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ON THE STRUCTURE OF A MORSE FORM FOLIATION
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Abstract. The foliation of a Morse form ω on a closed manifold M is considered. Its
maximal components (cylinders formed by compact leaves) form the foliation graph; the
cycle rank of this graph is calculated. The number of minimal and maximal components is
estimated in terms of characteristics of M and ω. Conditions for the presence of minimal
components and homologically non-trivial compact leaves are given in terms of rkω and
Singω. The set of the ranks of all forms defining a given foliation without minimal com-
ponents is described. It is shown that if ω has more centers than conic singularities then
b1(M) = 0 and thus the foliation has no minimal components and homologically non-trivial
compact leaves, its folitation graph being a tree.

Keywords: number of minimal components, number of maximal components, compact
leaves, foliation graph, rank of a form
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1. Introduction and announcement of the results

Consider a connected closed oriented manifold M with a Morse form ω, i.e., a

closed 1-form with Morse singularities—locally the differential of a Morse function.

The set of its singularities Sing ω is finite. This form defines a foliation Fω on

M \ Sing ω. Its leaves γ can be classified into compact, compactifiable (γ ∪ Sing ω is

compact), and non-compactifiable.

Such foliations have remarkably regular structure. A connected component Cmax
i

of the union of compact leaves—which we call maximal component—is an open

cylinder over any its leaf, whose levels are leaves. In particular, all leaves in a max-

imal component are diffeomorphic. A connected component Cmin
i of the union of

non-compactifiable leaves is called minimal component. Its topology can be arbi-

trarily complex—say, such a component can cover the whole M \ Sing ω [1]—but it

cannot be too simple: a minimal component contains at least two cycles with non-
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commensurable integrals [10]. Each non-compactifiable leaf is dense in its minimal

component [7]. The boundary of a maximal or minimal component consists of a

finite number of non-compact compactifiable leaves γ0
i and singularities. This gives

a decomposition of M into a finite number of non-intersecting pieces

M =
(

⋃

Cmax
i

)

∪
(

⋃

Cmin
i

)

∪
(

⋃

γ0
i

)

∪ Sing ω,

interconnected in a way resembling the structure of a simplicial complex.

The way the pieces are put together is described by the foliation graph Γ—a con-

nected graph (allowing loops and multiple edges) whose edges are Cmax
i and vertices

are connected components of M \
⋃

Cmax
i . This notion has been used for studying

foliation structure [2], [6]. Note that unlike [10], we define the graph on the whole

M , including Sing ω.

In this paper, we show (Theorem 2.1) that

m(Γ) = c(ω),

where m(Γ) is the cycle rank of the foliation graph Γ and c(ω) is the number of

homologically independent compact leaves of Fω.

The number m(ω) of minimal components is bounded by the first Betti number:

2m(ω) 6 b1(M) [1], [8]. We obtain a stronger estimate (Theorem 3.1):

2m(ω) + c(ω) 6 b1(M)

and an independent estimate (our main theorem, Theorem 3.2):

m(ω) + c(ω) 6 h(M),

where h(M) is the maximum rank of a subgroup in H1(M,Z) with trivial cup-

product [11]. There are practical methods of calculating h(M) (Remark 3.1).

We also estimate (Theorem 3.3) the total number of components for a singular

form:

M(ω) + m(ω) 6 h(M) + |Sing ω| − 1,

where M(ω) is the number of maximal components (obviously, for a non-singular

form M(ω) + m(ω) = 1 instead). In addition, for a singular form

M(ω) + 2m(ω) 6 b1(M) + |Sing ω| − 1.

In addition to the bound for m(ω) + c(ω) above, we present some conditions for

m(ω) = 0 and for c(ω) = 0. A foliation having no minimal components is called

208



compactifiable. In [3] we have presented some conditions for compactifiability of the

foliation in terms of the structure of ker[ω] ⊆ H1(M), where [ω] is the integration

map. Here we consider other characteristics of the form: the form’s rkω
def
= rk im[ω]

and the number of singularities of different indices.

If ω is rational (rk ω 6 1) then Fω is compactifiable [13]. We show that the

converse is true only in the sense that any compactifiable foliation can be defined by

a rational Morse form. Namely, a compactifiable foliation Fω is defined by forms ω′

with

(0 or 1) 6 rkω′ 6 c(ω)

(Theorem 4.1); whether 0 is included depends on the structure of the directed foli-

ation graph [4]. In particular, if rkω > h(M) then Fω is not compactifiable. For

instance, if rkω = b1(M) (i.e. maximal) and the cup-product on H1(M,Z) is non-

trivial then Fω is non-compactifiable (Corollary 4.3). If in addition H1(M) has no

torsion and the cup-product is non-degenerate then all compact leaves of Fω are

homologically trivial (Proposition 4.1).

No necessary condition for compactifiability of Fω can be obtained in terms of

Sing ω: for any foliation there exists a rational Morse form with the same set of

singularities of each index [14]. However, Sing ω can give useful information on M .

If Sing ω = ∅ then M is a bundle over S1 [15], so the topology of Fω is defined

by rkω: if rkω = 1 then Fω is compact (all leaves are compact), otherwise it is

minimal. If all singularities are centers then M = Sn and Fω is obviously compact.

(By centers, called also spherical singularities, we mean those of index 0 or dimM .)

We generalize the latter fact: If there are more centers than conic singularities

then (Theorem 4.2)

b1(M) = 0;

in particular, in this case m(ω) + c(ω) = 0, i.e., Fω is compactifiable, all its leaves

are homologically trivial, and its foliation graph is a tree (Theorem 4.3).

The paper is organized as follows. In Section 2 we recall some facts about qual-

itative structure of a Morse form foliation and give the necessary definitions. We

introduce minimal and maximal foliation components and describe their properties

(Section 2.1). Then we define the foliation graph and calculate its cycle rank (Sec-

tion 2.2). In Section 3 we give the upper bounds on the number of minimal compo-

nents (Section 3.1) and on the total number of (minimal and maximal) components

of the foliation (Section 3.2). Finally, in Section 4 we give some conditions on the

presence of minimal components in terms of the rank of the form (Section 4.1) and

the indices of its singularities (Section 4.2).
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2. General structure

The general structure of a Morse form foliation has been studied in [1], [3], [7],

[10].

Definition 2.1 [3]. A leaf γ ∈ Fω is called compactifiable if γ∪Sing ω is compact;

otherwise it is called non-compactifiable.

Note that compact leaves are compactifiable.

The set covered by all non-compactifiable leaves is open [7]. A compact leaf γ has

an open neighborhood consisting solely of compact leaves [1], [2]: indeed, integrating

ω gives f with df = ω near γ; hence the set covered by all compact leaves is also open.

The number of non-compact compactifiable leaves γ0
i is finite since each singularity

belongs to the closure of no more than four non-compact compactifiable leaves (see

Figure 1); thus such leaves are isolated.
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Figure 1. A conic singularity has locally four (a) or two (b), (c) adjacent (non-compact)
leaves; centers have no such leaves, and other singularities have one (d). Here,
(d) and (c) visualize non-compact leaves for dimM = 4 (the lowest dimension
where singularities other than conic or centers exist) as connected components of
the set {R4 \ p | x2 + y2 − z2 = ±t2}, respectively, foliated by the “time” t.

2.1. Minimal and maximal foliation components. We call foliation compo-

nents the connected components Ci of the set M \ (
⋃

γ0
i ∪ Sing ω), i.e. the union

of all compact and non-compactifiable leaves. Each component Ci is open, and

∂Ci ⊆
⋃

γ0
j ∪ Sing ω. For any γ0

j there exist either one or two components Ci such

that γ0
j ∩ ∂Ci 6= ∅; see Figure 2(a). Thus the number of components is finite.

A component consists entirely of leaves of one type: either non-compactifiable or

compact. Components of the former kind are minimal neighborhoods consisting of

non-compactifiable leaves; each such leaf is dense in its minimal component [1], [7]:

Definition 2.2 ([1]). A connected component of the union of all non-compacti-

fiable leaves is called a minimal component of the foliation.
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Figure 2. (a) The leaf γ02 adjoins only one component, while γ01 connects two components.
(b) The corresponding foliation graph has a loop.

Components of the latter kind are maximal connected sets consisting of compact

leaves:

Definition 2.3 ([3]). A connected component of the union of all compact leaves

is called a maximal component of the foliation.

A maximal component C of a singular Morse form foliation is cylindrical: C =

γ × (0, 1), γ × x ∈ Fω, where γ is any (compact) leaf in C. Note that for a non-

singular form a maximal component—which exists iff ω is rational—is a bundle over

S1 with fiber γ ∈ Fω and covers the whole manifold [15].

While a maximal component is topologically simple, the topology of a minimal

component can be arbitrarily complex (e.g., it can cover the whole M \ Sing ω [1]).

Moreover, it cannot be too simple: a minimal component contains at least two

(homologically independent in M) 1-cycles with incommensurable periods [10].

Thus M can be decomposed into a finite number of non-intersecting pieces inter-

connected in a way resembling the structure of a simplicial complex:

(2.1) M =
(

⋃

Cmax
i

)

∪
(

⋃

Cmin
j

)

∪
(

⋃

γ0
k

)

∪ Sing ω,

with maximal components Cmax
i being cylindrical and minimal components Cmin

j

having at least two independent 1-cycles. For examples of such a decomposition see

Figures 2 (a), 3 (a, c), and 4 (b).

2.2. Foliation graph. The configuration formed by the maximal components in

the decomposition (2.1) is described by the foliation graph [3]. Rewrite (2.1) as

M =
(

⋃

Cmax
i

)

∪
(

⋃

Pj

)

,

where Pj are connected components of the union P of all non-compact leaves and

singularities. Since a maximal component is a cylinder, ∂Cmax
i ⊆ P consists of one or
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Figure 3. (a), (c) Examples of the decomposition. (b) The vertices of Γ can include singu-
larities, non-compact compactifiable leaves and (d) whole minimal components.

two connected components; thus each Cmax
i adjoins one or two of the Pj . This allows

representing M as a connected graph Γ (admitting multiple edges and loops) with

edges Cmax
i and vertices Pj : an edge Cmax

i is incident to a vertex Pj if ∂Cmax
i ∩Pj 6= ∅;

see Figures 2 and 3.

Let c(ω) = rkHω, where Hω ⊆ Hn−1(M) is generated by all compact leaves, i.e.,

the number of homologically independent compact leaves. Denote by m(Γ) the cycle

rank of the graph Γ.

Theorem 2.1. It holds

(2.2) c(ω) = m(Γ).

Moreover, there exist γ1, . . . , γc(ω) such that for any compact leaf γ it holds

[γ] =
∑

i∈Iγ

±[γi].

P r o o f. In Hω there exists a basis e consisting of homology classes of leaves

[γ1], . . . , [γc], c = c(ω) [3]. Each γi, i = 1, . . . , c, defines a maximal component

Cmax
i = γi × (0, 1), which is an edge hi in the foliation graph Γ; see Figure 4(a).

Consider the subgraph Γ0 = Γ \
c
⋃

i=1

hi; see Figure 4(b). It has the same set of

vertices. Independence of e implies that Γ0 is connected.

Suppose that Γ0 contains a cycle z; associate with it a curve α ⊂ M . Obviously,

α ∩ γi = ∅ for all i. Let h ∈ z be an edge, and γ ⊂ M a corresponding leaf. Then

[α] · [γ] 6= 0 and [α] · [γi] = 0, which contradicts the maximality of e.
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Figure 4. Proof of Theorem 2.1.

Thus Γ0 is a spanning tree. Since the cycle rank of a graph equals to the number of

chords of its spanning tree [5], we have m(Γ) = c(ω). What is more, since removing

any edge splits a tree, for any compact leaf γ we have [γ] =
∑

i∈Iγ

±[γi]; see Figure 4(c).

�

Corollary 2.1. If all compact leaves of Fω are homologically trivial then Γ is a

tree. If in addition Fω has no minimal components then ω = df .

The second statement follows from Corollary 4.1 below.

3. Number of components

Given a specific M , we can estimate the number of components of Morse form

foliations on M . This may give useful information on their structure.

3.1. Number of minimal components. Denote by m(ω) the number of mini-

mal components of Fω. It is known that 2m(ω) 6 b1(M) [1], [8]. We generalize this

estimate:

Theorem 3.1. 2m(ω) + c(ω) 6 b1(M).

P r o o f. Let z1, . . . , zc(ω) be 1-cycles dual to homologically independent compact

leaves γ1, . . . , γc(ω), i.e., zi · [γj ] = δij . Each minimal component Cmin
i contains two

cycles z′i, z
′′
i with incommensurable periods [10]. Suppose that

(3.1)

m(ω)
∑

i=1

(n′
iz

′
i + n′′

i z′′i ) +

c(ω)
∑

j=1

mjzj = 0.
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Intersecting (2) with [γk] givesmk = 0 for all k. Thus for any p we can rewrite (3.1)

as

(3.2) n′
pz

′
p + n′′

pz′′p = −
∑

i6=p

(n′
iz

′
i + n′′

i z′′i ) = z.

On the one hand, z is induced from Cmin
p and on the other hand, from M \ Cmin

p ,

thus by the Mayer-Vietoris sequence it is induced from ∂Cmin
p . Since ∂Cmin

p consists

of leaves and singularities,
∫

z
ω = 0. Thus n′

p = n′′
p = 0, since the corresponding

periods are incommensurable. �

Example 3.1. For a connected sum M = (S2 × S1) ♯ (S2 × S1), Theorem 3.1

gives 2m(ω) + c(ω) 6 2. This characterizes the topology of Fω. Indeed, if Fω is

compactifiable, then it has at most two homologically independent compact leaves.

Otherwise, it has exactly one (uniquely ergodic [1]) minimal component, and all its

compact leaves are homologically trivial.

Denote by h(M) the maximum rank of a subgroup in H1(M,Z) with trivial cup-

product [11].

Remark 3.1. Some methods of calculating h(M) can be found in [12]:

(i) h(M1 × M2) = max{h(M1), h(M2)}.

(ii) h(M1 ♯ M2) = h(M1) + h(M2) for dim Mi > 2.

(iii) Let bi = bi(M) be the Betti numbers and r = rkker ⌣, where ⌣ is the cup-

product on H1(M,Z). Then

b1 + b2r

b2 + 1
6 h(M) 6

b1b2 + r

b2 + 1
.

In particular, if b2 = 1 then h(M) = 1
2 (b1 + r); if r = b1 then h(M) = b1.

(iv) If ⌣ is surjective then h(M) 6 r + 1
2 +

√

(

b1 − r − 1
2

)2
− 2b2.

Example 3.2. h(T n) = 1 (torus); h(M2
g ) = g.

Theorem 3.2. m(ω) + c(ω) 6 h(M).

P r o o f. (i) Let us show that for a minimal component Cmin there exist u ∈

H1(Cmin) and z ∈ Hn−1(Cmin) such that their intersection u · z 6= 0.
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Indeed, consider the diagram

// H1(∂C)
i∗

// H1(C)
j∗

// H1(C, ∂C) //

H1(C)

ϕ∗

OO

Hn−1(C,Z)

D

OO

// Hn−1(C, ∂C,Z)
j∗

//

D

OO

Hn−1(C,Z)
i∗

//

ϕ∗

OO

Hn−1(∂C,Z) //

where C = Cmin, the lines are exact sequences of pairs, D is the Poincaré isomorphism

defined by the cap-product, and the homomorphisms ϕ∗ and ϕ∗ are induced by the

inclusion ϕ : C →֒ C.

Let c ⊂ C be a closed curve such that
∫

c
ω 6= 0 and u = [c]. Then kϕ∗u /∈ imi∗

for any k ∈ Z and j∗ϕ∗u 6= 0; let α = D−1j∗ϕ∗u 6= 0. Since α ∈ Hn−1(C,Z) is of

infinite order, it can be viewed as an element of Hom(Hn−1(C),R). So there exists a

cycle z ∈ Hn−1(C) such that α(z) 6= 0. By construction, u · z 6= 0.

(ii) For each minimal component Ci = Cmin
i consider the cycles ui ∈ H1(M),

zi ∈ Hn−1(M) such that ui · zi 6= 0.

Consider a maximal system {γj} of homologically independent compact leaves.

The system {zi} ∪ {[γj]} is independent. Indeed, suppose that

∑

pizi +
∑

qj [γj ] = 0.

Since uk · [γj ] = 0 and uk · zi = 0 for all i 6= k, we have all pi = 0. Then all qj = 0

since [γj ] are linearly independent.

Finally, on {Dzi} ∪ {D[γj ]}, where D : Hn−1(M) → H1(M,Z) is the Poincaré

duality, the cup-product ⌣ is trivial, since all Ci and γj do not intersect. �

Example 3.3. For a torus T n, m(ω) + c(ω) 6 1. We have all the conclusions of

Example 3.1 (with an obvious correction of its last sentence).

Remark 3.2. The bound on m(ω) implied by Theorem 3.1 and its corollary

(3.3) m(ω) 6
1

2
b1(M)

is independent of the bound implied by Theorem 3.2 and its corollary

(3.4) m(ω) 6 h(M),

as the following examples show. Which one is stronger depends on the structure of

the cup-product.
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Example 3.4. For a torus, we have h(T n) = 1 and b1(T
n) = n. For n = 2, 3,

the bounds (3.3) and (3.4) are equivalent. If n > 4, even the weakened form (3.4) of

Theorem 3.2 gives a stronger bound on m(ω) than Theorem 3.1.

Example 3.5. For M = ♯p
i=1(S

2 × S1), p > 2, we have h(M) = b1(M) = p.

Theorem 3.1 gives a stronger bound than Theorem 3.2 and (3.3) stronger than (3.4).

Moreover, for a minimal foliation on this M , (3.3) gives a stronger bound than

Theorem 3.2. We leave open the question of existence of manifolds on which (3.3)

gives a stronger bound than Theorem 3.2 for any foliation.

3.2. Total number of components. Denote by M(ω) the number of maximal

components.

Theorem 3.3. If Sing ω 6= ∅ then

M(ω) + m(ω) 6 h(M) + |Sing ω| − 1;(3.5)

M(ω) + 2m(ω) 6 b1(M) + |Sing ω| − 1.(3.6)

P r o o f. In the foliation graph Γ with M(ω) edges and p vertices, M(ω) =

m(Γ) + p − 1. Obviously, p 6 |Sing ω|. By Theorem 2.1 and Theorem 3.2, m(Γ) =

c(ω) 6 h(M) − m(ω), which gives (3.5); similarly, Theorem 3.1 gives (3.6). �

Example 3.6. For a torus T n and Sn × S1, (3.5) gives M(ω) + m(ω) 6 |Sing ω|;

for M2
g , M(ω) + m(ω) 6 g + |Sing ω| − 1.

The estimates (3.5) and (3.6) are independent; cf. Remark 3.2 and the examples

therein.

For a non-singular form, obviously, M(ω) + m(ω) = 1. Note that for such forms,

(3.5) does not hold, for instance, on T n and (3.6) does not hold, for instance, on

Sn × S1.

4. Presence of minimal components

and homologically non-trivial leaves

A foliation without minimal components is called compactifiable. We will present

some conditions for compactifiability of Fω and the presence of homologically non-

trivial leaves in it (i.e., whether the foliation graph is a tree) in terms of rkω and

Sing ω.

4.1. Conditions in terms of the rank of the form. Consider the form’s rank

rkω = rk im[ω], where [ω] : H1(M) → R is the integration map. If ω is rational
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(rkω 6 1) then Fω is compactifiable, i.e. m(ω) = 0 [13]. We will show that the

converse is true in the sense that any compactifiable foliation can be defined by a

rational form; more specifically, the ranks of forms defining such a foliation cover a

limited range starting from 0 or 1.

Recall that a maximal component Cmax
j is γj × (0, 1) for some leaf γj and M(ω) is

the number of maximal components.

Theorem 4.1. Let Fω be a compactifiable Morse form foliation and r > 1. Then

there exists a Morse form of rank r defining the same foliation iff r 6 c(ω).

Whether there exists such a form of rank 0 depends on the structure of the directed

foliation graph [4].

P r o o f. It is known that

H1(M) =

〈

D[γ1], . . . , D[γM(ω)], i∗H1

(

M \

M(ω)
⋃

j=1

Cmax
j

)〉

,

where D is a Poincaré duality map (i.e., D[γk] · [γl] = δkl) and i is the inclusion:

indeed, the cycles z /∈ 〈D[γi]〉 in Figure 5 can be moved out of
⋃

Cmax
i , cf. (2.1); see

a detailed proof in [3].
 
 

                         

γ 
i 

z  z 

z 

z 

Figure 5. A cycle z such that z · [γi] = 0 can be moved out of C
max

i .

So rkω is defined by 〈D[γk]〉, which by Theorem 2.1 has a basisD[γ1], . . . , D[γc(ω)].

Let us realize each D[γi] by a closed curve αi; by construction αj ∩Cmax
i = ∅ iff i 6= j.

Without loss of generality we can suppose that αi∩Cmax
i is connected and transverse

to the leaves.

Consider on M a smooth function f(x) > 0 constant on leaves in each cylinder

Cmax
i and equal to 1 outside

⋃

Cmax
i . The form ω′ = f(x)ω defines the same fo-

liation Fω. By choosing an appropriate f(x) we can vary its integrals along αi,

i = 1, . . . , c(ω), obtaining any desired rkω′. �

Example 4.1. The compactifiable foliation onM2
g (or ♯

g
i=1 T n) shown in Figure 6

can be defined by a rational form with rkω = 1. It can also be defined by forms with

rkω = 2, . . . , g.
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ΓΓΓΓ 

                          (a)                                                      (b) (a) (b)

Figure 6. (a) The foliation from Example 4.1 and (b) its foliation graph.

Corollary 4.1. For a compactifiable foliation Fω it holds rk ω 6 c(ω).

Corollary 4.2. Any compactifiable Morse form foliation can be defined by a

rational form.

On the other hand, in any cohomology class with rkω > 1 there exists a form

defining a minimal foliation [1]. What is more:

Corollary 4.3. If rkω > h(M) then Fω has a minimal component [3]. In partic-

ular, if rk ω = b1(M) (maximal) and the cup-product ⌣ on H1(M,Z) is non-trivial

then Fω has a minimal component.

Proposition 4.1. If rkω = b1(M), H1(M) has no torsion, and ⌣ is non-

degenerate, then c(ω) = 0, i.e., all compact leaves are homologically trivial.

Note that under these conditions, harmonic Morse forms have no compact

leaves [2].

P r o o f. Suppose that for some compact leaf γ it holds [γ] 6= 0. We can

construct a (non-Morse) form ϕ trivial outside a cylindrical neighborhood of γ, in

which Fϕ = Fω; thus ϕ ∧ ω = 0. Since [γ] 6= 0, the form ϕ can be chosen such

that [ϕ] ∈ H1(M,Z). Thus [ϕ] ⌣R [ω] =
∑

αi([ϕ] ⌣ ξi) = 0, where ⌣R is the

cup-product on H1(M,R) and ξi is a basis in H1(M,Z). Since H2(M,Z) has no

torsion, [ϕ] ⌣ ξi = 0 for all i, which contradicts the non-degenerateness of ⌣. �

4.2. Conditions in terms of the form’s singularities.

In Section 3, we have shown that m(ω) + c(ω) 6 h(M). We will show that if

there are more centers than conic singularities, then m(ω) + c(ω) = 0, i.e., Fω is

compactifiable and all its compact leaves are homologically trivial.

No necessary condition for compactifiability of Fω can be obtained in terms of

Sing ω: for any ω there exists a rational Morse form with the same singularities with
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their indices [14], [15]; its foliation is compactifiable. However, Sing ω can define the

topology of M .

If Sing ω = ∅ then M is a bundle over S1 [15]. The topology of Fω is defined

by rk ω: if rkω = 1 then Fω is compact (all its leaves are compact), otherwise it is

minimal.

If Sing ω 6= ∅ but all its singularities are centers then M = Sn and Fω is compact.

We will generalize this fact: if there are more centers than conic singularities then

b1(M) = 0.

Denote by Ωk = Ωk(ω), k 6 n
2 , the set of singularities of index k or n − k. Let

µi = µi(ω) be the number of singularities of index i, then |Ωk| = µk +µn−k for k 6= n
2

and |Ωn

2
| = µn

2
.

Theorem 4.2. If |Ω0| > |Ω1| then b1(M) = 0.

P r o o f. (i) If |Ω0| > |Ω1| then ω = df .

Indeed, there exists a rational Morse form with the same singularities and in-

dices [14]; its foliation is compactifiable. Without loss of generality we can assume

that each its leaf adjoins at most one singularity [6]. Thus its foliation graph Γ has

no vertices P with deg P > 3; the singularity in any vertex with deg P = 3 belongs

to Ω1, and the set of vertices with deg P = 1 is Ω0.

For a connected graph, 2m(Γ) =
∑

(k − 2)pk + 2 > 0, where m(Γ) is the cycle

rank and pk is the number of vertices with deg P = k; p1 = |Ω0|, p3 6 |Ω1|. Thus

|Ω0| > |Ω1| implies m(Γ) = 0; by Theorems 2.1 and 4.1, ω = df .

(ii) If dimM > 3 and ω = df then

(4.1) |Ω0| − |Ω1| 6 2 − 2b1(M).

Indeed, consider the Morse inequality

F (λ) =

λ
∑

k=0

(−1)λ−k(µk(f) − bk(M)) > 0,

which turns into equality for λ = n, where n = dim M . Applying the last inequality

to F (1) + F (n − 2) − F (n) gives

−(µ0 − b0) + (µ1 − b1) + (µn−1 − bn−1) − (µn − bn) > 0,

which gives (4.1) since |Ω0| = µ0(f) + µn(f) and |Ω1| = µ1(f) + µn−1(f).

(iii) On M2
g it holds |Ω0| − |Ω1| = 2− b1(M), which together with (ii) finishes the

proof. �

Now, Theorem 3.1 gives:
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Theorem 4.3. If |Ω0| − |Ω1| > 0 then Fω is compactifiable (m(ω) = 0), all its

compact leaves are homologically trivial (c(ω) = 0), and the foliation graph is a tree.
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