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Abstract. In this paper we first study what changes occur in the posets of irreducible
elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to
one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of
all convex geometries) defined on a finite set. Then we study the set of all convex geometries
which have the same poset of join-irreducible elements. We show that this set—ordered by
set inclusion—is a ranked join-semilattice and we characterize its cover relation. We prove
that the lattice of all ideals of a given poset P is the only convex geometry having a poset
of join-irreducible elements isomorphic to P if and only if the width of P is less than 3.
Finally, we give an algorithm for computing all convex geometries having the same poset
of join-irreducible elements.
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1. Introduction

Finite Moore families (also called closure systems) are fundamental mathematical

objects. For instance, they are the set representations of finite lattices. The set

M of all these families defined on a set P and ordered by set inclusion is a lattice
studied by many authors (see Caspard and Monjardet [7], 2003). The set MP of

all Moore families whose poset of join-irreducible elements is isomorphic to a poset

(P, 6) (where 6 is any given partial order defined on P ) is a lattice studied in
Bordalo and Monjardet [4], 2002. Convex geometries are a significant class of Moore

families appearing in many domains. They are the set representations of the so-called

lower locally distributive (or meet-distributive) lattices studied as early as 1940 by
Dilworth [11], and they also are the families of closed sets of antiexchange closure
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operators (see, for instance, Edelman and Jamison [12], 1985 and Monjardet [15],

1990). Moreover, they are in a one-to-one correspondence with the so-called path-
independent choice functions of the theory of choice functions in microeconomics

(see Monjardet and Raderanirina [16], 2001). The set G of all convex geometries

defined on a set P and ordered by set inclusion is a semilattice studied in Edelman
and Jamison [12], 1985 and Caspard and Monjardet [8], 2004. One of the aims of the

present paper is to study the poset GP of all convex geometries defined on a finite set

P and whose poset of join-irreducible elements is isomorphic to a given poset (P, 6).
For instance, if (P, 6) is an antichain, GP is the semilattice of all atomistic convex

geometries with |P | atoms (the number of such convex geometries is 87 for |P | = 4

and 16686 for |P | = 5, Nourine [19], 2003). Obviously, GP is contained in the lattice
MP , but it will appear that their behaviour is quite different. For instance, GP is a

semilattice which is generally not a lattice.

In the above (semi)latticesM, MP , G and GP , one goes from an element G ′ of the

semilattice to one of its lower covers G by deleting one (meet-irreducible) element
of G ′. In this paper, we make precise the characterization of those meet-irreducible

elements which can be deleted and study what changes occur between the irreducible

elements of G ′ and those of G .

In Section 2, we recall some generalities on posets, Moore families and convex
geometries.

In Section 3, we recall and complete some results on (semi)lattices of Moore fam-
ilies. For instance, Propositions 1, 2 and Corollary 1 describe the changes occuring

in the irreducible elements of a Moore family belonging to M, MP or G, when one
considers one of its lower covers in the corresponding semilattices.

Section 4 considers the particular case where the Moore family is the convex
geometry—and a distributive lattice—O(P ) of all order ideals of a poset (P, 6). We

study the lower covers of O(P ) in M, MP , G or GP . We point out the connection

with the study of the maximal sublattices of a distributive lattice made by many
authors (see Schmid [23], 2002 and the references there).

Section 5 is devoted to the study of GP . We first show that GP is a join-

subsemilattice of the semilattice G of all convex geometries (its maximum is O(P )).

Then, we study the cover relation of GP by characterizing the so-called GP -deletable
elements of a convex geometry of GP . In general, GP is not a lattice and we study

its coatoms and its minimal elements. We then show that |GP | = 1 (i.e. that the

lattice O(P ) of order ideals of (P, 6) is the unique convex geometry having a poset
of join-irreducible elements isomorphic to (P, 6)) if and only if the width of P is

less than 3. At last, we formulate several open problems and give an algorithm

for computing all convex geometries having the same poset of join-irreducible ele-
ments.
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The symbol + denotes the disjoint union set, P + x stands for P + {x}. P ⊕ Q

denotes the ordinal sum of two posets P and Q (where x < y for all x in P and y

in Q).

2. Preliminaries

In this section we recall or introduce some definitions, notation and results on
posets, Moore families and convex geometries.

In this paper, P always denotes a finite set. When there is no ambiguity, P will
also denote the poset (P, 6), where 6 is a partial order defined on P .

When x is covered by y—denoted by x ≺ y—in the poset P , we say that x

(respectively, y) is a lower cover (respectively, an upper cover) of y (respectively,

of x).

An element of a poset P is join-irreducible or meet-irreducible respectively if

it is not the join or the meet, respectively, of elements different from itself. An

element is doubly-irreducible if it is join- and meet-irreducible. J(P ) and M(P )

denote respectively the sets of join-irreducible and of meet-irreducible elements of

the poset P . If P is a lattice, then x− denotes the unique element covered by

the join-irreducible element x, while x+ denotes the unique element covering the
meet-irreducible element x.

An element x of a poset P is a node if x is comparable to every element of P .

An (order) ideal of a poset P is a subset I of P such that x ∈ I and y < x imply

y ∈ I. One defines dually the notion of an (order) filter. We denote by O(P ) the
distributive lattice of all ideals of P (ordered by set inclusion). For an element x of

a poset P , (x] = {y ∈ P : y 6 x} and [x) = {y ∈ P : x 6 y} denote the principal

ideal and the principal filter, respectively, defined by x. Moreover, (x[ denotes the
ideal (x] \ {x} (where \ is the symbol for set difference) and ]x) denotes the filter

[x) \ {x}. We denote by P the poset ({(x], x ∈ P},⊆). So, the posets P and P are

isomorphic. P is the poset of all join-irreducible elements of the lattice O(P ). The
meet-irreducible elements of O(P ) are the ideals P \ [x) for x ∈ P .

Let G denote a Moore family (also called a closure system) defined on a set P ,
i.e. a subset of the set 2P of all subsets of P that contains P and is closed under

set-intersection. Obviously, (G ,⊆) is a lattice and its elements are called closed

sets. Closed sets are the fixed points of the closure operator canonically associated
with G and denoted by ϕG . A preorder RG is defined on P by setting xRG y if

ϕG (x) ⊆ ϕG (y). Observe that a closed set G of G is an ideal of RG (i.e. x ∈ G and

yRG x imply y ∈ G), and that the principal ideals of RG are the closures by ϕG of
the elements of P : {y ∈ P : yRG x} = ϕG (x). In 1943, Öre [20] has characterized
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the join-irreducible elements of the lattice (G ,⊆):

J(G ) = {ϕG (x) : ϕG (x) \ {y ∈ P : ϕG (y) = ϕG (x)} ∈ G }.

Using this result, one easily proves

Lemma 1. Let G be a Moore family on P , ϕG the associated closure operator

and RG the associated preorder. The following two conditions are equivalent:

(1) for every x ∈ P , ϕG (x) \ {x} ∈ G ,

(2) J(G ) = {ϕG (x), x ∈ P}, and ϕG (x) = ϕG (y) implies x = y.

When these conditions are satisfied, RG is an order denoted by 6G or, when no
ambiguity can occur, by 6. Then every element of G is an ideal of the poset (P, 6G )

and the closed sets of the form ϕG (x) are the principal ideals of (P, 6G ) as well as

the join-irreducible elements of G .

Remark 1. The two parts in Condition (2) are independent. When G is a Moore

family such that ϕG (x) = ϕG (y) implies x = y (i.e. when RG is an order), the above

Condition (1) is not necessarily satisfied.

In this paper we will generally consider Moore families satisfying Condition (1)

(or (2)) of Lemma 1. In this case, a Moore family G on P will be viewed as a set of

ideals of the associated poset (P, 6G ) and, since the set J(G ) of its join-irreducible
elements is the posetP defined by the principal ideals of (P, 6G ), J(G ) is isomorphic

to (P, 6G ).

Observe that, for any given poset (P, 6), there exists at least one Moore family G

such that J(G ) is isomorphic to (P, 6), namely the set O(P ) of all ideals of (P, 6),

but there exist in general several such Moore families (the so-called strict completions
of P , see Bordalo and Monjardet [4], 2002).

A Moore family G defined on a set P is a convex geometry if it satisfies the

following two properties:

(1) the empty set ∅ is a closed set,

(2) for every closed set C different from P there exists x 6∈ C such that C + {x} is

a closed set.

It is well-known that these properties imply that a convex geometry satisfies the

above Condition (1) of Lemma 1, and so, any convex geometry G on P will be

viewed as a set of ideals of the associated poset (P, 6G ). The “abstract” lattices
corresponding to convex geometries are the lower locally distributive (also called

meet-distributive) lattices. In particular, they are lower semimodular (see Edelman

and Jamison [12], 1985 or Monjardet [15], 1990 for a number of characterizations
of convex geometries or lower locally distributive lattices). We will often use some
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properties of lower locally distributive lattices recalled in the following lemma. The

first three are well-known characterizations of lower locally distributive lattices. The
two others are true for lower semimodular lattices, since they are the duals of the

two properties of upper semimodular lattices proved in Bordalo and Monjardet [3],

1996, Lemmas 7 and 8).

Lemma 2. Let L be a lower locally distributive lattice. Then

(1) the set of lower covers of any non minimum element of L is the set of coatoms

of a Boolean sublattice of L,

(2) for any meet-irreducible x of L there exists a unique join-irreducible element y

such that x ∨ y = x+,

(3) L is lower semimodular and every modular sublattice of L is distributive,

(4) L does not contain a sublattice isomorphic to the lattice N5 where the element

y of the chain 0 ≺ x ≺ y ≺ 1 of N5 is join-irreducible in L,

(5) if t, y and z are three different elements of L such that z ≺ y and z ≺ t, then

there exist two elements l, m such that z ≺ m ≺ l and y ≺ l. In particular, when

z has only two upper covers, this implies m = t and, when t is meet-irreducible,

this implies l = t+.

3. Going down in Moore families: the changes in irreducible elements

In this section we describe what changes occur in the irreducible elements of a
Moore family belonging to a poset of Moore families when one considers one of its

lower covers in this poset. We consider the following four posets of Moore families,

where the order is the set inclusion between families (observe that the Moore families
of the last three posets satisfy Condition (1) of Lemma 1):

– M denotes the poset of all Moore families defined on a set P . This poset is a

lattice which has been studied by several authors (see Caspard and Monjardet
[7], 2003). For G , G ′ ∈ M, G ≺ G ′ if and only if G = G ′ \ {I}, with I a meet-

irreducible element of G ′. Moreover, G ∧ G ′ = G ∩ G ′ and G ∨ G ′ = {G ∩ G′,

G ∈ G , G′ ∈ G ′}.

– MP denotes the poset of all Moore families G defined on a set P and such that

J(G ) = P is isomorphic to a given poset (P, 6). The poset MP is a lattice

which was studied in Bordalo and Monjardet [4], 2002. Its maximum is the
lattice O(P ) of all ideals of P . Its minimum is the lattice D(P )∗ which is a

meet-subsemilattice of the lattice O(P ) consisting of the ideals

D(P )∗ = {P} ∪ {(x], x ∈ P} ∪
{

⋂

(xi], xi ∈ S ⊆ P
}

∪ {(x[, x ∈ P}.
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In fact, MP is exactly the interval [D(P )∗, O(P )] of M consisting of all meet-

subsemilattices of O(P ) containing D(P )∗.

– G denotes the join-semilattice of all convex geometries defined on a set P . This
semilattice has been studied in Edelman and Jamison [12], 1985 and Caspard

and Monjardet [8], 2004. In particular, G is ranked.

– GP denotes the poset of all convex geometries G defined on a set P and such

that J(G ) = P is isomorphic to a given poset (P, 6). So GP = MP ∩ G. We
shall study this poset in Section 5.

Observe thatMP is a sublattice of the latticeM of all Moore families, whereas G is

only a join-subsemilattice ofM. In G, G∧G ′ (when it exists) can be strictly contained
in G ∩G ′. Observe also that the covering relation ofMP or G is the restriction of the

covering relation of M to these posets. In fact, the following definitions and results

allow us to make more precise the covering relation of MP and G (the notions of
forced and MP -deletable ideals are in Bordalo and Monjardet [4], 2002). In these

definitions and results, G ′ (rather than G ) will denote an arbitrary Moore family

belonging to one of our four posets of Moore families, and G will always denote a
Moore family covered by G ′ in this poset.

Definition 1. Let P be a poset and I an ideal of P .

(1) I is forced if I ∈ D(P )∗, i.e. if either I = P , or I = (x] or (x[ for some x in
P , or I is the intersection of a family of principal ideals of P . Observe that the

empty set is a forced ideal. An ideal which is not forced is called unforced.

(2) In a Moore family G ′ ∈ MP containing I, I is MP -deletable (w.r.t. G ′) if G =

G ′ \ {I} ∈ MP .

(3) In a Moore family G ′ ∈ GP containing I, I is G-deletable (w.r.t. G ′) if G =

G ′ \ {I} ∈ G.

(4) In a convex geometry G ′ ∈ GP containing I, I is GP -deletable (w.r.t. G ′) if

G = G ′ \ {I} ∈ GP .

Notation. When no ambiguity occurs, we will denote by J andM the set J(G ) of

join-irreducible elements and the setM(G ) of meet-irreducible elements, respectively,
of a Moore family G . Similarly for J ′ and M ′ (instead of J(G ′) and M(G ′)) for a

Moore family G ′. Using the notation given above for irreducible elements of a lattice,

I− denotes the unique element of G covered by a join-irreducible element I of G ,
while I+ denotes the unique element of G covering a meet-irreducible element of G .

The following theorem recalls and completes some useful results on the deletable
elements of a Moore family G ′ belonging to MP or to G.
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Theorem 3.1. Let P be a poset.

(1) Let G ′ be a Moore family in MP and I ∈ G ′ an ideal of P . The following three

properties are equivalent:

a. I is MP -deletable w.r.t. G
′,

b. I is an unforced ideal of P and I ∈ M ′,

c. I ∈ M ′ and I, I+ 6∈ J ′.

(2) Let G ′ ∈ GP and let I ∈ G ′ be an ideal of P . Properties (a) and (b) below are

equivalent and imply (c):

a. I is G-deletable w.r.t. G ′,

b. I ∈ M ′, I 6= ∅ and I does not cover any meet-irreducible element of G ′,

c. I ∈ M ′ and I+ 6∈ J ′ (or, equivalently, I ∈ M ′ and it is not a node of G ′).

Moreover, if I ∈ J ′ ∩ M ′, the following four properties are equivalent:

d. I is G-deletable w.r.t. G ′,

e. I− 6∈ M ′,

f. I+ 6∈ J ′,

g. I is not a node of G ′,

and, in this case, I+ has a unique other lower cover I ′ and I− ≺ I ′.

P r o o f. (1) is proved in Bordalo and Monjardet [4], 2002.

(2) (a) implies (b): it is obvious that G = G ′ \ {I} ∈ G implies I ∈ M ′ and I 6= ∅.
If I covers G ∈ M ′, then in G , G is covered by I+ with |I+| = |G|+2, a contradiction

with G being a convex geometry.

(b) implies (a): we have to show that G = G ′ \ {I} contains the empty set and

that, for every element K of G (different from P ), there exists x 6∈ K such that K +x

belongs to G . But this is obvious from the hypotheses made on I.

(b) implies (c): in order to show that I+ 6∈ J ′, apply Point (5) of Lemma 2 (with

l = I+, z = G ≺ I = y and G ≺ H = t), which shows that there exists H ′ (different
or not from H) with H ′ ≺ I+. We now prove that when I ∈ M ′, I+ 6∈ J ′ if and

only if I is not a node of G ′. If I+ 6∈ J ′, then I+ = I ∨ K and so I is not a node

of G ′. Conversely, assume that I ∈ M ′ and it is not a node of G ′. So, there exists
K ∈ G ′ incomparable with I. If I+ ∈ J ′, then H = I ∨ K = I+ ∨ K ⊃ I+ and

G = I+ ∧ K = I ∧ K ⊂ I. Then {G, I, K, I+, H} is a sublattice of G ′ isomorphic to

the lattice N5 and such that I+ is join-irreducible in G ′. But this is a contradiction
with Point (4) of Lemma 2.

Assume now that I ∈ J ∩ M ′ (which implies I 6= ∅). Then (a) is equivalent to
(b) implies (d) is equivalent to (e). Since I ∈ M ′, (f) and (g) are equivalent (by (c))

and, since (a) implies (c), (d) implies (f). In order to prove the equivalence between

the four conditions (d), (e), (f) and (g), it remains to show that (f) implies (d). Let
I ′ (6= I) be covered by I+ in G ′. Since the lattice G ′ is a convex geometry, it is lower

255



semimodular, and, since I ∈ J ′, one has I− ≺ I ′. Now, for the same reason as in the

above proof of [(b) implies (a)], G = G ′ \ {I} is a convex geometry.
Since I+ 6∈ J ′, there exists I ′ (6= I) covered by I+. Assume that there exists I ′′

(6= I ′, I) covered by I+. As above, one would have I− ≺ I ′′. Then, {I−, I, I ′, I ′′, I+}

would be a sublattice of J ′ isomorphic to the modular lattice M5, a contradiction
with J ′ being a lower locally distributive lattice (by Point (3) of Lemma 2). �

Remark 2. 1. Some of the above characterizations of an ideal G-deletable w.r.t.

a convex geometry are already in Caspard and Monjardet [8], 2004 with some other

ones using the notion of extreme elements of a closed set. 2. Since Property (4) of
Lemma 2 holds in a lower semimodular lattice, the above proof shows that in such a

lattice, a meet-irreducible element m is a node if and only if m+ is join-irreducible.

We now examine what changes occur in the posets of irreducible elements when

one goes from a Moore family G ′ to one of its lower covers G in the posets M, MP

or G. The following propositions and corollaries answer completely this question.

In Proposition 1 we consider a lower cover G = G ′ \ {I} of an arbitrary Moore
family G ′ (with I a meet-irreducible element of G ′) and determine its poset of join-

irreducible elements. The result depends on four disjoint possibilities for I and I+:

(a) I, I+ 6∈ J ′; (b) I 6∈ J ′ and I+ ∈ J ′; (c) I ∈ J ′, this last case leading to two
different situations (c1) and (c2) according to different behaviours of I+.

Proposition 1. Let G ′ be a Moore family in M and let G = G ′ \ {I}, where I is

a meet-irreducible element of G ′. Then

1. J = J ′ ⇐⇒ I, I+ 6∈ J ′,

2. J = J ′ \ {I+} ⇐⇒ I 6∈ J ′ and I+ ∈ J ′,

3. J = J ′ \ {I} ⇐⇒ I ∈ J ′ and either I+ ∈ J ′, or (I+ has a unique other lower

cover I ′ in G ′ and I ′ satisfies I− 6⊂ I ′), or I+ has at least three lower covers,

4. J = (J ′ \ {I}) + {I+} ⇐⇒ I ∈ J ′, I+ has a unique other lower cover I ′ in G ′

and this unique lower cover satisfies I− ⊂ I ′.

In the first three cases, the order on J is the order induced by J ′; in the last one,

the order on J = (J ′ \{I})+{I+} is obtained by replacing I by I+ in all the ordered

pairs (K, I) and (I, L) of J ′, and by adding the ordered pairs (K, I+) for K ∈ J ′

and satisfying K ⊂ I ′ and K 6⊆ I−.

P r o o f. Items (1) and (2) are straightforward.

For Item (3), if J = J ′ \ {I} then I ∈ J ′ and either I+ ∈ J ′ and it remains
join-irreducible in G (since, in G , I− is its unique lower cover), or I+ 6∈ J ′ and it

does not become join-irreducible in G , which is clearly equivalent to the condition

[I+ has a unique other lower cover I ′ and I− 6⊂ I ′, or I+ has at least three lower
covers]. The converse implication is obvious.
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For Item (4), if J = (J ′ \ {I}) + {I+} then I ∈ J ′ and, since I+ becomes join-

irreducible in G , it has a unique other lower cover I ′ in G ′ and I− ⊂ I ′ (otherwise,
I− and I ′ are lower covers of I+ in G ). The converse implication is obvious.

Observing that, in this last case, the only elements K of J ′ such that K ⊂ I+ and
(K, I) 6∈ J ′ are the elements K contained in I ′ and not contained in I−, one gets the

description of the order of J = (J ′ \ {I}) + {I+}. �

In the next proposition, we consider a lower cover G = G ′ \ {I} of an arbitrary

Moore family G ′ (with I a meet-irreducible of G ′) and determine its poset of meet-
irreducible elements. For I ∈ M ′ we use the following notation:

I
−(I) = {G ∈ G

′ : G ≺ I, G has a unique other upper cover I ′, and I ′ ≺ I+}.

Proposition 2. Let G ′ be a Moore family in M and let G = G ′ \ {I}, where I is

a meet-irreducible element of G ′. Then M = (M ′ \ {I}) + I −(I).

The order onM is obtained by adding to the induced order onM ′\{I} the ordered

pairs (G, H) and (L, G), where G ∈ I −(I), H, L ∈ M ′, I ′ ⊆ H and L ⊂ G.

The proof is straightforward.

Remark 3. One can observe that, when one goes from a Moore family to one

of its lower covers in M, the number of join-irreducible elements decreases from at
most one and never increases, whereas the number of meet-irreducible elements can

decrease from at most one but can also increase.

Corollary 1. Let P be a poset.

(1) Let G ′ ∈ MP and let G = G ′ \ {I}, where I is an ideal of P which belongs to

G ′ and is MP -deletable w.r.t. G
′. Then

a. J = J ′,

b. M = (M ′ \ {I}) + I −(I).

(2) Let G ′ ∈ GP and let G = G ′ \ {I}, where I is an ideal of P which belongs to

G ′ and is G-deletable w.r.t. G ′. Then

a. J = J ′ ⇐⇒ I 6∈ J ′,

J = (J ′ \ {I}) + {I+} ⇐⇒ I ∈ J ′ ⇐⇒ I ∈ J ′ ∩ M ′.

When I ∈ J ′, I+ has a unique other lower cover I ′ in G ′ and I ′ satisfies I− ⊂ I ′.

The order on J = (J ′ \ {I})+{I+} is obtained by replacing I by I+ in all ordered

pairs (K, I) or (I, L) of J ′ and by adding the unique ordered pair (K, I+) where

K ∈ J ′, K ⊂ I ′ and K 6⊆ I−.

b. M = (M ′ \ {I}) + {G ∈ G ′ : G ≺ I and G has a unique other upper

cover I ′}.
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In particular, when I ∈ J ′ ∩ M ′, either I− has a unique other upper cover I ′ in

G ′ and M = (M ′ \ {I})+ {I−}, or I− has at least two other upper covers in G ′, and

M = M ′ \ {I}.

P r o o f. (1) is obvious by definition ofMP (observe also that if I isMP -deletable,
it is unforced and so I, I+ 6∈ J ′).

(2)(a) results from Cases (1) and (4) of Proposition 1. Indeed, if I is a G-deletable
ideal, one has I+ 6∈ J ′ (according to the implication of (2)(c) by (2)(a) in Theo-

rem 3.1). So, Case (1) of Proposition 1 corresponds to I 6∈ J ′, and Case (2) of

Proposition 1 does not occur. Moreover, when I ∈ J ′ ∩ M ′, I+ has a unique other
lower cover I ′ with I− ⊂ I ′ (by Point (2) of Theorem 3.1). So, Case (3) of Proposi-

tion 1 does not occur.

The result on the order on J is the same as in Proposition 1 except that now there

exists a unique ordered pair (K, I+) with K ∈ J ′, K ⊂ I ′ and K 6⊆ I−. Indeed, the
last two conditions are equivalent to K ∨ I = I+ and, since a convex geometry is

a lower locally distributive lattice, for any meet-irreducible I there exists a unique

K ∈ J ′ such that K ∨ I = I+ (Point (2) of Lemma 2).

In order to prove (2)(b) and according to Proposition 2, we have to prove that, if

G ≺ I and if G has a unique other upper cover I ′ in G ′, then I ′ ≺ I+. But, since G ′

is a lower locally distributive lattice, this results from Point (5) of Lemma 2. The

final assertion results from Point (2) of Theorem 3.1. Indeed, when I is G-deletable

w.r.t. G ′ and I ∈ J ′ ∩ M ′, I− cannot belong to M ′. �

Remark 4. 1. When G ′ is a convex geometry, we have just shown that I −(I) =

{G ∈ G ′ : G ≺ I and G has a unique other upper cover I ′}. This is also true if G ′ is
a Moore family without a sublattice isomorphic to the lattice N5.

2. When G ′ is a convex geometry and G = G ′\{I} ≺ G ′ are two convex geometries

such that J = J ′, it is not difficult to see that, even if |M | = |M ′|, M cannot be

isomorphic to M ′.

4. The lower covers of a distributive lattice

Let P be a poset, O(P ) the distributive lattice of all ideals of P , x ∈ P and
I = P \ [x) a meet-irreducible element of O(P ). The Moore family O(P ) \ I may or

may not belong to MP , G or GP . In this section we characterize the elements x of

P corresponding to these different cases. We need to recall or define the following
notions:

– x is join-prime if there exists y ∈ P such that P = [x) + (y]. In this case, we
also say that x is the conjugate element of y (Berman and Bordalo [2], 1998).
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– x is strongly meet-irreducible if x is covered by a unique element, which we

denote by x+. Then x is a meet-irreducible element of P .
One defines dually the notions of a meet-prime element and of a strongly join-

irreducible element.

Let x, y be two elements of P . The ordered pair (x, y) is a critical pair or a weak
critical pair respectively for P if x and y are incomparable or x 66 y respectively

and, for all z, t ∈ P , z < x implies z 6 y, and y < t implies x 6 t. It is clear that

(x, y) is a critical pair for P if and only if P +(x, y) is a poset (cf. for instance Barbut
and Monjardet [1], 1970, II, p. 54, or Rabinovitch and Rival [21], 1979) and that, if

(x, y) is a weak critical pair, then y is covered by x in P .

The following lemma gives some known or not known (but anyway obvious or easy
to prove) relations between the above notions.

Lemma 3. Let x be an element of a poset P . Then

– if x is a node covering an element y, then y is a strong meet-irreducible element

of P ,

– x is a join-prime element of P if and only P \ [x) is a doubly-irreducible element

of O(P ).

Let x be a join-prime element of a poset P , the conjugate of the element y of P .

Then

– x is join-irreducible, y is meet-prime and (x, y) is a weak critical pair for P ,

– x is a node of P if and only if x covers a strong meet-irreducible element—which

is equal to y—if and only if P \ [x) = (y] is a doubly-irreducible element and a

node of O(P ). In this case, P = (y] ⊕ [x), and so y is covered by x in P ;

– if x is a node, then (x, y) is a critical pair for P .

In the next theorem, we characterize the elements x of P for which O(P )\(P \ [x))

belongs to MP , G or GP .

Theorem 4.1. Let P be a poset, O(P ) the distributive lattice of all ideals of P

and I = P \ [x) a meet-irreducible element of O(P ). Then

(1) I is MP -deletable w.r.t. O(P ) if and only if x is neither join-prime nor a node

of P ,

(2) I is G-deletable w.r.t. O(P ) if and only if x does not cover any strong meet-

irreducible element of P and x is not the minimum of P (if this minimum

exists),

(3) I is GP -deletable w.r.t. O(P ) if and only if x does not cover a strong meet-

irreducible element of P and is neither join-prime nor the minimum of P (if this

minimum exists).

P r o o f. (1) is proved in Bordalo and Monjardet [4], 2002.
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(2) By Point (2) of Theorem 3.1, I = P \ [x) is G-deletable w.r.t. O(P ) if and only

if [I 6= ∅ and I does not cover any meet-irreducible of O(P )]. The ideal I is empty
if and only if P has a minimum, which is then x. There exists G ∈ M(O(P )) with

G ≺ I if and only if G = P \ [y) ≺ P \ [x) = I, if and only if P \ [x) = (P \ [y)) + {t}

for some t in P , if and only if [x) =]y), if and only if y = t is a strong meet-irreducible
element covered by x.

(3) Since GP = MP ∩ G, we put together Conditions (1) and (2) and observe

that, since x does not cover a strong meet-irreducible element of P and is not the

minimum of P (when this minimum exists), it cannot be a node. �

An immediate consequence of this theorem (and of Lemma 3, for Item (3) below) is

Corollary 2. Let P be a poset, O(P ) the distributive lattice of all ideals of P

and I = P \ [x) a meet-irreducible element of O(P ). Then:

(1) I is M-deletable but not MP -deletable w.r.t. O(P ) if and only if x is join-prime

or a node of P ,

(2) I is M-deletable but not G-deletable w.r.t. O(P ) if and only if x covers a strong

meet-irreducible element of P or is the minimum of P (when this minimum

exists),

(3) I is G-deletable but not GP -deletable w.r.t. O(P ) if and only if x does not cover

any strong meet-irreducible element of P and is join-prime.

Considering as before I = P \ [x) and using Lemma 3, it is easy to check that

the above results induce a partition of the poset P into the following—some possibly

empty—four classes Pi, i = 1, 2, 3, 4, where the last three cover the case when x is
not a node:

– P1 = {x ∈ P : x is a node} = {x ∈ P : O(P ) \ I belongs neither to MP nor

to G},

– P2 = {x ∈ P : x covers a strong meet-irreducible element and is not a node} =

{x ∈ P : O(P ) \ I belongs to MP \G (and to MP \GP )},

– P3 = {x ∈ P : x does not cover a strong meet-irreducible element of P and is

join-prime} = {x ∈ P : O(P ) \ I belongs to G \GP },

– P4 = {x ∈ P : x does not cover a strong meet-irreducible element of P and
is neither join-prime nor the minimum of P (if this minimum exists)} = {x ∈

P : O(P ) \ I belongs to GP }.

We illustrate this partition on the poset P represented in Figure 1. For this poset,

P1 = ∅, P2 = {5}, P3 = {1, 2}, and P4 = {3, 4}. So the five lower covers of O(P ) in
M are O(P ) \ {1234}, O(P ) \ {4}, O(P ) \ {1345}, O(P ) \ {124}, O(P ) \ {123}.

The first belongs to MP \ GP , the second and the third to G \ GP and the last
two to GP .
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Figure 1. (a) P and (b) O(P )

We now aim at giving an additional result for the case when O(P ) \ I belongs to

G \GP . To do so, we first prove the following lemma:

Lemma 4. Let P be a poset and (x, y) a critical pair for P . Then O(P + (x, y))

is a sublattice of O(P ) obtained from O(P ) by deleting the ideals I ∈ O(P ) such

that y ∈ I and x 6∈ I.

P r o o f. By the well-known Birkhoff’s duality between posets and distributive

lattices we have that O(P + (x, y)) is a sublattice of O(P ). Now we have (y ∈ I and
x 6∈ I) if and only if I 6∈ O(P + (x, y)). �

Proposition 3. Let P be a poset and x a join-prime of P which does not cover

any strong meet-irreducible element of P . Then P = [x)+ (y], (x, y) is a critical pair

for P , I = P \ [x) = (y] is a doubly-irreducible element of O(P ) and O(P ) \ I =

O(P +(x, y)) is a (maximal) sublattice of O(P ) which belongs to G \GP . Moreover,

J(O(P ) \ I) = (J(O(P )) \ I) + {I+} and M(O(P ) \ I) = (M(O(P )) \ I) + {I−}.

P r o o f. If x is join-prime, then P \ [x) is a doubly-irreducible element of O(P )

and (x, y) is a critical pair for P (by Lemma 3). Moreover, (y] is the unique ideal

of P which contains y and not x. So, by Lemma 4, O(P ) \ I = O(P + (x, y)) is
a maximal sublattice of O(P ). Since x does not cover any strong meet-irreducible

element of P , it belongs to G \ GP (by Item (3) of Corollary 2). By Item (2)(a)

of Corollary 1, J(O(P ) \ I) = (J(O(P )) \ I) + {I+}. Using the fact that in the
distributive lattice O(P ), I− being the lower cover of a meet-irreducible element can
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have only one other upper cover, Item (2)(b) of Corollary 1 implies that M(O(P ) \

I) = (M(O(P )) \ I) + {I−}. �

By Lemma 3 we know that a join-prime element x of a poset P covers a strong

meet-irreducible element of P if and only if P \ [x) = (y] is a doubly-irreducible

element which is a node of O(P ). Thus we obtain

Corollary 3. There is a bijection between the doubly-irreducible elements which

are not nodes of a distributive lattice L = O(P ) and the family of convex geome-

tries covered by O(P ) in G \ GP . Moreover, these convex geometries are maximal

(distributive) sublattices of L.

Remark 5. Some of the above results can be compared with known results

on the maximal sublattices of a distributive lattice (see Schmid [23], 2002 and the
references there). The simplest way to get a maximal sublattice of a distributive

lattice L = O(P ) is to delete a doubly-irreducible element I = P \ [x) = (y] of L

(when such an element exists). In our study, this case splits into two sub-cases (see

Lemma 3):

a. I is a node of O(P ) (or, equivalently, by Lemma 3, x is a node of P , i.e. x ∈ P1).

Then, O(P ) \ I belongs to M \ (MP ∪G) (but remains a distributive lattice).

b. I is not a node of O(P ) or, equivalently, x is join-prime and does not cover a

strong meet-irreducible element of P (i.e. x ∈ P3). Then O(P ) \ I is a maximal
sublattice of O(P ) which is also a convex geometry.

Using the Galois connection between families of subsets of a set X and binary

relations on X (Lorrain [14], 1969, Chacron [9], 1971, Barbut and Monjardet [1],
1970), Schmid [23], 2002 has made a systematic study of the lattice of the (0-1)

sublattices of a (finite or infinite) distributive lattice. The lattice of the finite ∪-

stable Moore families was studied in Caspard and Monjardet [8], 2004.

Previously we have defined a partition of a poset P into—some possibly empty—
four classes Pi, (i = 1, 2, 3, 4). We consider two cases when only one of these classes

is non-empty.

F i r s t c a s e :

Proposition 4. For a poset P , the following properties are equivalent:

(1) for every x in P , x is join-prime and does not cover a strong meet-irreducible

element of P (i.e. x ∈ P3),

(2) for every x in P , x is join-prime and is not a node,

(3) for all x in P and I = P \ [x), O(P ) \ I is a (maximal) sublattice of O(P ),

(4) P is an ordinal sum of 2-elements antichains.
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Remark 6. The class of posets which are ordinal sums of 2-elements antichains is

a subclass of the class of posets P such that |MP | = 1 (see Proposition 16 in Bordalo
and Monjardet [4], 2002). It is also a very special subclass of the class of distributive

posets studied by several authors (Erné [13], 1991, Niederle [18], 1995 and Reading

[22], 2002).

S e c o n d c a s e: We consider a poset P such that, for all x in P and I = P \ [x),
O(P ) \ I ∈ GP (i.e. x ∈ P4). This is equivalent to say that, for every x in P , x does

not cover a strong meet-irreducible element of P and is neither join-prime nor the

minimum of P (if this minimum exists).
Observe that this property is also equivalent to the equality |{coatoms of GP }| =

|P | (and this implies that |{coatoms of MP }| = |P |).

It is easy to get examples of such posets. For instance, any complete bipartite
poset Bp,q (i.e. the ordinal sum of two antichains of sizes p and q) is such a poset if

and only if p, q > 3. We give below another class of such posets. Let us say that a

poset is smi-free if it has no strong meet-irreducible element. The following result
shows that almost all non connected smi-free posets possess this property.

Proposition 5. Let P be a smi-free poset. If P is not connected, every meet-

irreducible element of O(P ) is GP -deletable unless P is the (cardinal) sum of a

singleton and a poset with a minimum.

P r o o f. First observe that P is a smi-free poset if and only if every non maximal

element of P has at least two upper covers. But then |P | = 1 or P has no maximum.

Now, when P is not connected, no element of P is join-prime unless P is the disjoint
union of a singleton and of a poset with a minimum (which is then the unique join-

prime element of P ). �

Remark 7.

– The simplest example of a poset satisfying the conditions of Proposition 5 is
the disjoint union of a singleton and of the complete bipartite poset B2,2.

– The complete bipartite poset Bp,q (with p, q > 3) is an example of a connected

smi-free poset satisfying the conditions of Proposition 5.

5. The semilattice GP of convex geometries with the same poset P of

join-irreducible elements

We begin this section with an additional result on the changes in the poset of

join-irreducible elements of a convex geometry when one goes to one of its lower
covers in the semilattice G of convex geometries.
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Proposition 6. Let G ′ ∈ GP be a convex geometry, G one of its lower covers in

the semilattice G of all convex geometries and J the poset of join-irreducible elements

of G . Then either J = J ′ and G ∈ GP , or J = (J ′ \ {I}) + {I+} and G ∈ GP+(x,y),

where x = I+ \ I, y = I \ I− and (x, y) is a critical pair for P .

P r o o f. By Item (2)(a) of Corollary 1, if J 6= J ′, we have J = J ′ \ {I} + {I+}

with I ∈ J ′ ∩ M ′ and I+ having a unique other lower cover I ′ in G ′; moreover, I−

is covered by I ′ in G ′. The order on J is the union of two orders. The first is the

order obtained by replacing I by I+ in all ordered pairs (K, I) and (I, L) of J ′; this

order is isomorphic to the order of J ′ and so to the poset P . The second order is
the unique ordered pair (G, I+) with G ∈ J ′ and G ∨ I = I+. Then, in the convex

geometries G ′ and G , G = ϕG ′(x) = ϕG (x) where x = I+ \ I (see, for instance,

Monjardet [15], 1990). Now, since I is join-irreducible in G ′, I = ϕG ′(y), where
y = I \ I− (= I+ \ I ′), and we have I+ = ϕG (y) in G . Then, adding the covering

ordered pair (G, I+) = (ϕG (x), ϕG (y)) to J ′ corresponds to adding the covering pair

(x, y) to the isomorphic poset P . Moreover, since P + (x, y) is a poset, (x, y) is a
critical pair for P . �

Remark 8. The above proposition shows that in the semilattice G of all convex

geometries one goes from a convex geometry G ′ ∈ GP to one of its lower covers

G = G ′ \ {I} either without changing its (up to isomorphism) poset P of join-
irreducible elements or by adding to the cover relation of this poset a unique ordered

pair x ≺ y. The case when G ′ = O(P ) and G = O(P ) \ {I} ∈ GP+(x,y) has been

already considered in Proposition 3.

Proposition 6 has two consequences:

Corollary 4. Let P be a poset.

(1) Let G ′ ∈ GP be a convex geometry with J ′ isomorphic to P . The number of

critical pairs for P is an upper bound for the number of convex geometries G

covered by G ′ in G and satisfying J 6= J ′.

(2) Let G , G ′ be two convex geometries in G with G ⊂ G ′ and J = J ′. Then for

any convex geometry G ′′ with G ⊂ G ′′ ⊂ G ′ we have J = J ′′ = J ′.

P r o o f. (1) is obvious and (2) is immediate by considering in G a maximal chain
between G and G ′ which contains G ′′. �

Proposition 7. Let P be a poset.

(1) The poset GP is a convex join-subsemilattice of the join-semilattice G and a

join-subsemilattice of the lattice MP .
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(2) For G , G ′ ∈ GP , we have G ≺ G ′ in GP if and only if G ≺ G ′ in G, if and

only if G ≺ G ′ in MP . Then, if G = G ′ \ {I}, we have J = J ′ and M =

(M ′ \ {I}) + {G ∈ G ′ : G ≺ I and G has a unique other upper cover}.

(3) GP is a ranked semilattice.

P r o o f. (1) It is clear that the poset GP has a greatest element which is O(P ).
Let G and G ′ be two convex geometries with J = J ′ = P. We must show that

J(G ∨ G ′) = J . The elements of G and G ′ are ideals of P as well as of their

intersections. So the join G ∨ G ′ of G and G ′ in G is contained in O(P ). Now since
J(O(P )) = P = J and G ⊆ G ∨ G ′ ⊆ O(P ), Item (2) of Corollary 4 shows that

J(G ∨ G ′) = J . The same corollary says that GP is convex in G.

(2) The first part is obvious since, for the covering relation ≺ in MP , G or GP ,

G ≺ G ′ if and only if G = G ′ \ {I}. The second part is an immediate consequence of
Corollary 1.

(3) Since GP is a convex subposet of the ranked semilattice G, it is ranked. �

Remark 9. The semilattice GP is generally not convex in MP . Consider, for
instance, the atomistic convex geometry defined on the antichain P = {1, 2, 3, 4} by

taking all intervals of the linear order 1 > 2 > 3 > 4. Then G = {∅, 1, 2, 3, 4, 12, 23,

34, 123, 234, 1234} (where, for instance, 134 stands for {1, 3, 4}) and G + {14} ∈

MP \GP .

We are now going to characterize the ideals I of a poset P which are GP -deletable

in a convex geometry G ′ ∈ GP . In fact, since G = G ′ \ {I} must belong to GP =

MP ∩ G, Items (1)(c) and (2)(b) of Theorem 3.1 show that I is GP -deletable if
and only if I ∈ M ′ \ J ′, I+ 6∈ J ′ (which implies I 6= ∅) and I does not cover

any meet-irreducible element of G ′. The following result gives another interesting

characterization.

Theorem 5.1. Let P be a poset and G ′ ∈ GP . An ideal I of P is GP -deletable

w.r.t. G ′ if and only if it satisfies the following three conditions:

(1) I ∈ M ′,

(2) G 6∈ M ′ for every G ∈ G ′ with G ≺ I,

(3) I is a coatom of a Boolean sublattice 23 of G ′.

P r o o f. We have just observed above that Conditions (1) and (2) together

with I, I+ 6∈ J ′ are equivalent to G ′ \ {I} ∈ GP . Since Condition (3) obviously
implies I, I+ 6∈ J ′, we have to show that Conditions (1) and (2) together with

I, I+ 6∈ J ′ imply Condition (3). Since I is not join-irreducible, there exist at least G1

and G2 distinct and covered by I. Since these elements are not meet-irreducible (by
Condition (2)), there existK1 andK2 (different from I) with G1 ≺ K1 and G2 ≺ K2.
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It is impossible to have K1 = K2 (since one would have G1 and G2 covered by I and

K1). If K1 and K2 are covered by I+ we are done since, in the convex geometry G ′,
{K1, K2, I} generate a Boolean sublattice 23 in which I is a coatom. Assume that

K1 is not covered by I+. By Point (5) of Lemma 2, G1 ≺ I and G1 ≺ K1 imply the

existence of M1, L1 ∈ G ′ with G1 ≺ M1 ≺ L1 and I ≺ L1. Since I ∈ M ′, one has
L1 = I+ and M1 must be different from K1. If K2 is covered by I+, we are done

(using {M1, K2, I}). If not, for the same reasons as above there exists M2 (6= K2)

with G2 ≺ M2 ≺ L2 = I+. But M2 = M1 is impossible (since one would have G1

and G2 covered by I and M1). Hence, {M1, M2, I} generate a Boolean sublattice 23

in which I is a coatom. �

The ideals I = P \ [x) such that O(P ) \ I is a coatom of the semilattice GP

have already been characterized by properties of x in Theorem 4.1 (Item (3)). Using

the above theorem, we can also say that these ideals are the coatoms of a Boolean

sublattice 23 of O(P ) which are meet-irreducible in O(P ) and which do not cover any
meet-irreducible element of O(P ). Morever, such an ideal I covers k = |{maximal

elements of I}| ideals which all become new meet-irreducible elements in O(P ) \ I.

Now, we focus on the minimal elements of GP . Using Theorem 3.1 and Corollary 1,
one gets:

Corollary 5. Let G be a convex geometry of GP . The following conditions are

equivalent:

(1) G is a minimal element of GP ,

(2) for every I ∈ M , either there exists G ≺ I with G ∈ M , or I ∈ M ∩ J ,

(3) the set M is a union of chains of M of the type I1 ≺ I2 ≺ . . . ≺ Ik, such that

the minimum I1 of each chain is doubly-irreducible.

Remark 10. Let G and G ′ be two minimal elements of the semilattice GP .
Since G ∩ G ′ ∈ MP \ GP , the meet in G (when it exists) of G and G ′ satisfies

G ∧G ′ ⊆ G ∩G ′. Observe also that G and G ′ are not necessarily isomorphic lattices.
For instance, there are two types of minimal atomistic convex geometries on the set

P = {1, 2, 3, 4}. The former is formed by all intervals of a linear order defined on P ,

so it is, for example, {∅, 1, 2, 3, 4, 12, 23, 34, 123, 234, 1234}. The latter is, for example
{∅, 1, 2, 3, 4, 13, 34, 23, 134, 234, 1234}.

We now characterize the posets P such that |GP | = 1, i.e. such that O(P ) is the

unique convex geometry G defined on P with J(G ) = P. Recall that the width

w(P ) of a poset P is the maximum size of an antichain in P .
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Theorem 5.2. For a poset P , the following conditions are equivalent:

(1) |GP | = 1,

(2) for each x in P , either x is a node, or x is join-prime, or x covers a strong

meet-irreducible element,

(3) P is a poset of width at most 2.

P r o o f. Since |GP | = 1 if and only if GP has no coatoms, the equivalence of (1)
and (2) is an obvious consequence of Item (3) in Theorem 4.1.

Since |GP | = 1 if and only if O(P ) has no GP -deletable element, the implication

of (1) by (3) is an obvious consequence of Item (3) in Theorem 5.1.

Finally, we prove that (2) implies (3). Let P be a poset satisfying (2) and assume

that w(P ) > 3. Consider an antichain A of size k > 3, minimal in the classical order
defined between antichains (B 6 C if, for every x′ ∈ C, there exists x ∈ B such that

x 6 x′). An element x in A cannot be a node of P (since A is an antichain) and
cannot cover a strong meet-irreducible element, since then A would not be a minimal

antichain. So x must be join-prime in P , i.e. P = [x) + (y] for some y in P . This

implies that the elements of A\ [x) are all smaller than or equal to y. The same being
true for every element of A, all the elements y form an antichain A′ of size k such

that A is smaller than A′ in the order between antichains (and A∩A′ = ∅). Iterating

this procedure, we would get an infinite chain of antichains of P , a contradiction
with the fact that P is finite. �

Remark 11. The equivalence between (2) and (3) in this theorem gives a char-
acterization of posets of width at most 2 that is new (to our knowledge).

We finally study the more general case when GP has a unique coatom. We have

the following result:

Proposition 8. For a poset P , the following Properties (1) and (2) are equivalent

and imply Property (3):

(1) GP has a unique coatom,

(2) there exists a unique element in P which does not cover a strong meet-irreducible

element of P and is neither join-prime nor the minimum of P (if this minimum

exists),

(3) P must contain at least one strong meet-irreducible element.

P r o o f. The equivalence between Properties (1) and (2) comes from Point (3)

of Theorem 4.1.

Assume that GP has a unique coatom and that P is smi-free. Then Property

(2) becomes: “There exists a unique element in P which is neither a node nor join-
prime”. By Corollary 18 in Bordalo and Monjardet [4], 2002, this implies |MP | =
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2, which in turn implies w(P ) = 2 which, by Theorem 5.2, yields |GP | = 1, a

contradiction. �

6. Conclusion

In Sections 2 to 5 of this paper we have studied what changes occur in the posets of

irreducible elements when one goes from an arbitrary Moore family (or from a convex

geometry) to one of its lower covers in some (semi)lattices of Moore families or convex
geometries. One knows that any Moore family can be economically represented by

an implicational basis (see, for instance, Wild [24], 1994). It would be interesting

to study the changes in the implicational base—for instance, the Guigues-Duquenne
canonical basis (see, for example, Caspard [6], 1999)—when one goes down in lattices

of Moore families.

In Bordalo and Monjardet [4], 2002 we studied the latticeMP of all Moore families

having the same poset P of join-irreducible elements. In particular, we proved that
|MP | = 2 if and only if MP has a unique coatom, if and only if MP has a unique

atom, and if and only if P has a unique element wich is neither join-prime nor a

node. So, if MP is a chain, it is a 2-element chain. The situation is completely
different for GP . Indeed, there exist posets P such that GP is a chain of cardinality

k, for any integer k > 2. An example of such a poset P is given in Figure 2; then

GP is the chain of cardinality k with k = 4.

Figure 2.

As another illustration of the different behaviour of MP and GP , one can observe
that GP can be the distributive lattice of cardinality 6 having a unique atom and a

unique coatom (Figure 3(b)); this is the case when P is the poset given in Figure

3(a).

Thus, a number of open problems remain and, in particular, the following one:
what are the posets P such that |GP | = 2? Indeed, there exist many examples of

such posets but it has been difficult so far to find some common characteristics.

This work also raises two more general questions:
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Figure 3.

(1) What are the posets P such that GP has a unique coatom? In fact, we have
given a characterization of these posets in Proposition 8, but is it possible to

give a more precise description?

(2) What are the posets P such that GP is a lattice?

Last but not least, another interesting problem can be considered: if G and G ′ are

minimal elements of the semilattice GP , does this imply |G | = |G ′|?

7. Appendix: Algorithm

Theorem 5.1 easily leads to the following algorithm for computing all convex ge-

ometries of GP .

Input: A poset P .
Output: The list CGP of all convex geometries of GP .

begin

1: Compute (O(P ),⊆);
CGP := {(O(P ),⊆)};

2: foreach L ∈ CGP

Compute M(L);
Compute J(L);

Let M∗
L := M(L) \ J(L);

foreach C ∈ M∗(L)

Compute (C] := {G ∈ L : G ≺ C};

Compute (C+] := {H ∈ L \ C : H ≺ C+};

if (L \ C 6∈ CGP ) and (|(C] ∩ M(L)| = 0) and (|(C+]| 6= 0) then
CGP := CGP + {(L \ C,⊆)};

end

Algorithm 1: Computing all convex geometries of GP .
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