}(H, v)
$$

where $n_{i}(H, v)$ denotes the number of times v lies in a copy of T in H in position T_{i}.
The integer a depends only on the structure of T. In the case of the tree P_{4}, for example, $a=3$ and Figure 2 shows the set of three rooted trees.

Figure 2. Set of three rooted trees for P_{4}

We want to show that $T-\operatorname{deg}_{G}\left(v_{0}\right)$ is constant. For each $i=1,2, \ldots, a$,

$$
n_{i}\left(G, v_{0}\right)=\binom{r}{\operatorname{deg}_{T_{i}}\left(t_{i}\right)} \prod_{u \in V\left(T_{i}\right),}\left(\begin{array}{c}
r-1 \\
u \neq t_{i}
\end{array}\left(\begin{array}{c}
\\
\operatorname{deg}_{T_{i}}(u)-1
\end{array}\right)\right.
$$

where $t_{i} \in V\left(T_{i}\right)$ denotes the root of T_{i}. The correctness of the counting argument is guaranteed by $g(G) \geqslant d+1$ which is large enough to never mistake a cyclic graph in G for a copy of T. Therefore, $n_{i}\left(G, v_{0}\right), i=1,2, \ldots, a$, is a function of r and the structure of T showing that $T-\operatorname{deg}_{G}\left(v_{0}\right)$ will remain the same irrespective of the choice of vertex v_{0} of G.

We make use of the following result of Erdös and Sachs, the proof of which can be found in [4].

Lemma 3.2 [4]. For every two integers $r \geqslant 2$ and $g \geqslant 3$, there exists an r-regular graph G with $g(G)=g$.

The next theorem solves an open problem posed in [3].

Theorem 3.3. Given any nontrivial connected graph F other than the star $K_{1, k}$, $k \geqslant 1$, there exists a regular graph that is not F-continuous.

Proof. Chartrand et al. in [3] have resolved the case of 2-connected graphs F. It will suffice, then, to construct a regular graph with the desired property for any other possible F, falling into two categories.

Case 1: F is a tree.
Let $d(F)=d, d \geqslant 3$, and $|V(F)|=n$. Note that $d<3$ implies that F is a star graph. As hinted by Lemma 3.1, the idea is to construct a regular graph of girth d which contains exactly one copy of C_{d}. We start with a copy of F to avoid designing a regular graph that is trivially F-continuous because all of its F-degrees are zero. Pick two vertices x and y of F distance d apart and let the path P, passing through vertices $x, v_{1}, v_{2}, \ldots, v_{d-1}, y$ in that order, be a path of length d. Denote by Δ the highest degree of a vertex in F and set $r=4 \Delta$. We will construct an r-regular graph that is not F-continuous.

Attach a single cycle C_{d} to the vertex x of a copy of F by identifying x with a vertex on the cycle. Each vertex of this new graph, that we will call H, has a degree less than or equal to $\Delta+2<r$. Collectively, for the vertices in the copy of F we need additional

$$
n r-2-\sum_{v \in V(F)} \operatorname{deg}_{F}(v)
$$

edges, in order to make all of them have degree r in the new graph we are creating. For the vertices in the cycle C_{d}, excluding x, we need $(d-1)(r-2)$ more edges. Note that
$(d-1)(r-2)+n r-2-\sum_{v \in V(F)} \operatorname{deg}_{F}(v)=r(n+d-1)-2 d-\sum_{v \in V(F)} \operatorname{deg}_{F}(v)=2 q$
is even since r is even. By Lemma 3.2, there exists an r-regular graph J with $g(J)=d+1$. Take q distinct copies of J and remove the same edge $\{s, t\}$ in each copy. Then, glue each of those graphs to H by adding the edges $\{s, u\}$ and $\{t, w\}$, where u and w are vertices of H in such a way that will complete the degree of each vertex to r. Denote the new r-regular graph by G. Certainly G contains no cycles of length less than $d+1$ except the single cycle C_{d} we started with. If G^{\prime} is any r-regular graph with $g\left(G^{\prime}\right) \geqslant d+1$, Lemma 3.1 will imply that F - $\operatorname{deg}_{G^{\prime}}(v)=A$ for all $v \in V\left(G^{\prime}\right)$ and some positive constant A. Since we have the cycle C_{d} in G, however, the F-degree of some vertices of G will be less than A since A would count some cyclic graphs as copies of F.

Consider the adjacent vertices x and v_{1} of G. Despite the edges we added to H, v_{1} does not lie directly on the cycle C_{d}, and therefore, no double counting will occur and $F-\operatorname{deg}_{G}\left(v_{1}\right)=A$. However, the same counting procedure applied to $F-\operatorname{deg}_{G}(x)$ will consider the cycle C_{d} as an acyclic path of length d at least twice, once in either direction. Then, F - $\operatorname{deg}_{G}(x) \leqslant A-2$, making the F-degrees of x and v_{1} differ by more than 1 ; we have shown that G is not F-continuous.

Case 2: F is not a tree.
Let $c(F)=c$ and say that F has m cycles C_{c}. For each $v \in V(F)$, define the proximity of v in F, denoted $\operatorname{prox}_{F}(v)$, to be the length of a shortest path from v to a vertex on any of the m cycles C_{c} in F. If v lies on one of the m cycles, then $\operatorname{prox}_{F}(v)=0$. Also, let

$$
p=\max \left\{\operatorname{prox}_{F}(v): v \in V(F)\right\}
$$

Identify two copies F_{1} and F_{2} of F at the same vertex x, where $\operatorname{prox}_{F}(x)=p$. Add an additional vertex y and the edge $\{x, y\}$, and denote the resulting graph by H. Let r be the largest degree of a vertex in H. Using H, we will construct an r-regular graph G that is not F-continuous. In particular, our goal is to make $F-\operatorname{deg}_{G}(y)=0$ while $F-\operatorname{deg}_{G}(x) \geqslant 2$.

Using Lemma 3.2, there exists an r-regular graph J of girth $g=\max \{c+1, p\}$. Note that

$$
\sum_{u \in V(H), u \neq x, y}\left(r-\operatorname{deg}_{H}(u)\right)=2 \sum_{u \in V(F), u \neq x}\left(r-\operatorname{deg}_{F}(u)\right)=2 q
$$

is even. Let $J_{1}, J_{2}, \ldots, J_{q}$ be q disjoint copies of J. Remove the same edge, say $\{s, t\}$ from each copy. Then, glue each copy $J_{i}-\{s, t\}$ to H by adding the edges $\left\{s, v_{1}\right\}$ and $\left\{t, v_{2}\right\}$ where v_{1} is a vertex of F_{1}, v_{2} is the corresponding vertex of F_{2}, and $v_{1}, v_{2} \neq x$. Continue to glue the copies of J until all vertices of H, except possibly x and y, have degree r.

Next, we deal with the vertices x and y. Let $b=\operatorname{deg}_{F}(x)$. Note that $\operatorname{deg}_{H}(x)=$ $2 b+1$ and $\operatorname{deg}_{H}(y)=1$. Take $r-(2 b+1)$ more copies of J, remove the same edge $\{s, t\}$, and attach each copy to H by adding the edges $\{x, s\}$ and $\{y, t\}$. In the graph we have constructed so far, all vertices will have degree r, except possibly the vertex y that will have degree $r-2 b$. So, finally, take b copies of J, remove the same edge $\{s, t\}$, and glue each copy to our graph by the edges $\{y, s\}$ and $\{y, t\}$. Denote the final graph by G. Certainly G is r-regular and the only cycles C_{c} in G are the $2 m$ such cycles in F_{1} and F_{2}. Furthermore, since F_{1} and F_{2} contain the vertex x, it is clear that $F-\operatorname{deg}_{G}(x) \geqslant 2$. We are left to show that $F-\operatorname{deg}_{G}(y)=0$.

Assume on the contrary that y is contained in a copy F^{\prime} of F, where F^{\prime} is a subgraph of G. Then, F^{\prime} must contain m of the $2 m$ cycles C_{c} in G. By our definition of $p, \operatorname{prox}_{F^{\prime}}(y) \leqslant p$.

However, if we remove the vertex x from G, G is no longer connected, and all of the cycles of type C_{c} will lie in a different component than the vertex y. Also, since $g(J) \geqslant p$, the shortest distance from x to a cycle C_{c} in G remains p. That is, any shortest path from y to a cycle C_{c} must start with the edge $\{y, x\}$ and continue with a path from x to a cycle C_{c}. Thus,

$$
\operatorname{prox}_{G}(y) \geqslant 1+p
$$

which is impossible because $\operatorname{prox}_{F^{\prime}}(y) \geqslant \operatorname{prox}_{G}(y)$. Therefore, x and y are adjacent vertices of G whose F-degrees differ by more than 1; G is not F-continuous.

Chartrand et al. in [3] pose yet another open problem concerning regular graphs. They question whether for every nontrivial connected graph $F, F \neq K_{1, k}$ for $k \geqslant 1$, there exists a regular F-continuous graph which is not F-regular. In [3] they answer this question in the affirmative if F is any nontrivial complete graph K_{n}. Here, we show that the answer is still affirmative if F is any 2-connected graph - a graph which remains connected after removing any two of its vertices and their adjacent edges.

Theorem 3.4. For every nontrivial 2 -connected graph F, there exists a regular F-continuous graph that is not F-regular.

Proof. Let $c(F)=c$ and take two disjoint copies F_{1} and F_{2} of F. Add a new vertex y and two new edges $\left\{y, x_{1}\right\}$ and $\left\{y, x_{2}\right\}$, where x_{1} is a vertex in F_{1} and x_{2} is
the corresponding vertex in F_{2}. Denote the graph constructed so far by H. If $\Delta(H)$ is the largest degree of a vertex in H, let $r=4 \Delta(H)$. We will add edges and vertices to H to convert it to an r-regular graph. Observe that

$$
r-2+2\left(\sum_{v \in V(F)} r-\operatorname{deg}_{F}(v)\right)-2=2 q
$$

is even since r is even. Using q disjoint copies of an r-regular graph J with $g(J)=c+1$ we can transform H into an r-regular graph G with girth c using the same approach as in the proof
of Theorem 3.3. The only cycles of length c in G would be the ones in F_{1} and F_{2}. This and the fact that F is 2 -connected guarantees that F_{1} and F_{2} are the only copies of F in G. Then, $F-\operatorname{deg}_{G}(y)=0$ while $F-\operatorname{deg}_{G}\left(x_{1}\right)=F-\operatorname{deg}_{G}\left(x_{2}\right)=1$ and there is no vertex in G that is contained in both F_{1} and F_{2}. Therefore, G is not F-regular but it is F-continuous.

When F is not 2-connected, however, the same result does not necessarily hold. In particular, when $F=P_{4}$ there does not exist a regular P_{4}-continuous graph that is not P_{4}-regular as seen in Corollary 2.5.

Open Problem 3.5. For every integer $n \geqslant 5$, does there exist a regular P_{n} continuous graph that is not P_{n}-regular?

Open Problem 3.6. Given any nontrivial connected graph F that is not 2connected, does there exist a regular F-continuous graph that is not F-regular?

Acknowledgments. This paper was written under the supervision of Joseph A. Gallian at the University of Minnesota, Duluth. Thanks to Gary Chartrand for providing preprints. The author was partially supported by Pomona College and University of Minnesota, Duluth.

References

[1] G. Chartrand, L. Eroh, M. Schultz and P. Zhang: An introduction to analytic graph theory. Util. Math. 59 (2001), 31-55.
[2] G.Chartrand, K.S. Holbert, O. R. Oellermann and H. C.Swart: F-Degrees in graphs. Ars Comb. 24 (1987), 133-148.
[3] G. Chartrand, E. Jarrett, F. Saba, E. Salehi and P. Zhang: F-Continuous graphs. Czech. Math. J. 51 (2001), 351-361.
[4] P. Erdös and H. Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl. Wiss Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 12 (1963), 251-258.
[5] J. Gimbel and P. Zhang: Degree-continuous graphs. Czech. Math. J. 51 (2001), 163-171.
Author's address: A nna Draganova, 21648 Glen Canyon Place, Santa Clarita, CA 91390, USA, e-mail: anna_draganova@mckinsey.com.

