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1. Introduction

In this paper we are concerned with the existence and uniform decay rates of

solutions of a hyperbolic system with a differential inclusion and a memory source

term on the boundary of the form

u′′ − div(a∇u) + |u|γu = 0 in Ω × (0,∞),(1.1)

u = 0 on Γ1 × (0,∞),(1.2)

(a∇u) · ν + u′ + Ξ =

∫ t

0

h(t− τ)f(u(τ)) dτ on Γ0 × (0,∞),(1.3)

u(x, 0) = u0, u
′(x, 0) = u1 in Ω,(1.4)

Ξ ∈ ϕ(u(x, t)) a.e. (x, t) ∈ Γ0 × (0,∞),(1.5)

where Ω is a bounded domain in R
n (n > 2) with sufficiently smooth boundary

Γ = ∂Ω such that Γ = Γ0 ∪ Γ1,Γ0 ∩ Γ1 = ∅ and Γ0, Γ1 have positive measures,

u′ = ∂u/∂t, u′′ = ∂2u/∂t2, a ∈ C1(Ω), f is a nonlinear function, ν is the unit
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outward normal to Γ and ϕ is a discontinuous and nonlinear set valued mapping

arising by filling in the jumps of a function b ∈ L∞
loc(R). In the rest of the paper let

us assume that
2

n− 1
< γ 6

2

n− 2
if n > 3

and

γ > 2 if n = 2.

The precise hypotheses on the above system will be given in the next section. Re-

cently, a class of viscoelastic problems has been studied by many authors [2], [3], [10],

[13]. M.Aassila [1] investigated the global existence of a solution to a system (1.1)

and (1.4) with damping terms and the Dirichlet boundary conditions when a(x) ≡ 1.

M.M.Cavalcanti et al. [3] studied the existence and uniform decay of solutions of the

damped semilinear viscoelastic wave equation with the Dirichlet boundary conditions

of the form
{

u′′ − ∆u+ αu+ β|u′|̺u′ + δ|u|̺u+
∫ t

0 h(t− τ)∆u(τ) dτ = 0 in Ω × (0,∞),

u(x, 0) = u0, u
′(x, 0) = u1 in Ω,

where Ω is any bounded or finite measure domain in Rn and the constants α, β, ̺ and

δ are positive and satisfy some conditions. Motivated by their works, we consider

more general problems (1.1)–(1.5) with a discontinuous and nonlinear multi-valued

term ϕ and a nonlinear memory source term on the boundary. The background of

these variational problems is in physics, especially in solid mechanics, where non-

monotone and multi-valued constitutive laws lead to differential inclusions. We refer

to [5], [11], [12] to see the applications of such differential inclusions. In this paper

we prove the existence of solutions of the variational inequality problems (1.1)–(1.5).

Moreover, the uniform decay of the energy

E(t) =
1

2
‖u′(t)‖2 +

1

2

∫

Ω

a(x)|∇u(x, t)|2 dx+
1

γ + 2
‖u(t)‖γ+2

γ+2

is proved by assuming that µ (see assumption (A2)
∗ below) is sufficiently small and

the kernel h in the memory term decays exponentially. At this point it is important

to mention that such differential inclusions were studied by some authors [4], [8],

[9], [14], [15], but, as far as we are concerned, a differential inclusion acting on the

boundary has never been considered and no decay rates in the present paper were

obtained as in literature. Our paper is organized as follows: In Section 2, we give

assumptions and state the main results. In Section 3, we prove the existence of

solution of the problems (1.1)–(1.5) by using the Faedo-Galerkin method. Finally, in

Section 4, we prove the uniform decay of energy by using the Lyapunov functional

developed by Kormornik and Zuazua [6].
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2. Assumptions and main results

Throughout the paper we denote

V = {u ∈ H1(Ω): u = 0 on Γ1}, (u, v) =

∫

Ω

u(x)v(x) dx,

(u, v)Γ0
=

∫

Γ0

u(x)v(x) dΓ, ‖u‖2
2,Γ0

=

∫

Γ0

|u(x)|2 dΓ.

Let us denote by V ∗ the dual space of V , by ‖·‖∗ the norm of V ∗ and by 〈·, ·〉 the dual

pairing between V and V ∗. For simplicity, we denote ‖ · ‖L2(Ω), ‖ · ‖Lp(Ω)(1 6 p 6 ∞)

and ‖ · ‖2,Γ0
by ‖ · ‖, ‖ · ‖p and ‖ · ‖Γ0

, respectively. Let λ0 and λ be the smallest

positive constants such that

(2.1) ‖u‖2 6 λ0‖∇u‖
2, ‖u‖2

Γ0
6 λ‖∇u‖2, ∀u ∈ V.

We formulate the following assumptions:

(A1) Assumptions on a

Let a ∈ C1(Ω) satisfy a(x) > a0 > 0 in Ω for some a0.

For short notation, define a(u, v) =
n
∑

j=1

∫

Ω
a(x)∂u/∂xj∂v/∂xj dx. By the above

assumption on a, we have

a0‖∇u‖
2 6 a(u, u) 6 a1‖∇u‖

2, ∀u ∈ V for some a1 > 0.

(A2) Assumptions on b

Let b : R → R be a locally bounded function satisfying

|b(s)| 6 µ0(1 + |s|) ∀s ∈ R for some µ0 > 0.

In order to get the uniform decay rates for the solutions of problem (1.1)–(1.5) we

shall use the following stronger hypothesis:

(A2)
∗ |b(s)| 6 µ|s| and b(s)s > µ1s

2, where µ1 > 0 and 0 < µ < 1.

The multi-valued function ϕ : R → 2R is obtained by filling in the jumps of the

function b : R → R by means of the functions bε, bε, b, b : R → R as follows:

bε(t) = ess inf
|s−t|6ε

b(s), bε(t) = ess sup
|s−t|6ε

b(s);

b(t) = lim
ε→0+

bε(t), b(t) = lim
ε→0+

bε(t);

ϕ(t) = [b(t), b(t)].
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We shall need a regularization of b defined by

bm(t) = m

∫ ∞

−∞

b(t− τ)̺(mτ) dτ,

where ̺ ∈ C∞
0 ((−1, 1)), ̺ > 0 and

∫ 1

−1 ̺(τ) dτ = 1.

Remark 2.1. It is easy to show that bm is continuous for all m ∈ N and

bε, bε, b, b, b
m satisfy the same condition (A2) or (A2)

∗ possibly with different con-

stants if b satisfies (A2) or (A2)
∗. So, in the sequel, we denote the different constants

by the same symbols as the original ones.

(A3) Assumptions on f

Let f : R → R be a continuous function satisfying

|f(s)| 6 α(1 + |s|), ∀s ∈ R

for a positive constant α.

(A4) Assumptions on the kernel h

Let h : R+ → R+ be a continuously differentiable function verifying

−ξ1h(t) 6 h′(t) 6 −ξ2h(t), ∀t > t0

for some ξ1 > 0, ξ2 > 0, t0 > 0, where h(0) = 0 and 1 − λa0
−1

∫ ∞

0
h(s) ds = l > 0.

Definition. A function u(x, t) is a solution to problem (1.1)–(1.5) if for every

T > 0, u satisfies

u ∈ L∞(0, T ;V ), u′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L2(Γ0)), u
′′ ∈ L2(0, T ;V ∗),

and there exists Ξ ∈ L2(0, T ;L2(Γ0)) such that the following relations hold:

∫ T

0

{〈u′′, v〉 + a(u(t), v) + (|u(t)|γu(t), v) + (u′(t), v)Γ0
+ (Ξ, v)Γ0

} dt

=

∫ T

0

∫ t

0

h(t− τ)(f(u(τ)), v)Γ0
dτ dt, ∀v ∈ V,

Ξ(x, t) ∈ ϕ(u(x, t)) a.e. (x, t) ∈ Γ0 × (0, T ),

u(x, 0) = u0, u
′(x, 0) = u1 on Ω.

Now we are in a position to state our results.
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Theorem 2.1. Assume the conditions (A1)–(A4) hold. Then for every (u0, u1) ∈

V × L2(Ω) there exists a solution of problem (1.1)–(1.5).

Theorem 2.2. Assume the conditions (A1), (A2)
∗, (A3) and (A4) hold and

(u0, u1) ∈ V × L2(Ω). Then, if we assume ‖∇a‖∞/a0 6 µ and consider ‖h‖L1(0,∞)

and µ (given in (A2)
∗) sufficiently small, the energy determined by the solutions of

problem (1.1)–(1.5) decays exponentially, that is,

E(t) 6 C3 exp
(

−
2

3
C2t

)

a.e. t > t0,

for some positive constants C2 and C3.

3. Proof of theorem 2.1

In this section we are going to show the existence of solutions to problem (1.1)–

(1.5) using the Faedo-Galerkin approximation. To this end we represent by {wj}j>1

a basis in V which is orthonormal in L2(Ω). Let Vm be the space generated by

w1, . . . , wm. We may choose (u0m) and (u1m) in Vm such that

u0m → u0 in V and u1m → u1 in L
2(Ω).

Let

um(t) =

m
∑

j=1

gjm(t)wj

be the solution to the Cauchy problem

(u′′m(t), w) + a(um(t), w) + (|um(t)|γum(t), w)(3.1)

+ (u′m(t), w)Γ0
+ (bm(um(t)), w)Γ0

=

∫ t

0

h(t− τ)(f(um(τ)), w)Γ0
dτ, ∀w ∈ Vm,

um(0) = u0m, u
′
m(0) = u1m.(3.2)

By standard methods of differential equations, we can prove the existence of a solu-

tion to (3.1)–(3.2) on an interval [0, tm). Then, this solution can be extended to the

closed interval [0, T ] by using the a priori estimate below.
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Step 1: A priori estimate.

Replacing w by u′m(t) in (3.1) and noting that h(0) = 0, we get

d

dt

{1

2
‖u′m(t)‖2 +

1

γ + 2
‖um(t)‖γ+2

γ+2 +
1

2

∫

Ω

a(x)|∇u′m(x, t)|2 dx
}

(3.3)

+ ‖u′m(t)‖2
Γ0

+ (bm(um(t)), u′m(t))Γ0

=
d

dt

∫ t

0

h(t− τ)(f(um(τ)), um(t))Γ0
dτ

−

∫ t

0

h′(t− τ)(f(um(τ)), um(t))Γ0
dτ.

Assumption (A2) and Eq. (2.1) yield that

(3.4) −(bm(um(t)), u′m(t))Γ0
6

1

2
‖u′m(t)‖2

Γ0
+ C(1 + ‖∇um(t)‖2).

Here and in the sequel C denotes generic constants independent ofm. By assumption

(A3) and Eq. (2.1), we get

(f(um(τ)), um(t))Γ0
6 C(1 + ‖∇um(τ)‖2 + ‖∇um(t)‖2).

Thus

−

∫ t

0

h′(t− τ)(f(um(τ)), um(t))Γ0
dτ(3.5)

6 C

(

‖h′‖L1(0,∞) +

∫ t

0

|h′(t− τ)|‖∇um(τ)‖2 dτ + ‖h′‖L1(0,∞)‖∇um(t)‖2

)

.

Combining estimates (3.3)–(3.5), integrating over (0, t) and noting that a0 6 a(x) 6

a1, we get

1

2
‖u′m(t)‖2 +

1

γ + 2
‖um(t)‖γ+2

γ+2 +
a0

2
‖∇um(t)‖2 +

1

2

∫ t

0

‖u′m(s)‖2
Γ0

ds

6
1

2
‖u1m‖2 +

1

γ + 2
‖u0m‖γ+2

γ+2 +
a1

2
‖∇u0m‖2 +

∫ t

0

h(t− τ)(f(um(τ)), um(t))Γ0
dτ

+ C

∫ t

0

(

1 + ‖∇um(s)‖2 +

∫ s

0

|h′(s− τ)|‖∇um(τ)‖2 dτ

)

ds.

Since

∫ t

0

h(t− τ)(f(um(τ)), um(t))Γ0
dτ

6 C

{

1

2η
‖h‖L1(0,∞) +

1

2η

∫ t

0

h(t− τ)‖∇um(τ)‖2 dτ + η‖h‖L1(0,∞)‖∇um(t)‖2

}

,
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choosing η sufficiently small and employing Gronwall’s lemma we conclude that

(3.6) ‖u′m(t)‖2 + ‖um(t)‖γ+2
γ+2 + ‖∇um(t)‖2 +

∫ t

0

‖u′m(s)‖2
Γ0

ds 6 L1,

where L1 is a positive constant independent of m ∈ N. Moreover, from assumptions

(A2)–(A3) and Eq. (2.1) we get

(3.7)

∫ t

0

‖bm(um(s))‖2
Γ0

ds+

∫ t

0

‖f(um(s))‖2
Γ0

ds 6 L2,

where L2 is a positive constant independent of m ∈ N.

Next, taking into consideration that the injection V →֒ L2(γ+1)(Ω) is continuous

and using Eq. (2.1), we obtain from (3.1), (3.6) and (3.7) that

(3.8)

∫ t

0

‖u′′m(s)‖2
V ∗ ds 6 L3,

where L3 is a positive constant independent of m ∈ N.

Step 2: Passage to the limit.

From the a priori estimates (3.6)–(3.8) we have subsequences (in the sequel we

denote subsequences by the same symbols as the original sequences) such that

um → u weakly star in L∞(0, T ;V ),(3.9)

u′m → u′ weakly star in L∞(0, T ;L2(Ω)),(3.10)

u′m → u′ weakly in L2(0, T ;L2(Γ0)),(3.11)

u′′m → u′′ weakly in L2(0, T ;V ∗),(3.12)

f(um) → χ1 weakly in L2(0, T ;L2(Γ0)),(3.13)

bm(um) → Ξ weakly in L2(0, T ;L2(Γ0)).(3.14)

Using (3.9) and the fact that the imbedding V →֒ L2(γ+1)(Ω) (0 < γ 6 2/(n− 2) if

n > 3 and γ > 2 if n = 2) is continuous, we get

‖|um|γum‖2
L2(0,T ;L2(Ω)) =

∫ T

0

∫

Ω

|um(t)|2(γ+1) dxdt 6 C.

This implies

(3.15) |um|γum → χ weakly in L2(0, T ;L2(Ω)).
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On the other hand, considering that the imbedding V →֒ L2(Ω) is compact and

making use of the Aubin-Lions theorem [7], we arrive at

um → u strongly in L2(0, T ;L2(Ω)).

Then um(x, t) → u(x, t) a.e. in Ω× (0, T ) and thus |um(x, t)|γum(x, t) → |u(x, t)|γ ×

u(x, t) a.e. in Ω×(0, T ). Therefore we conclude from (3.15) that χ(x, t) = |u(x, t)|γ ×

u(x, t) a.e. in Ω× (0, T ). Now, we can take the limit m→ ∞ in Eq. (3.1). Therefore

we obtain

∫ T

0

{〈u′′, v〉 + a(u(t), v) + (|u(t)|γu(t), v) + (u′(t), v)Γ0
+ (Ξ, v)Γ0

} dt(3.16)

=

∫ T

0

∫ t

0

h(t− τ)(χ1, v)Γ0
dτ dt, ∀v ∈ V.

Step 3: (u, χ1,Ξ) is a solution of problem (1.1)–(1.5).

First, we show that f(u) = χ1 in L
2(0, T ;L2(Γ0)). Considering that the imbedding

V →֒ L2(Γ0) is continuous and compact and using the Aubin-Lions compactness

lemma, we get from Eqs. (3.9) and (3.11) that

um → u strongly in L2(0, T ;L2(Γ0)).

Thus, um(x, t) → u(x, t) a.e. on Γ0 × (0, T ). Since f is continuous, we get

f(um(x, t)) → f1(u(x, t)) a.e. on Γ0 × (0, T ).

Combining this result and (3.13), we conclude that

f(um) → f(u) = χ1 weakly in L2(0, T ;L2(Γ0)).

It remains to prove that Ξ ∈ ϕ(u(x, t)) for a.e. (x, t) ∈ Γ0 × (0, T ). Since um(x, t) →

u(x, t) a.e. on Σ0 := Γ0× (0, T ), using the theorems of Lusin and Egoroff, for a given

η > 0 we can choose a subset ω ⊂ Σ0 such that meas(ω) < η and um → u uniformly

on Σ0 \ ω. Thus, for each ε > 0, there is an N > 2/ε such that

(3.17) |um(x, t) − u(x, t)| <
ε

2
, ∀(x, t) ∈ Σ0 \ ω, ∀m > N.

By the definition of bm, we have

ess inf
|s|61/m

b(t− s) 6 bm(t) 6 ess sup
|s|61/m

b(t− s).
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So, we get from (3.17)

bm(um(x, t)) 6 ess sup
|um−s|61/m

b(s) 6 ess sup
|um−s|<ε/2

b(s)

6 ess sup
|u−s|<ε

b(s) = bε(u(x, t)), ∀m > N, ∀(x, t) ∈ Σ0 \ ω.

Similarly, we have

bm(um(x, t)) > bε(u(x, t)), ∀m > N, ∀(x, t) ∈ Σ0 \ ω.

Let ϕ ∈ L∞(Σ0), ϕ > 0. Then

∫

Σ0\ω

bε(u(x, t))ϕ(x, t) dΓ dt 6

∫

Σ0\ω

bm(um(x, t))ϕ(x, t) dΓ dt

6

∫

Σ0\ω

bε(u(x, t))ϕ(x, t) dΓ dt.

Letting m→ ∞ in (3.18) and using (3.14), we obtain

∫

Σ0\ω

bε(u(x, t))ϕ(x, t) dΓ dt 6

∫

Σ0\ω

Ξ(x, t)ϕ(x, t) dΓ dt(3.19)

6

∫

Σ0\ω

bε(u(x, t))ϕ(x, t) dΓ dt.

Letting ε→ 0+ in (3.19), we infer that

Ξ(x, t) ∈ ϕ(u(x, t)) a.e. in Σ0 \ ω,

and letting η → 0+ we get

Ξ(x, t) ∈ ϕ(u(x, t)) a.e. (x, t) ∈ Σ0.

The proof of Theorem 2.1 is completed.
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4. Energy decay of solutions

In this section we prove Theorem 2.2. The existence part of solutions in Theo-

rem 2.2 is a consequence of the proof of Theorem 2.1. Thus, we prove the uniform

decay for solutions of (1.1)–(1.5). For the rest of this section, let x0 be a fixed point

in R
n. Then, consider

β(x) = x− x0, R = max
x∈Ω

|x− x0|

and a partition of the boundary Γ into two pieces

Γ0 = {x ∈ Γ: β(x) · ν(x) > δ > 0} and Γ1 = {x ∈ Γ: β(x) · ν(x) 6 0}.

Furthermore, we assume that ‖∇a‖∞/a0 6 µ, where µ is the constant satisfying

(A2)
∗. We define the energy E(t) of the problem (1.1)–(1.5) by

(4.1) E(t) =
1

2
‖u′(t)‖2 +

1

2

∫

Ω

a(x)|∇u(x, t)|2 dx+
1

γ + 2
‖u(t)‖γ+2

γ+2.

To prove the decay property, we first establish uniform estimates for the approxi-

mated energy

(4.2) Em(t) =
1

2
‖u′m(t)‖2 +

1

2

∫

Ω

a(x)|∇um(x, t)|2 dx+
1

γ + 2
‖um(t)‖γ+2

γ+2

and then pass to the limit.

Direct computation and the fact h(0) = 0 show that

E′
m(t) = − ‖u′m(t)‖2

Γ0
− (bm(um(t)), u′m(t))Γ0

(4.3)

−
1

2
(h � um)′(t) +

1

2
(h′ � um)(t)

+
1

2

d

dt

{(
∫ t

0

h(s) ds

)

‖um(t)‖2
Γ0

}

−
1

2
h(t)‖um(t)‖2

Γ0

where

(h � um)(t) =

∫ t

0

h(t− τ)‖f(um(τ)) − um(t)‖2
Γ0

dτ.

Define the modified energy by

em(t) =
1

2
‖u′m(t)‖2 +

1

2

∫

Ω

a(x)|∇um(x, t)|2 dx+
1

γ + 2
‖um(t)‖γ+2

γ+2(4.4)

−
1

2

(
∫ t

0

h(s) ds

)

‖um(t)‖2
Γ0
.
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Then, it is easily shown that

(4.5) Em(t) 6 l−1em(t), ∀t > 0.

Indeed, by virtue of Eq. (2.1), for 0 < l < 1 and a(x) > a0, we have

em(t) >
1

2
‖u′m(t)‖2 +

1

2

(

1 −
λ

a0

∫ ∞

0

h(s) ds

)
∫

Ω

a(x)|∇um(x, t)|2 dx

+
1

γ + 2
‖um(t)‖γ+2

γ+2 > lEm(t).

Therefore it is enough to obtain the desired exponential decay for the modified en-

ergy em(t), which will be done below. On the other hand, considering assumptions

(A1), (A2)
∗, (A3) and (A4) it follows from (4.3)–(4.5) that

e′m(t) = − ‖u′m(t)‖2
Γ0

− (bm(um(t)), u′m(t))Γ0
+

1

2
(h′ � um)(t) −

1

2
h(t)‖um(t)‖2

Γ0

6 − (1 −
µ

2
)‖u′m(t)‖2

Γ0
+
µλ

2
‖∇um(t)‖2 −

ξ2
2

(h � um)(t) −
1

2
h(t)‖um(t)‖2

Γ0

6 −
1

2
‖u′m(t)‖2

Γ0
+
µλ

2a0

∫

Ω

a(x)|∇um(x, t)|2 dx−
ξ2
2

(h � um)(t)

6 C(µ)l−1em(t) −
1

2
‖u′m(t)‖2

Γ0
−
ξ2
2

(h � um)(t), ∀t > t0,

where C(µ) = (λ/a0)µ. For every ε > 0 let us define the perturbed modified energy

by

emε(t) = em(t) + εψm(t),

where ψm(t) = 2(u′m(t), (β · ∇um)(t)) + (n− 1)(u′m(t), um(t)).

Proposition 4.1. There exists C1 > 0 such that for each ε > 0,

|emε(t) − em(t)| 6 εC1em(t), ∀t > 0.

P r o o f. Applying Eq. (2.1), Cauchy-Schwarz’s inequality and inequality (4.5),

we have

|ψm(t)| 6 2R‖u′m(t)‖‖∇um(t)‖ + (n− 1)‖u′m(t)‖‖um(t)‖

6 C‖u′m(t)‖‖∇um(t)‖ 6 Cl−1em(t).

Taking C1 = Cl−1, we have

|emε(t) − em(t)| = ε|ψm(t)| 6 εC1em(t).

�
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Proposition 4.2. There exist C2 > 0 and ε1 > 0 such that for each ε ∈ (0, ε1],

e′mε(t) 6 −C2em(t), ∀t > t0.

P r o o f. Using problem (1.1)–(1.5) and Eq. (2.1), we calculate

ψm(t) = 2(u′′m(t), (β · ∇um)(t)) + 2(u′m(t), (β · ∇u′m)(t))

+ (n− 1)(u′′m(t), um(t)) + (n− 1)‖u′m(t)‖2

= 2(div(a∇um(t)), (β · ∇um)(t)) − 2(|um(t)|γum(t), (β · ∇um)(t))

+ 2(u′m(t), (β · ∇u′m)(t)) + (n− 1)(div(a∇um(t)), um(t))

− (n− 1)(|um(t)|γum(t), um(t)) + (n− 1)‖u′m(t)‖2.

Now, we analyze the terms on the right hand side of (4.7).

We have

2(div(a∇um), (β · ∇um))(4.8)

= 2

∫

Γ

ν · (a∇um)(β · ∇um) dΓ −

∫

Γ

a(β · ν)|∇um|2 dΓ

+ (n− 2)

∫

Ω

a|∇um|2 dx+

∫

Ω

(β · ∇a)|∇um|2 dx,

−2(|um|γum, (β · ∇um)) =
2n

γ + 2
‖um‖γ+2

γ+2 −
2

γ + 2

∫

Γ0

(β · ν)|um|γ+2 dΓ(4.9)

6
2n

γ + 2
‖um‖γ+2

γ+2,

where we have used that β · ν > 0 on Γ0,

(4.10) 2(u′m, (β · ∇u′m)) = −n‖u′m‖2 +

∫

Γ0

(β · ν)|u′m|2 dΓ

and

(n− 1)(div(a∇um), um)(4.11)

6 (n− 1)

∫ t

0

h(t− τ)(f(um(τ)), um)Γ0
dτ

− (n− 1)

∫

Ω

a|∇um|2 dx− (n− 1)(u′m, um)Γ0
,
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where we have used assumption (A2)
∗. Combining (4.7)–(4.11), we obtain

(4.12)

ψ′
m(t) 6 −

∫

Ω

a|∇um(t)|2 dx− ‖u′m(t)‖2 −
(

n− 1 −
2n

γ + 2

)

‖um(t)‖γ+2
γ+2

+

∫

Ω

(β · ∇a)|∇um(t)|2 dx+ 2

∫

Γ

ν · (a∇um)(t)(β · ∇um)(t) dΓ

−

∫

Γ

a(β · ν)|∇um(t)|2 dΓ +

∫

Γ0

(β · ν)|u′m(t)|2 dΓ

− (n− 1)(u′m(t), um(t))Γ0
+ (n− 1)

∫ t

0

h(t− τ)(f(um(τ)), um(t))Γ0
dτ.

Since β · ∇um = (β · ν)∂um/∂ν, |∇um|2 = (∂um/∂ν)
2 and β · ν 6 0 on Γ1, we have

2

∫

Γ

ν · (a∇um)(β · ∇um) dΓ −

∫

Γ

a(β · ν)|um|2 dΓ

= − 2

∫

Γ0

u′m(β · ∇um) dΓ − 2

∫

Γ0

bm(um)(β · ∇um) dΓ

+ 2

∫ t

0

h(t− τ)(f(um(τ)), (β · ∇um))Γ0
dτ −

∫

Γ0

a(β · ν)|∇um|2 dΓ.

Thus we get

ψ′
m(t) 6 −rl−1em(t) +

∫

Ω

(β · ∇a)|∇um(t)|2 dx(4.13)

− 2

∫

Γ0

u′m(t)(β · ∇um)(t) dΓ − 2

∫

Γ0

bm(um(t))(β · ∇um)(t) dΓ

+ 2

∫ t

0

h(t− τ)(f(um(τ)), (β · ∇um)(t))Γ0
dτ

−

∫

Γ0

a(x)(β · ν)|∇um(t)|2 dΓ +

∫

Γ0

(β · ν)|∇u′m(t)|2 dΓ

− (n− 1)(u′m(t), um(t))Γ0
+ (n− 1)

∫ t

0

h(t− τ)(f(um(τ)), um(t))Γ0
dτ,

where r = min{2, (γ + 2)(n− 1)− 2n} > 0. Next, we are going to analyze the terms

on the right hand side of (4.13).

Estimate for I1 :=
∫

Ω(β · ∇a)|∇um(t)|2 dx

Since a(x) > a0 > 0 on Ω, we have

|I1| 6
R

a0
‖∇a‖∞

∫

Ω

a(x)|∇um(t)|2 dx 6 2Rµl−1em(t),

where we used our assumption ‖∇a‖∞/a0 6 µ.
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Estimate for I2 := −2
∫

Γ0
u′m(t)(β · ∇um)(t) dΓ

Using the inequality ab 6 ηa2 + b2/4η, we have

|I2| 6
R2

η
‖u′m(t)‖2

Γ0
+ η‖∇um(t)‖2

Γ0
.

Estimate for I3 := 2
∫ t

0
h(t− τ)(f(um(τ)), β · ∇um(t))Γ0

dτ

Analogously, we have

|I3| 6
R2

η

(
∫ t

0

h(t− τ)‖f(um(τ))‖Γ0
dτ

)2

+ η‖∇um(t)‖2
Γ0
.

Estimate for I4 := −2
∫

Γ0
bm(um(t))(β · ∇um)(t) dΓ

Using assumption (A2)
∗, we get

|I4| 6 2Rµ

∫

Γ0

|um(t)||∇um(t)| dΓ 6
R2µ2

η
‖um(t)‖2

Γ0
+ η‖∇um(t)‖2

Γ0
.

Estimate for I5 := −
∫

Γ0
a(x)(β · ν)|∇um(t)|2 dΓ

Using a(x) > a0 > 0 on Ω and β · ν > δ > 0 on Γ0, we have

I5 6 −a0δ‖∇um(t)‖2
Γ0
.

Estimate for I6 :=
∫

Γ0
(β · ν)|u′m(t)|2 dΓ

I6 6 R‖u′m(t)‖2
Γ0
.

Estimate for I7 := −(n− 1)(u′m(t), um(t))Γ0

Using a(x) > a0 > 0 on Ω and Eqs. (2.1) and (4.5), we obtain

|I7| 6
(n− 1)2λ

4ηa0
‖u′m(t)‖2

Γ0
+ η

∫

Ω

a(x)|∇um(t)|2 dx

6
(n− 1)2λ

4ηa0
‖u′m(t)‖2

Γ0
+ 2ηl−1em(t).

Estimate for I8 := (n− 1)
∫ t

0
h(t− τ)(f(um(τ)), um(t))Γ0

dτ

Similarly, we obtain

|I8| 6
(n− 1)2λ

4ηa0

(
∫ t

0

h(t− τ)‖f(um(τ))‖Γ0
dτ

)2

+ η

∫

Ω

a(x)|∇um(t)|2 dx

6
(n− 1)2λ

4ηa0

(
∫ t

0

h(t− τ)‖f(um(τ))‖Γ0
dτ

)2

+ 2ηl−1em(t).
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Combining (4.13) and the estimates for I1 − I8, we obtain

(4.14)

ψ′
m(t) 6 − l−1(r − 2Rµ− 4η)em(t) − (a0δ − 3η)‖∇um(t)‖2

Γ0
+M1(η)‖u

′
m(t)‖2

Γ0

+
R2µ2

η
‖um(t)‖2

Γ0
+M2(η)

(
∫ t

0

h(t− τ)‖f(um(τ))‖Γ0
dτ

)2

,

where

M1(η) =
(n− 1)2λ

4ηa0
+R+

R2

η
and M2(η) =

(n− 1)2λ

4ηa0
+
R2

η
.

We use the estimate

(
∫ t

0

h(t− τ)‖f(um(τ))‖Γ0
dτ

)2

6 2‖h‖L1(0,∞)

{

(h � um)(t) +

(
∫ t

0

h(t− τ) dτ

)

‖um(t)‖2
Γ0

}

to get

ψ′
m(t) 6 − l−1(r − 2Rµ− 4η)em(t) − (a0δ − 3η)‖∇um(t)‖2

Γ0
+M1(η)‖u

′
m(t)‖2

Γ0

+
(R2µ2

η
+ 2‖h‖2

L1(0,∞)M2(η)
)

‖um(t)‖2
Γ0

+ 2‖h‖L1(0,∞)M2(η)(h � um)(t).

Applying the relation

‖um(t)‖2
Γ0

6
λ

a0

∫

Ω

a(x)|∇um(t)|2 dx 6
2λ

a0
l−1em(t)

to (4.15), we obtain

ψ′
m(t) 6 − l−1

{

r − 2Rµ− 4η −
2λ

a0

(R2µ2

η
+ 2‖h‖2

L1(0,∞)M2(η)
)}

em(t)

− (a0δ − 3η)‖∇um(t)‖2
Γ0

+M1(η)‖u
′
m(t)‖2

Γ0

+ 2‖h‖L1(0,∞)M2(η))(h � um)(t).

Choose η, ‖h‖L1(0,∞) and µ sufficiently small such that a0δ − 3η > 0 and

L = r − 2Rµ− 4η −
2λ

a0

(R2µ2

η
+ 2‖h‖2

L1(0,∞)M2(η)
)

> 0.
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From (4.6) and (4.16), we have for all t > t0

e′mε(t) = e′m(t) + εψ′
m(t) 6 −l−1(εL− C(µ))em(t) −

(1

2
− εM1(η)

)

‖u′m(t)‖2
Γ0

−
(ξ2

2
− 2ε‖h‖L1(0,∞)M2(η)

)

(h � um)(t).

Define ε1 = min{1/(2M1(η)), ξ2/(4‖h‖L1(0,∞)M2(η))} and choose µ sufficiently small

such that C2 := l−1(εL− C(µ)) > 0. Then for each ε ∈ (0, ε1] we have

e′mε(t) 6 −C2em(t), ∀t > t0.

�

P r o o f of Theorem 2.2 continued..

Let ε0 = min{1/(2C1), ε1} and let us consider ε ∈ (0, ε0]. As we have ε < 1/(2C1),

we conclude from Proposition 4.1

(4.17)
1

2
em(t) 6 emε(t) 6

3

2
em(t).

By virtue of Proposition 4.2 we get

e′mε(t) 6 −C2em(t) 6 −
2

3
C2emε(t), ∀t > t0

and

(4.18)
d

dt

[

emε(t) exp
(2

3
C2t

)]

6 0, ∀t > t0.

Integrating (4.18) we obtain from inequality (4.17) that

(4.19) em(t) 6 3em(0) exp
(

−
2

3
C2t

)

, ∀t > t0.

Hence (4.5), (4.19) and the fact that em(0) = Em(0) yield

Em(t) 6 l−1em(t) 6 3Em(0)l−1 exp
(

−
2

3
C2t

)

, ∀t > t0.

On the other hand, from (3.9)–(3.11) it is easy to obtain

um(t) → u(t) weakly in V for a.e. t > 0,

and

u′m(t) → u′(t) weakly in L2(Ω) for a.e. t > 0.

Thus, we finally conclude that

E(t) 6 lim inf
m→∞

Em(t) 6 C3 exp
(

−
2

3
C2t

)

a.e. t > t0.

This completes the proof of Theorem 2.2. �
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