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Abstract. In this paper we study the existence of the optimal (minimizing) control for
a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolu-
tion equations with unbounded coefficients in the drift. The backward differential Riccati
equation (BDRE) associated with these problems (see [2], for finite dimensional stochastic
equations or [21], for infinite dimensional equations with bounded coefficients) is in general
different from the conventional BDRE (see [10], [18]). Under stabilizability and uniform
observability conditions and assuming that the control weight-costs are uniformly positive,
we establish that BDRE has a unique, uniformly positive, bounded on R+ and stabilizing
solution. Using this result we find the optimal control and the optimal cost. It is known
[18] that uniform observability does not imply detectability and consequently our results
are different from those obtained under detectability conditions (see [10]).

Keywords: Riccati equation, stochastic uniform observability, stabilizability, quadratic
control, tracking problem

MSC 2010 : 93E20, 49K45

1. Introduction

There are many recent papers (see [15], [16], [17], [5], [21])) where the linear

stochastic quadratic control problems are solved under stabilizability and uniform

observability conditions. This approach is an alternative to the one adopted in [12],

[10], where similar problems are treated under stabilizability and detectability con-

ditions. It is known (see [18] for example) that uniform observability does not imply

detectability as we expected by analogy with the deterministic case. Hence the re-

sults obtained by using the stochastic uniform observability property are different

from those where the detectability property is assumed. The purpose of this paper
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is to solve a general tracking problem, as well as a linear quadratic control problem

for stochastically uniformly observable systems with an unbounded coefficient in the

drift. Unlike the papers quoted above the control problems considered in this paper

are more general (the control appears both in the drift and in the stochastic part of

the equation) and the coefficients are unbounded. Moreover, the backward differen-

tial Riccati equation (BDRE) arising in our control problems is not the well-known

conventional Riccati equation considered in [18], [12] or [10]. We have proved that

under stabilizability and the stochastic uniform observability conditions this Riccati

equation has a unique, uniformly positive, bounded and stabilizing solution. The

result is similar to those obtained in [16], respectively in [18], for finite dimensional

systems, respectively for stochatisc systems in Hilbert spaces, and the conventional

Riccati equation. We note that it is based on Theorem 6, which state that there

exists a unique solution for the considered BDRE with final condition in the class

of strongly continuous families of nonnegative linear operators. These results play

the key role in solving the optimal control problems addressed in this paper (see

Theorems 21, 22). The deterministic characterization of the stochastic uniform ob-

servability property given in [22] allow us to provide examples of stochastic uniformly

observable systems. One of this example (see Example 23) help us in illustrating our

theory.

2. Preliminaries and statement of the problem

Let H, U, V be separable real Hilbert spaces. L(H, V ) is the Banach space of all

bounded linear operators from H into V (if H = V we put L(H, V ) = L(H)). We

write 〈·, ·〉 for the inner product and ‖ · ‖ for norms of elements and operators. We
say that A ∈ L(H) is nonnegative if A is self-adjoint and 〈Ax, x〉 > 0, x ∈ H. Let

L+(H) be the subset of L(H) of all nonnegative operators. We denote by I the

identity operator on H. For any S ∈ L(H) we put ‖S‖1 = Tr|S| 6 ∞ and denote

by C1(H) the set {S ∈ L(H)/‖S‖1 < ∞} (the trace class of operators). It is known
that C1(H) is a Banach space with the usual operations and the norm ‖ · ‖1. By

N we will denote the subspace of C1(H) containing all self adjoint operators from

C1(H).

Let J ⊂ R+ = [0,∞) be an interval and E a Banach space. We denote by C(J, E)

the space of all mappings G : J → E that are continuous.

We also use the notation Cs(J, L(H)) and Cb(J, L(H)) for the space of all strongly

continuous mappings G : J → L(H) and for the subspace of Cs(J, L(H)) which

consist of all mappings G such that sup
t∈J

‖G(t)‖ < ∞, respectively. We recall that
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Cs([0, T ], L(H)), T ∈ R+ is a Banach space endowed with the usual operations and

the norm |P |T = sup
s∈[0,T ]

‖P (s)‖.

If Z ∈ Cb(R+, L(H, V )), we set Z̃ = sup
06r<∞

‖Z(r)‖ < ∞. An element G ∈

Cs(R+, L(H)) is called uniformly positive iff there exists γ > 0 such that G(t) > γI

for all t ∈ R+. For a fixed T > 0 we will denote ∆(T ) = {(t, s), 0 6 s 6 t 6 T }. If
T = ∞ we set ∆ = ∆(∞).

We need the following definitions:

Definition 1 (see Definition 5.3 in [8]). A family {V (t, s)}(t,s)∈∆(T ) ⊂ L(H) is

an evolution operator (system) iff

1. V ∈ Cs(∆(T ), L(H)) and

2. V (s, s) = I, V (t, s)V (s, r) = V (t, r) for all 0 6 r 6 s 6 t 6 T (the semigroup

property).

Definition 2 (see Definition 4.2 in [6]). A strong evolution operator is an evo-

lution operator U(t, s) for which there exists a closed linear and densely defined

operator A(t), t > 0, with domain D(A(t)) such that

1. U(t, s) : D(A(s)) → D(A(t)) for t > s,

2. ∂U(t, s)x/∂t = A(t)U(t, s)x for every x ∈ D(A(s)) and t > s > 0.

We will say that the family {A(t)}t>0 is the generator of U(t, s) or that A(t)

generates the evolution operator U(t, s).

Throughout the paper we assume the following hypotheses if we do not specify

otherwise:

(P1) U(t, s) is a strong evolution operator generated by the family A(t), t ∈ [0,∞);

there exists a sequence {An}n∈N ⊂ Cs([0,∞), L(H)) such that for every n ∈ N,

the family {An(t)}t>0 generates the strong evolution operator Un(t, s) and

(1) Un(t, s)x →
n→∞

U(t, s)x, x ∈ H

uniformly on bounded subsets of ∆.

(P2) B, Hi ∈ Cb(R+, L(U, H)), B∗, H∗
i ∈ Cb(R+, L(H, U)), C ∈ Cb(R+, L(H, V )),

C∗ ∈ Cb(R+, L(V, H)), Gi, G
∗
i ∈ Cb(R+, L(H)), i = 1, . . . , m, m ∈ N

∗, K ∈
Cb(R+, L(U)) and there exists δ > 0 such that for all t ∈ R+,

(2) K(t) > δI.

If A∗(t) denotes the adjoint operator of A(t) and the families A∗(t), A∗
n(t), n ∈ N,

t ∈ [0,∞) satisfy the hypothesis (P1), we will say that P1(A∗) holds. In what follows

we will assume that P1(A∗) holds. Although P1(A∗) is not explicitly used in this
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paper, we base our results on Lemma 3 in [13] or Theorem 10 in [23], which require

this hypothesis.

We note that P1(A∗) ensures that U∗
n(t, s) converges strongly for n → ∞ to

U∗(t, s), uniformly on any bounded subset of ∆. Indeed, it is known that A∗
n(t0− t),

t ∈ [0, t0], n ∈ N, are the generators of the evolution operators U∗
n(t0 − s, t0 − t),

0 6 s 6 t 6 t0, n ∈ N (see Chapter 9 in [3]). Letting n → ∞, it follows that
U∗

n(t0 − s, t0 − t) is strongly convergent to U∗(t0 − s, t0 − t) uniformly on ∆(t0).

Hence lim
n→∞

U∗
n(t, s)x = U∗(t, s)x uniformly on ∆(t0).

Now, let us recall the following perturbation result:

Proposition 3 [22]. Let D ∈ Cs([0, T ], L(H)) and let U , Un ∈ Cs(∆(T ), L(H))

be evolution operators such that lim
n→∞

Un(t, s)x = U(t, s)x, x ∈ H uniformly for

(t, s) ∈ ∆(T ). Then there exist unique solutions UD, UD,n ∈ Cs(∆(T ), L(H)) of the

following integral equations

UD(t, s)x = U(t, s)x +

∫ t

s

U(t, r)D(r)UD(r, s)xdr,(3)

UD,n(t, s)x = Un(t, s)x +

∫ t

s

Un(t, r)D(r)UD,n(r, s)xdr.(4)

Moreover, UD and UD,n are evolution operators and lim
n→∞

UD,n(t, s)x = UD(t, s)x,

x ∈ H, uniformly for (t, s) ∈ ∆(T ).

The evolution operators UD and UD,n are called the perturbed evolution operators

corresponding to the perturbationD or, simply, the perturbations of U and Un by D.

Let (Ω, F , Ft, t ∈ [0,∞), P) be a stochastic basis and let wi, i = 1, . . . , m, m ∈ N
∗

be independent real Wiener processes relative to Ft.

We will denote by {A : B ; Gi : Hi} the stochastic equation with control

dx(t) = A(t)x(t) dt + B(t)u(t) dt +

m∑

i=1

(Gi(t)x(t) + Hi(t)u(t)) dwi(t),(5)

x(s) = x ∈ H.(6)

Here the set of admissible controls is Uad = {u ∈ L2(R+ × Ω, U), u is Ft-adapted

such that sup
t>s

E‖x(t)‖2 < ∞, where x(t) is the solution of (5)–(6)}.

If B = 0 and Hi = 0, i ∈ {1, . . . , m} then we will denote (5) by {A; Gi}.
We recall [10] that {A; Gi} with the initial condition x(s) = x ∈ H has a unique

mild solution x = x(·, s, x) ∈ C([s, T ]; L2(Ω; H)) that is adapted to Ft; namely the

solution of

(7) x(t) = U(t, s)x +

m∑

i=1

∫ t

s

U(t, r)Gi(r)x(r) dwi(r).
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Tracking problem. Given a signal r ∈ Cb(R+, H) we want to minimize the cost

(8) J(s, u) = lim
t→∞

1

t − s
E

∫ t

s

‖C(σ)(x(σ) − r(σ))‖2 + 〈K(σ)u(σ), u(σ)〉dσ

in the class of admissible controls

Uad =

{
u ∈ Uad, lim

t→∞

1

t − s
E

∫ t

s

‖u(σ)‖2 dσ < ∞
}

subject to the equation (5)–(6).

Quadratic control problem. Let us consider the set U
q

ad = {u ∈ Uad such that

lim
t→∞

E‖x(t)‖2 → 0, where x(t) is the solution of (5)–(6)}. We look for an optimal
control u ∈ U

q
ad which minimizes the quadratic cost

(9) Is,x(u) = E

∫ ∞

s

‖C(t)x(t)‖2+ < K(t)u(t), u(t) > dt.

3. Riccati equation of stochastic control

In this section we consider the backward Riccati differential equation (BDRE)

(10) associated with the optimal control problems (5)–(6), (8) or (5)–(6), (9) and we

investigate the existence of a global bounded solution. As in the classical situation

[10], we prove that, under stabilizability conditions, a global, bounded on R+ solution

of the BDRE is the strong limit of solutions of the BDREs with final conditions.

The problem of existence of the solutions for the conventional BDREs with final

conditions in infinite dimensions was solved in [9] and [13] by using the principle of

contractions. Since in our case the last term of (10) is more complicated we cannot

use the same way of proof as in the classical case. Thus, in the next subsection we

will use the algorithm proposed in [2] for finite dimensional spaces and the results

in [9] to prove the existence of these solutions. We also must handle many problems

arising from the unboundedness of the coefficients of the equations. We note that in

[2] only the solvability of the BDRE (10) with a final condition is studied (the control

weight cost being not necessarily uniformly positive), because the control problems

are considered over finite intervals. Unlike this case, in our situation the control

problems are considered on infinite intervals and the existence of a nonnegative,

bounded on R+ solution of the BDRE is required. In the second subsection we prove

that, under uniform observability and stabilizability conditions, the Riccati equation

(10) has a unique, bounded on R+ and stabilizing solution. Therefore we extend the
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results obtained in [18] and [15], [16] for infinite respectively finite, dimensions and

conventional BDRE to the case of nonconventional BDRE.

3.1. Existence of solutions for the backward Riccati equations as-

sociated with the stochastic control. We consider the linear operator B :

Cs(R+, L(H)) → Cs(R+, L(H, U)),

B(P )(s) = B∗(s)P (s) +

m∑

i=1

H∗
i (s)P (s)Gi(s)

and the function K : Cs(R+, L+(H)) → Cs(R+, L+(U)),

K (P )(s) = K(s) +
m∑

i=1

H∗
i (s)P (s)Hi(s).

By (2) it follows that K (P ) is uniformly positive for any P ∈ L+(H).

Consequently, K (P )(s) is invertible for any s ∈ R+ and P ∈ L+(H). We will

denote by [K (P )]−1 the element of Cs(R+, L+(U)) defined by s → [K (P )(s)]−1.

Let us introduce the differential Riccati equation

(10) P ′ + A∗P + PA +

m∑

i=1

G∗
i PGi + C∗C − [B(P )]∗[K (P )]−1

B(P ) = 0.

We say that P ∈ Cs(J, L+(H)) is a mild solution on an interval J ⊆ [0,∞) of the

BDRE (10), if it satisfies the following integral equation

P (s)x = U∗(t, s)P (t)U(t, s)x +

∫ t

s

U∗(r, s)

{ m∑

i=1

G∗
i (r)P (r)Gi(r)(11)

+ C∗(r)C(r) − [B(P )(r)]∗ [K (P )(r)]−1
B(P )(r)

}
U(r, s)xdr

for all s 6 t, s, t ∈ J . Moreover, if P is a mild solution on R+ of (10) and

sup
s∈R+

‖P (s)‖ < ∞, then P is said to be a bounded on R+ (global) solution. We

also will denote by P (T, s; R) the mild solution on an interval J = [0, T ], T > 0 of

the Riccati equation (10), with the final condition P (T ) = R ∈ L+(H).

If P is a mild solution on an interval J ⊆ [0,∞) of the BDRE (10) then we define

the function S : J → L(H, U),

(12) S(s) = [K (P )(s)]−1
B(P )(s),
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which clearly is strongly continuous on J . Let Q ∈ Cs([0, T ], L+(H)) and R ∈
L+(H). We consider the Lyapunov equations

X ′ + A∗X + XA +

m∑

i=1

G∗
i XGi + Q = 0, X(T ) = R,(13)

X ′
n + A∗

nXn + XnAn +

m∑

i=1

G∗
i XnGi + Q = 0, Xn(T ) = R, n ∈ N(14)

and the integral equations

X(s)x = U∗(t, s)RU(t, s)x(15)

+

∫ t

s

U∗(r, s)

[ m∑

i=1

G∗
i (r)X(r)Gi(r) + Q(r)

]
U(r, s)xdr,

Xn(s)x = U∗
n(t, s)RUn(t, s)x(16)

+

∫ t

s

U∗
n(r, s)

[ m∑

i=1

G∗
i (r)Xn(r)Gi(r) + Q(r)

]
Un(r, s)xdr

As in the case of the BDRE (10), we define the mild solution X = X(T, ·, R) ∈
Cs([0, T ], L+(H)) on [0, T ] of (13) via (15). Let E be the Banach subspace of L(H)

formed by all self-adjoint operators. By a strong (classical) solution of (14) we mean a

mapping Xn ∈ Cs([0, T ]; L+(H)) such that t → Xn(t)x : [0, T ) → H is differentiable

in [0, T ) for all x ∈ H , dXn/dt ∈ Cs([0, T ); E ) and Xn fulfils the equation (14)

(see [1]).

By Lemma 3 in [13] it follows that there exists a unique mild solution X(T, ·, R)

of (13) on [0, T ] given by (15) and unique classical solution Xn(T, ·, R) of (14) on

[0, T ] given by (16) and for each x ∈ H ,

(17) Xn(T, s, 0)x →
n→∞

X(T, s, 0)x

uniformly on [0, T ].

Arguing as in the proof of Proposition 4.64 [7] and using Dini’s theorem we can

prove the following lemma.

Lemma 4. If (Qn)n∈N∗ is an increasing sequence in Cs([0, T ], L+(H)) such that

Qn(t) 6 I, for all t ∈ [0, T ] (I is the identity operator on H), then there exists

Q ∈ Cs([0, T ], L+(H)) such that Qn(t)x →
n→∞

Q(t)x, x ∈ H uniformly for t ∈ [0, T ].

The next result follows directly from the proof of Lemma 4.2 in [9].
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Lemma 5. If (An)n∈N∗ , (Bn)n∈N∗ are two sequences in Cs([0, T ], L+(H)) such

that for every x ∈ H , An(t)x →
n→∞

A(t)x, Bn(t)x →
n→∞

B(t)x uniformly with respect

to t ∈ [0, T ], then An(t)Bn(t)x →
n→∞

A(t)B(t)x uniformly with respect to t ∈ [0, T ]

(obviously A, B, AB ∈ Cs([0, T ], L(H))).

Theorem 6. Let R ∈ L+(H). The Riccati equation (10) with the final condition

P (T ) = R has a unique mild solution P (T, s; R) ∈ Cs([0, T ], L+(H)). It is given by:

P (s)x = U∗(T, s)RU(T, s)x +

∫ T

s

U∗(r, s)

{ m∑

i=1

G∗
i (r)P (r)Gi(r)(18)

+ C∗(r)C(r) − [B(P )(r)]∗ [K (P )(r)]−1
B(P )(r)

}
U(r, s)xdr.

Moreover, P (T, s; R) is monotone in the sense that P (T, s; R1) 6 P (T, s; R) for any

0 6 R1 6 R.

P r o o f. Existence. Let Pk ∈ Cs([0, T ], L+(H)) be fixed and let us denote

Sk = [K (Pk)]−1B(Pk), Âk = A − BSk, Ĝk,i = Gi − HiSk, i = 1, . . . , m.

Then the Lyapunov equation

P ′
k+1 + A∗Pk+1 + Pk+1A +

m∑

i=1

G∗
i Pk+1Gi + C∗C(19)

− S∗
k(r)B(Pk+1)(r) − [B(Pk+1)(r)]

∗Sk(r) + S∗
k(r)[K (Pk+1)(r)]Sk(r) = 0,

Pk+1(T ) = R(20)

can be equivalently rewritten as

P ′
k+1 + Â∗

kPk+1 + Pk+1Âk +

m∑

i=1

Ĝ∗
k,iPk+1Ĝk,i + C∗C + S∗

kKSk = 0,(21)

Pk+1(T ) = R.(22)

Since −BSk ∈ Cs([0, T ], L(H)), it follows by Proposition 3 that there exists

U−BSk
(·, ·), the perturbed evolution operator of the evolution operator U(·, ·) corre-

sponding to the perturbation −BSk.

Then Lemma 3 in [13] implies that (21)–(22) (and consequently (19)–(20)) has a

unique mild solution Pk+1 ∈ Cs([0, T ], L+(H)) which satisfies the integral equation

Pk+1(s)x = U∗
−BSk

(T, s)RU−BSk
(T, s)x +

∫ T

s

U∗
−BSk

(r, s)(23)

[ m∑

i=1

Ĝ∗
k,i(r)Pk+1(r)Ĝk,i(r) + C∗C + S∗

kKSk

]
U−BSk

(r, s)xdr.
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It is not difficult to see that (23) is equivalent to

Pk+1(s)x = U∗(T, s)RU(T, s)x +

∫ T

s

U∗(r, s)

{ m∑

i=1

G∗
i (r)Pk+1(r)Gi(r)(24)

+ C∗(r)C(r) − S∗
k(r)B(Pk+1)(r)

− [B(Pk+1)(r)]
∗Sk(r) + S∗

k(r)[K (Pk+1)(r)]Sk(r)

}
U(r, s)xdr.

Now we consider the iterative scheme proposed in [2] to construct the mild solution

of (10).

Let k = 0 and P0 = I. Reasoning as above we deduce that there exists a mild

solution P1 ∈ Cs([0, T ], L+(H)) of (19)–(20) that satisfies (24). Using induction it

follows that for any k = 2, 3, . . . the equation (19)–(20) has a unique mild solution

Pk, which belongs to Cs([0, T ], L+(H)) and satisfies (24).

It is easy to see that Λk+1 = Pk − Pk+1 verifies the equation

Λ′
k+1 + Â∗

kΛk+1 + Λk+1Âk +

m∑

i=1

Ĝ∗
k,iΛk+1Ĝk,i(25)

+ (Sk − Sk−1)
∗
K (Pk)(Sk − Sk−1) = 0,

Λk+1(T ) = 0.

Using again Lemma 3 in [13] we obtain that (25) has a unique mild solution

Λk+1 ∈ Cs([0, T ], L+(H)) for all k ∈ N
∗. Consequently, the sequence {Pk(·)} is

monotone decreasing. Setting M1,T = sup
r∈[0,T ]

‖P1(r)‖ we have M1,T < ∞ by the

uniform boundedness principle.

We apply Lemma 4 to the nonnegative and monotone increasing sequence {P1(·)−
Pk(·)}, P1(r) − Pk(r) 6 M1,T I, r ∈ [0, T ], k ∈ N

∗ and we deduce that there exists

P ∈ Cs([0, T ], L+(H)) such that for all x ∈ H, Pk(r)x →
k→∞

P (r)x uniformly for

r ∈ [0, T ]. By direct computation we obtain

‖[K (Pk+1)(r)]
−1 − [K (P )(r)]−1x‖

6
1

δ

m∑

i=1

‖[K (Pk+1)(r) − K (P )(r)][K (P )(r)]−1x‖.

Now, it is clear that [K (Pk+1)(r)]
−1 − [K (P )(r)]−1x →

k→∞
0 uniformly for r ∈ [0, T ].

Similarly it follows that B(Pk+1)(r)x →
k→∞

B(P )(r)x and Sk(r)x →
k→∞

S(r)x uni-

formly for r ∈ [0, T ]. (Here S is defined by (12).)

Letting k → ∞ in (24), we deduce by the dominated convergence theorem of

Lebesgue that P satisfies the integral equation (18). Hence, there exists a solution
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P ∈ Cs([0, T ], L+(H)) of the Riccati equation (10) with the final condition P (T ) =

R ∈ L+(H). Using Gronwall’s inequality we see that for all 0 6 s 6 T,

‖P (s)‖ 6 LT = M2
T

(
‖R‖ +

∫ T

s

‖C(r)‖2 dr

)
e
M2

T

m∑

i=1

∫
T

s
‖Gi(r)‖2 dr

,

where MT = sup
06s6t<T

‖U(t, s)‖.

Uniqueness. Assume that Q is another solution of (10) satisfying Q(T ) = R ∈
L+(H). Then Q also satisfies (18) and setting S(Q) = [K (Q)]−1B(Q) we get

〈[P (s) − Q(s)]x, x〉 =

∫ T0

s

m∑

i=1

{〈[G∗
i (r)(P (r) − Q(r))Gi(r)

+ B
∗(Q)(r)[K (P )(r)]−1H∗

i (P (r) − Q(r))HiS(Q)(r)]U(r, s)x, U(r, s)x〉}
− 〈[B(P − Q)(r)]∗[K (P )(r)]−1[B(P + Q)(r)]U(r, s)x, U(r, s)x〉dr.

Since P and Q are bounded on [0, T ] (‖P (s)‖, ‖Q(s)‖ 6 LT for all 0 6 s 6 T ) we

apply again Gronwall’s inequality to deduce that ‖P (s)− Q(s)‖ = 0. Thus the mild

solution of the Riccati equation (10) with the final condition P (T ) = R ∈ L+(H) is

unique.

Monotonicity. Let us assume that P (s) = P (T, s; R) and P1(s) = P (T, s; R1),

R, R1 ∈ L+(H) are two solutions of the Riccati equation (10) and R − R1 > 0. If

we denote Λ = P − P1, S1 = [K (P1)]
−1B(P1), Â1 = A − BS1, Ĝ1,i = Gi − HiS1,

i ∈ {1, . . . , m}, then Λ is the solution of the Lyapunov equation

Λ′ + Â∗
1Λ + ΛÂ1 +

m∑

i=1

Ĝ∗
1,iΛĜ1,i + (S1 − S)∗K (P )(S1 − S) = 0,(26)

Λ(T ) = R − R1.

From Lemma 3 in [13] it follows that (26) has a unique mild solution satisfying

Λ(s) > 0, s ∈ [0, T ]. Hence P (s) − P1(s) > 0 and we obtain the conclusion. �

Let us introduce the following hypothesis:

(P3) There exists p > 0 such that Z(t) = Z(t + p) for all t > 0, where Z =

A, B, C, K, Hi, Gi, i = 1, . . . , m.

It is easy to verify (see [24], [12], [3]) that if (P1) and (P3) hold then the evolution

operator generated by the family A(t), t > 0 is p-periodic, that is

(27) U(t + p, s + p) = U(t, s) for all t > s > 0.
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Proposition 7. Assume that (P3) holds. Then the unique mild solution

P (T, s; R) of the Riccati equation (10) is p-periodic that is P (T + p, s + p; R) =

P (T, s; R).

P r o o f. Using the above theorem and (P3) it is easy to see that both P (T + p,

s+ p; R) and P (T, s; R) satisfy the integral equation (18). The conclusion follows by

Gronwall’s inequality. �

Proposition 8. Let P ∈ Cs([0, T ], L+(H)) be the unique mild solution of the

Riccati equation (10) with the final condition P (T ) = R ∈ L+(H) and let Pn ∈
C([0, T ], L+(H)) (denoted Pn(T, s; R)) be the strong solution of the Lyapunov equa-

tion

P ′
n(s) + Â

∗
n (s)Pn(s) + Pn(s)Ân(s) +

m∑

i=1

Ĝ
∗
i (s)Pn(s)Ĝi(s)(28)

+ C∗(s)C(s) + S∗(s)K(s)S(s) = 0,

Pn(T ) = R,

where Ân = An − BS, Ĝi = Gi − HiS, i = 1, . . . , m and S is defined by (12). Then

Pn(t)x →
n→∞

P (t)x uniformly for t ∈ [0, T ].

P r o o f. Since −BS ∈ Cs([0, T ], L(H)) we apply Proposition 3 and Lemma 3

in [13] to deduce that (28) has a unique solution Pn ∈ Cs([0, T ], L+(H)) which

converges, as n → ∞, strongly and uniformly on [0, T ] to the unique mild solution

P̃ ∈ Cs([0, T ], L+(H)) of the Lyapunov equation

P̃ ′(s) + A∗(s)P̃ (s) + P̃ (s)A(s) +

m∑

i=1

G∗
i (s)P̃ (s)Gi(s) − S∗(s)B(P̃ )(s)(29)

− B
∗(P̃ )(s)S(s) + C∗(s)C(s) + S∗(s)K (P̃ )(s)S(s) = 0,

P̃ (T ) = R.

We note that P , the mild solution of (10) with the final condition P (T ) = R ∈
L+(H), is also a solution of (29). Hence P̃ = P and the conclusion follows. �

3.2. Bounded solutions of Riccati equation of stochastic control under

uniform observability and stabilizability conditions. In this subsection we

will prove that under uniform observability and stabilizability conditions the Ric-

cati equation (10) has a unique bounded on R+, uniformly positive and stabilizing

solution.
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Let x(t, s; x) be the mild solution of {A; Gi} with the initial condition x(s) =

x ∈ H and let C be a family of operators satisfying (P2). We consider the system

{A, Gi; C} formed by the stochastic equation {A; Gi} and the observation relation
z(t) = C(t)x(t, s, x).

Definition 9 (see [15], [18]). We say that the system {A, C; Gi} is stochastically
uniformly observable if there exist τ > 0 and γ > 0 such that

E

∫ s+τ

s

‖C(t)x(t, s; x)‖2 dt > γ‖x‖2

for all s ∈ R+ and x ∈ H .

We recall the following characterization of the stochastic uniform observability

property of the system {A, C; Gi}.

Theorem 10 [22], [23]. The following statements are equivalent:

1) {A, C; Gi} is stochastically uniformly observable;
2) there exist σ > 0, γ > 0 such that X(T − σ) > γI for all T > σ, where

X ∈ Cs([0, T ], L+(H)) is the unique mild solution of the problem

dX(t)

dt
+ A∗(t)X(t) + X(t)A(t) +

m∑

i=1

G∗
i (t)X(t)Gi(t) + C∗(t)C(t) = 0,(30)

X(T ) = 0 ∈ L(H).(31)

We note that, following [23], the above result can be proved if (P1), P1(A∗) hold,

Gi ∈ Cs(R+, L(H)), i = 1, . . . , m and C ∈ Cs(R+, L(H, V )). That is, we do not need

the assumptions C∗ ∈ Cs(R+, L(V, H)) and C∗C ∈ Cs(R+, L(H)) or the bounded-

ness of the families of operators.

Definition 11. We say that {A; Gi} is uniformly exponentially stable if there
exist the constants M > 1, ω > 0 such that E‖x(t, s; x)‖2 6 Me−ω(t−s)‖x‖2 for all

t > s > 0 and x ∈ H .

Definition 12. We say that {A : B; Gi : Hi} is stabilizable if there exists F ∈
Cb([0,∞), L(H, U)) such that {A+BF ; Gi +HiF} is uniformly exponentially stable.

Assume that (10) has a bounded solution P (s) and let S(s) be defined by (12). It

is not difficult to see that S, S∗ ∈ Cb([0,∞), L(H, U)).

Definition 13. A bounded solution of (10) is called stabilizing for {A : B; Gi :

Hi} if {A − BS; Gi − HiS} is uniformly exponentially stable.
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Proposition 14 (see [10]). The Riccati equation (10) has at most one bounded

solution, which is stabilizing for {A : B; Gi : Hi}.

P r o o f. Let P1 and P2 be two stabilizing and bounded solutions of (10) and

let Sk(s) = [K (Pk)(s)]−1B(Pk)(s), k = 1, 2. Let An be the families of operators

introduced by hypothesis (P1) and let xn,k(t) be the unique strong solution of the

stochastic equation {An − BSk; Gi − HiSk} with the initial condition xn,k(s) = x,

k = 1, 2. It is known (see [18]) that xn,k(t) →
n→∞

xk(t) uniformly for t ∈ [0, T ], where

xk(t) is the unique mild solution of the stochastic equation {A − BSk; Gi − HiSk}
with the initial condition xk(s) = x, k = 1, 2. Using the notation introduced in

Proposition 8, we denote by Pn,1 and Pn,2, the unique strong solutions of the ap-

proximating Lyapunov equations

P ′
n,k(s) + Â

∗
n,k(s)Pn,k(s) + Pn,k(s)Ân,k(s) +

m∑

i=1

Ĝ
∗
i,k(s)Pn,k(s)Ĝi,k(s)

+ C∗(s)C(s) + S∗
k(s)K(s)Sk(s) = 0,

Pn,k(t) = Pk(t), k = 1, 2.

Then Λn = Pn,2 − Pn,1 is a solution of

Λ′
n + Â

∗
n,2Λn + ΛnÂn,1 +

m∑

i=1

Ĝ
∗
i,2ΛnĜi,1(32)

+ (S∗
1 − S∗

2 )B(Pn,1 − P1) + B
∗(Pn,2 − P2)(S1 − S2)

+ S∗
2 (K (Pn,2) − K (P2))S2 − S∗

1 (K (Pn,1) − K (P1))S1 = 0,

Λn(t) = P2(t) − P1(t).

Now, we apply Ito’s formula for the stochastic process (xn,1(t), xn,2(t)) and the

function Fn(t, x1, x2) = 〈Λn(t)x1, x2〉 (Fn : R+×H×H → R). Using (32) and taking

expectations, we obtain

E〈Λn(t)xn,1(t), xn,2(t)〉 = 〈Λn(s)x, x〉(33)

− E

∫ t

s

〈[(S∗
1 − S∗

2 )B(Pn,1 − P1) + B
∗(Pn,2 − P2)(S1 − S2).

+ S∗
2 (K (Pn,2) − K (P2))S2 − S∗

1 (K (Pn,1) − K (P1))S1]xn,1(r), xn,2(r)〉dr

for all t > s. Let Λ(t) = P2(t)−P1(t). Letting n → ∞ in (33) and using Proposition 8
and the dominated convergence theorem of Lebesgue we get

E〈Λ(t)x1(t), x2(t)〉 = 〈Λ(s)x, x〉.
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Since P1 and P2 are bounded and stabilizing it follows that there exist M, a > 0,

such that E‖xk(t)‖2 6 Me−a(t−s)‖x‖2, k = 1, 2. Letting M̃ = M sup
t>0

‖Λ(t)‖ < ∞,

we see that 〈Λ(s)x, x〉 6 M̃e−a(t−s)‖x‖2, 0 6 s 6 t. As t → ∞ we obtain ‖Λ(s)‖ = 0,

for all s ∈ [0,∞). The conclusion follows. �

Reasoning as in [10] (see Theorem 3.1) and stochasticizing the proof we obtain the

following result.

Proposition 15. If {A : B; Gi : Hi} is stabilizable then there exists a (global)
nonnegative and bounded on R+ solution of the Riccati equation (10).

P r o o f. Assume that there exists F ∈ Cb([0,∞), L(H, U)) such that {A + BF ;

Gi + HiF} is uniformly exponentially stable.Let xn(t) be the unique mild solution

of the equation {An + BF ; Gi + HiF} with the initial condition xn(s) = x, x ∈ H .

Analogously, x(t) is the unique mild solution of the equation {A + BF ; Gi + HiF}
satisfying x(s) = x.

Set T ∈ R+. It is known [18] that xn(t) →
n→∞

x(t) uniformly for t ∈ [0, T ].

Let P (s) = P (T, s; 0) and Pn(s) = Pn(T, s; 0) be the mild, respectively strong,

solution of (10), respectively of the approximating Lyapunov equation (28). (They

exist by Theorem 6 and Proposition 8.) Let Sn = [K (Pn)(s)]−1B(Pn)(s). Applying

Ito’s formula for the function Gn : [0, T ]× H → R+, Gn(t, x) = 〈Pn(t)x, x〉 and the
stochastic process xn(t) and taking expectations we obtain

〈Pn(s)x, x〉 = E

∫ T

s

‖C(r)xn(r)‖2 + 〈K(r)F (r)xn(r), F (r)xn(r)〉dr(34)

− E

∫ T

s

〈B(Pn)(r)xn(r), 2[S(r) − Sn)](r)xn(r)〉

+ 〈K (Pn)(r)Sn(r)xn(r), Sn(r)xn(r)〉
− 〈K (Pn)(r)S(r)xn(r), S(r)xn(r)〉dr

− E

∫ T

s

‖[K (Pn)(r)]1/2[F (r) + Sn(r)]xn(r)‖ dr.

By Proposition 8, it follows that for any x ∈ H, Sn(t)x →
n→∞

S(t)x, B(Pn)(t)x →
n→∞

K (P )(t)S(t)x uniformly on t ∈ [0, T ].

Letting n → ∞ in (34) we see that the second integral in the right hand side

converges to 0. Consequently,

〈P (s)x, x〉 6

∫ T

s

E‖C(r)x(r)‖2 + E〈K(r)F (r)x(r), F (r)x(r)〉dr.
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Since {A+BF ; Gi +HiF} is uniformly exponentially stable we deduce that there
exist β, a > 0 such that E‖x(r)‖2 6 βe−a(r−s)‖x‖2 for any r > s, x ∈ H and

〈P (s)x, x〉 6 [C̃2 + K̃F̃ 2]β
∫ T

s
e−a(r−s) dr‖x‖2. (Recall that Z̃ = sup

06r<∞
‖Z(r)‖ < ∞,

Z = C, K, F .) Now it is clear that there is M ∈ R+ such that for any T ∈ R+ and

s ∈ [0, T ], P (T, s; 0) 6 MI.

Using Theorem 6 it follows that P (T1, s; 0) 6 P (T2, s; 0) 6 MI for all s 6 T1 6 T2.

Thus we apply Lemma 4 and deduce that there exists P∞ ∈ Cb(R+, L(H)) such that

for any x ∈ H,

(35) lim
T→∞

P (T, s; 0)x = P∞(s)x.

Moreover, for any s 6 t 6 T we have

P (T, s; 0)x = U∗(t, s)P (T, t; 0)U(t, s)x +

∫ t

s

U∗(r, s)

[ m∑

i=1

G∗
i (r)P (r)Gi(r)

+ C∗(r)C(r) − [B(P )(r)]∗[K (P )(r)]−1
B(P )(r)

]
U(r, s)xdr.

As T → ∞ in the above equality, it follows that P∞(s) is a bounded mild solution

of (10). The proof is complete. �

Now, we assume that the system {A : B; Gi : Hi} is in the time invariant case,
that is the following hypothesis holds:

(P4) Z(t) = Z for all t ∈ [0,∞) where Z = A, B, C, K, Gi, Hi, i = 1, . . . , m.

Let us introduce the algebraic Riccati equation

(36) A∗P + PA +

m∑

i=1

G∗
i PGi + C∗C − [B(P )]∗[K (P )]−1

B(P ) = 0.

Corollary 16. Assume (P4). If {A : B; Gi : Hi} is stabilizable then there exists
a nonnegative solution of the algebraic Riccati equation (36).

P r o o f. If (P4) holds then (P3) holds for all p > 0. It follows by Proposition 7

that P (T + p, s + p; 0) = P (T, s; 0) for any p > 0. We deduce from (35) that

P∞(s + p) = P∞(s) for any p > 0, s > 0. Hence P∞(t) = P∞(0) = P, t > 0 and

P∞(t) satisfies (36) as we will prove below. First, we note that the evolution operator

U(t, s) generated by A is now a C0-semigroup denoted by S(t) and U(t, s) = S(t−s).

Therefore it is not difficult to see that P satisfies the integral equation

〈Px, y〉 = 〈S∗(t)PS(t)x, y〉

+

∫ t

0

〈
S∗(r)

[ m∑

i=1

G∗
i PGi + C∗C − [B(P )]∗[K (P )]−1

B(P )

]
S(r)x, y

〉
dr
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for all t > 0. Let x, y ∈ D(A). Differentiating the above relation with respect to t

we get

0 = 〈A∗S∗(t)PS(t)x, y〉 + 〈S∗(t)PS(t)Ax, y〉

+

〈
S∗(t)

[ m∑

i=1

G∗
i PGi + C∗C − [B(P )]∗[K (P )]−1

B(P )

]
S(t)x, y

〉
.

Rewriting the last equality we obtain

0 = 〈S∗(t)PS(t)x, Ay〉 + 〈Ax, S∗(t)PS(t)y〉

+

〈
S∗(t)

[ m∑

i=1

G∗
i PGi + C∗C − [B(P )]∗[K (P )]−1

B(P )

]
S(t)x, y

〉
.

Now it is clear that letting t → 0 we have

0 = 〈Px, Ay〉 + 〈Ax, Py〉 +

〈[ m∑

i=1

G∗
i PGi + C∗C − [B(P )]∗[K (P )]−1

B(P )

]
x, y

〉
.

Thus P is a nonnegative solution of (36). The proof is complete. �

We make the following assumption:

(P5) U(t, s) generated by A(t) has an exponential growth, that is there existM1 > 1

and ω1 > 0 such that ‖U(t, s)‖ 6 M1e
ω1(t−s) for all t > s > 0

The following result is the analogue of Theorem 1 in [18], (see also [15] for the

finite dimensional case) and the proof is very similar, but we recall the main steps

of the proof for the readers’ convenience.

Theorem 17. Assume that {A, Gi; C} is stochastically uniformly observable and
(P5) holds. If P (t) is a nonnegative and bounded solution of (10) then

a) there exists δ0 > 0 such that P (t) > δ0I for all t ∈ R+ (P is uniformly positive

on R+);

b) P is a stabilizing solution for {A : B; Gi : Hi}).

P r o o f. Let P (t) be a nonnegative bounded solution of the Riccati equation

(10) and let S be the family of operators defined by (12). In this proof the constants

γ, τ are those introduced in Definition 9. We will denote by z(t) = z(t, s; x) the mild

solution of {A − BS; Gi − HiS} with the initial condition z(s) = x. Arguing as in

the proof of the above proposition and using Ito’s lemma we have

〈P (s)x, x〉 = E〈P (T )z(T ), z(T )〉(37)

+ E

∫ T

s

‖C(r)z(r)‖2 + 〈K(r)S(r)z(r), S(r)z(r)〉dr
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for all T > s. Now it is easy to see that if we prove that the linear, bounded and

nonnegative operator Q(s) that satisfies the relation

(38)

〈Q(s)x, x〉 = E

∫ s+τ

s

[‖C(r)z(r, s; x)‖2 + 〈S∗(r)K(r)S(r)z(r, s; x), z(r, s; x)〉] dr,

is uniformly positive, then P is uniformly positive on R+ and the statement a)

follows. Since K(t) > δI for all t ∈ R+ we have

(39) 〈Q(s)x, x〉 > δE

∫ s+τ

s

‖S(t)z(t, s; x)‖2 dt

Let x(t) = x(t, s; x) be the mild solution of {A; Gi} with the initial condition
x(s) = x. It is clear that z(t, s; x) − x(t, s; x) is the solution of a nonlinear equation

(see [11]) with the initial condition z(s) − x(s) = 0, whose unique mild solution

satisfies the integral equation

z(t) − x(t) =

∫ t

s

U(t, r)[−B(r)S(r)z(r)] dr

+

m∑

i=1

∫ t

s

U(t, r){Gi(t)[z(r) − x(r)] − Hi(r)S(r)z(r)} dwi(r).

Taking the mean square and using (P2) and (39) we deduce that there exists M > 0

such that for all t ∈ [s, s + τ ]

E‖z(t, s; x) − x(t, s; x)‖2 6 M

[
〈Q(s)x, x〉 +

∫ t

s

E‖z(r, s; x) − x(r, s; x)‖2 dr

]
.

Applying Gronwall’s inequality we see that for all t ∈ [s, s + τ ]

(40) E‖z(t, s; x) − x(t, s; x)‖2 6 MeMτ 〈Q(s)x, x〉.

On the other hand, we get

E

∫ s+τ

s

‖C(r)z(r, s; x)‖2 dr > 1
2E

∫ s+τ

s

‖C(r)x(r, s; x)‖2 dr(41)

− C̃

∫ s+τ

s

E‖z(r, s; x) − x(r, s; x)‖2 dr,

where C̃ = sup
t>0

‖C(t)‖2. Using the uniform observability condition and (40) it follows

that for all s ∈ R+

〈Q(s)x, x〉 > 1
2γ‖x‖2 − τC̃MeMτ 〈Q(s)x, x〉.

Thus Q(s) is uniformly positive and the proof of a) is complete.
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b) Since P is bounded on R+, we can find δ1 > 0 such that ‖P (t)‖ < δ1, t ∈ R+.

Taking T = s + τ we deduce by (37) and the above inequality that

〈P (s)x, x〉 − E〈P (s + τ)z(s + τ), z(s + τ)〉 >
δ0

δ1
〈P (s)x, x〉,

where δ0 = γ/[2 + 2τC̃MeMτ ]. Obviously q = 1 − δ0/δ1 ∈ (0, 1) and

(42) E〈P (s + τ)z(s + τ), z(s + τ)〉 6 q〈P (s)x, x〉, s ∈ R+.

By Theorem 10 in [23] it follows that there exists an evolution operator V (t, s) on

N associated with the equation {A − BS; Gi − HiS} given by

V (t, s)X = U−BS(t, s)XU∗
−BS(t, s)(43)

+

∫ t

s

U−BS(t, r)

[ m∑

i=1

(Gi − HiS)(r)V (r, s)(X)(Gi − HiS)∗(r)

]
U∗
−BS(t, r) dr

such that

E[z(t, s; x) ⊗ z(t, s; x)] = V (t, s)(x ⊗ x).

By E(ξ ⊗ ξ), where ξ ∈ L2(Ω, H), we mean the linear and bounded operator acting

on H defined as

E(ξ ⊗ ξ)(x) = E(〈x, ξ〉ξ).

Evidently, E(ξ ⊗ ξ) ∈ N . Further, (42) can be equivalently rewritten to

Tr[P (s + τ)V (s + τ, s)(x ⊗ x)] 6 qT r[P (s)(x ⊗ x)], x ∈ H.

By a standard argument (see [19]) we deduce that

Tr[P (s + τ)V (s + τ, s)(N)] 6 qT r[P (s)(N)]

for all N ∈ N . Setting N = V (s, p)(x ⊗ x), p 6 s we get

(44) Tr[P (s + τ)V (s + τ, p)(x ⊗ x)] 6 qT r[P (s)V (s, p)(x ⊗ x)].

Let t > p. There exist c ∈ N, r ∈ [0, τ) such that t = cτ + r + p. Using the induction

method and (44) we obtain

Tr[P (t)V (t, p)(x ⊗ x)] 6 qcTr[P (p + r)V (p + r, p)(x ⊗ x)].
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Since U(t, s) has an exponential growth, we use Gronwall’s inequality and (43) to

deduce that there exists Mτ > 0 such that ‖V (p + r, p)‖ 6 Mτ for all p ∈ R+ and

r ∈ [0, τ). Taking a = q1/τ and β = q−r/τMτδ1 we have

E〈P (t)z(t, p; x), z(t, p; x)〉 = Tr[P (t)V (t, p)(x ⊗ x)] 6 βat−p‖x ⊗ x‖1.

Further,

δ0E‖z(t, p; x)‖2
6 βat−p‖x‖2

for all t > p > 0 and x ∈ H by a). Therefore {A − BS; Gi − HiS} is uniformly
exponentially stable and the proof is complete. �

The next result is a consequence of the above theorem and of Proposition 15 (see

also [16] for the finite dimensional case and the conventional Riccati equation).

Theorem 18. Assume {A : B; Gi : Hi} is stabilizable, {A, Gi; C} is stochas-
tically uniformly observable and (P5) holds. Then the Riccati equation (10) has a

unique uniformly positive and bounded on R+ solution P (t), which is stabilizing for

{A : B; Gi : Hi}.

4. Optimal control

The following lemma and remark can be proved only under the hypotheses (P1)

and (P2). P1(A∗) is not necessary here.

Lemma 19. Assume L ∈ Cb([0,∞), L(H)) and h ∈ Cb(R+, H). Then the equa-

tion

(45) g′n(t) = −(A∗
n + L∗)gn(t) − h(t), gn(T ) = x0 ∈ H, t 6 T,

where the weak differentiability is considered, has a unique solution. The functions

(t, x) → 〈g′n(t), x〉, n ∈ N are continuous on [0,∞)×H.Moreover, if UL,n (respectively

UL) are the perturbations of U (respectively of Un) by L, then for all y ∈ H and

t ∈ [0, T ] we have

(46) 〈gn(t), y〉 →
n→∞

〈U∗
L(T, t)x0, y〉 +

〈∫ T

t

U∗
L(σ, t)h(σ) dσ, y

〉
.

Here L∗ : [0,∞) → L(H), L∗(t) = (L(t))∗.

P r o o f. Since for all x ∈ H , ∂UL,n(t, s)x/∂s = −UL,n(t, s)(An(s) + L(s))x [20],

it is not difficult to see that gn(t) = U∗
L,n(T, t)x0 +

∫ T

t
U∗

L,n(σ, t)h(σ) dσ is the unique

solution of the equation (45). Using Lemma 3 in [18] it follows that for each y ∈ H ,

lim
n→∞

UL,n(t, s)y = UL(t, s)y uniformly with respect to t ∈ [s, T ], 0 6 s 6 T and (46)

holds. �
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Remark 20. Assume that {A : B; Gi : Hi} is stabilizable with the stabilizing
sequence F ∈ Cb([0,∞), L(H, U)) and let h ∈ Cb(R+, H). Since {A+BF, Gi+HiF} is
uniformly exponentially stable it follows that there exist constantsM > 1, ω > 0such

that ‖UBF (σ, t)‖ 6 Me−ω(σ−t), σ > t > 0. Hence, the integral

(47) g(t) =

∫ ∞

t

U∗
BF (σ, t)h(σ) dσ

is convergent in H and g(·) is bounded on R+. Moreover,

〈∫ T

t

U∗
BF (σ, t)h(σ) dσ, y

〉
→

T→∞

〈∫ ∞

t

U∗
BF (σ, t)h(σ) dσ, y

〉
.

If we consider the solution of (45) with the initial condition gn(T ) = g(T ) it is not

difficult to see that 〈gn(t), y〉 →
n→∞

〈g(t), y〉 for all y ∈ H.

4.1. Tracking problem.

The following result is similar to the one obtained in [17] for finite dimensional

spaces and the conventional Riccati equation or in [21] for Hilbert spaces and bounded

coefficients of the conventional Riccati equation.

Theorem 21. Assume the hypotheses of Theorem 18 are satisfied. Let P be

the unique, bounded on R+ and stabilizing solution of the Riccati equation (10)

and let g(t) be given by (47), where F (t) = −[K (P )(t)]−1B(P )(t) and h(t) =

−C∗(t)C(t)r(t). Then the optimal cost for the problem (5)–(6), (8) is

J(s) = inf
u∈Uad

J(s, u)

= lim
t→∞

1

t − s

[ ∫ t

s

‖C(σ)r(σ)‖2 dσ −
∫ t

s

‖[K (P )(σ)]−1/2B∗(σ)g(σ)‖2 dσ

]
,

and it is obtained for the optimal control

u(t) = −[K (P )(t)]−1[B(P )(t)x(t) + B∗(t)g(t)],

where x(t) is the solution of (5)–(6).

P r o o f. Let P be the unique, bounded on R+ and stabilizing solution of the

Riccati equation (10) and let S(s) be the family of operators introduced by (12).

We recall (see Theorem 18) that F (t) = −S(t) is a stabilizing sequence for the

stochastic equation {A : B; Gi : Hi}. Let Pn(t1, s; P (t1)) be the solution of the

approximating Lyapunov equation (28) satisfying Pn(t1) = P (t1) and let gn(s) be
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the solution of (45) with the final condition gn(t1) = g(t1), where L(t) = −B(t)S(t).

We consider the function Gn(t, x) = 〈Pn(t)x, x〉 + 2〈gn(t), x〉, which is continuous
together its partial derivatives Gn,t, Gn,x, Gn,xx on [0,∞) × H . Let u ∈ Uad and

let xn(t) be its response. Using Ito’s formula for Gn(t, x) and the strong solution of

{An : B; Gi : Hi} we get

E〈Pn(t)xn(t), xn(t)〉 + 2E〈gn(t), xn(t)〉 − 〈Pn(s)x, x〉 − 2〈gn(s), x〉

= −E

∫ t

s

‖C(σ)[xn(σ) − r(σ)]‖2 + 〈K(σ)u(σ), u(σ)〉dσ +

∫ t

s

‖C(σ)r(σ)‖2 dσ

+ E

∫ t

s

[2〈B(Pn)(σ)xn(σ) + B∗(σ)gn(σ), u(σ) + S(σ)xn(σ)〉

− 〈K (Pn)(σ)S(σ)xn(σ), S(σ)xn(σ)〉 + 〈K (Pn)(σ)u(σ), u(σ)〉] dσ.

Letting n → ∞ and using the dominated convergence theorem of Lebesgue we

obtain

E〈P (t)x(t), x(t)〉 + 2E〈g(t), x(t)〉 − 〈P (s)x, x〉 − 2〈g(s), x〉

= −E

∫ t

s

‖C(σ)[x(σ) − r(σ)]‖2 + 〈K(σ)u(σ), u(σ)〉dσ

+ E

∫ t

s

‖K (P )(σ)1/2[u(σ) + [K (P )(σ)]−1[B(P )(σ)x(σ) + B∗(σ)g(σ)]]‖2

+

∫ t

s

‖C(σ)r(σ)‖2 dσ −
∫ t

s

‖[K (P )(σ)]−1/2B∗(σ)g(σ)‖2 dσ.

Since P (t) and g(t) are bounded on R+, we multiply the last relation by 1/(t − s)

and taking the limit as t → ∞ and then the infimum we get the conclusion. �

4.2. Quadratic control.

Theorem 22. Assume that the hypotheses of Theorem 18 are fulfilled and con-

sider the control problem (5)–(6), (9). The optimal control is given by the feedback

law

(48) ũ(t) = −[K (P )(t)]−1
B(P )(t)x(t),

where P is the unique bounded on R+ and uniformly positive solution of (10) (x(t)

is the corresponding solution of (5)–(6)) and the optimal cost is

(49) Is,x(ũ) = 〈P (s)x, x〉.
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P r o o f. Let P be the unique, bounded on R+ and stabilizing solution of the

Riccati equation (10). Let u ∈ U
q

ad and let x(t) be its response (x(t) is the solution

of the stochastic equation {A : B; Gi : Hi} with the initial condition x(s) = x).

Arguing as in the proof of Theorem 21 we deduce that

E〈P (t)x(t), x(t)〉 − 〈P (s)x, x〉 = −E

∫ t

s

‖C(σ)x(σ)‖2 + 〈K(σ)u(σ), u(σ)〉dσ

+ E

∫ t

s

‖K (P )(σ)1/2[u(σ) + [K (P )(σ)]−1
B(P )(σ)x(σ)]‖2 .

It is clear that the control ũ(t) given by (48) belongs to U
q

ad and Is(ũ) = 〈P (s)x, x〉.
Let u ∈ U

q
ad. Since P (t) is bounded on R+ and stabilizing, we take the limit (for

t → ∞) in the above relation and see that 〈P (s)x, x〉 6 Is(u). The conclusion

follows. �

Example 23. Let Λ: D(Λ) = H1
0 (0, 1) ∩ H2(0, 1) → L2(0, 1), Λy = −∂2y/∂ξ2.

It is known that the linear operator Λ is the infinitesimal generator of an analytic

semigroup on the Hilbert space L2(0, 1) [8]. Recall that the eigenvalues of Λ are n2
π
2,

n ∈ N
∗ and the corresponding eigenvectors are fn =

√
2ϕn, where ϕn = sin nπξ. Let

H = D(Λ1/2) ⊕ L2(0, 1) be Hilbert space [3] endowed with the inner product

〈x, u〉H = 〈Λ1/2x1, Λ
1/2u1〉L2(0,1) + 〈x2, u2〉L2(0,1),

x =

(
x1

x2

)
, u =

(
u1

u2

)
∈ H.

On the Hilbert space H we consider the stochastic controlled system

(50)





dyt(ξ, t) =
∂2y(ξ, t)

∂ξ2
dt + u2(ξ, t) dt + yt(ξ, t) dw(t),

y(0, t) = 0, y(1, t) = 0, t > 0,

y(ξ, 0) = y0(ξ), yt(ξ, 0) = y1(ξ), ξ ∈ [0, 1]

with the observation relation

(51) z(t) = (0, yt(ξ, t))
T .

Our problems are

i) to find the optimal control which minimizes the cost functional

(52) I0,(y0,y1)
(u) = E

∫ ∞

0

‖yt(ξ, t)‖2
L2(0,1) + ‖u(t)‖2

H dt;
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ii) to solve the tracking problem defined by the given signal r(t) = e−(1/2)t̺o, ̺0 =

(0,
√

2 sin(πξ))T ∈ H , t > 0, (50)–(51) and

J(0, u) = lim
t→∞

1

t
E

∫ t

0

‖yt(ξ, σ) − e−(1/2)σ
√

2 sin(πξ)‖2
L2(0,1) + ‖u(σ)‖2

H dσ.

Now, let us introduce the linear operator

A : D(Λ) ⊕ D(Λ1/2) → H, A(x) =

(
0 I

−Λ 0

) (
x1

x2

)
.

It is known (see [11], [3]) that A generates the contraction semigroup

S(t)(x) =




∞∑
n=1

2
[
〈x1, ϕn〉L2(0,1) cosnπt +

1

nπ

〈x2, ϕn〉L2(0,1) sin nπt
]
ϕn

∞∑
n=1

2[−nπ〈x1, ϕn〉L2(0,1) sin nπt + 〈x2, ϕn〉L2(0,1) cosnπt]ϕn


 .

Moreover, D(A∗) = D(A) and A∗ = −A. It is easy to see that the system (50)–(51)

can be equivalently rewritten as

dx(t) = Ax(t) dt + Bu(t) dt + Gx(t) dw(t), x(0) = x0,

z(t) = C(t)x(t),

where x = (x1, x2)
T , x0(ξ) = (y0(ξ), y1(ξ)), u = (u1, u2) B = G = C =

(
0 0

0 I

)
.

Comparing it with (5), (8) and (9) we also see that m = 1, H(t) = H1(t) = 0 and

K(t) = I, t > 0, U = V = H . Obviously the system is in the time invariant case and

(P2) holds. Also the hypotheses (P1) and P1(A∗) fulfilled since A is the infinitesimal

generator of a C0-semigroup.

We need to prove that {A, G; C} is stochastically uniformly observable and {A :

B, G : H} is stabilizable. Arguing as in Example 23 in [22] (see also [23]) and using
Theorem 10 it follows that {A, G; C} is stochastically uniformly observable. The
algebraic Riccati equation associated with the discussed control problems is

(53) A∗P + PA + G∗PG + C∗C − PBB∗P = 0.

Since A∗ = −A it is clear that P = (1
2

√
5 + 1

2 )I is a nonnegative solution of (53).

Obviously P is a nonnegative and bounded solution of (10). The hypotheses of

Theorem 17 are verified and we conclude that P is stabilizing for the system {A : B,

Gi : 0}.
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i) By Theorem 22 it follows that the optimal cost of the quadratic control problem

(i) is I0,x0(u) = (1
2

√
5 + 1

2 )‖x0‖2
H and the optimal control is

ũ(ξ, t) = (0,−(
√

5/2 + 1/2)ỹt(ξ, t))
T ,

where ỹ(ξ, t) is the solution of the equation

dỹt(ξ, t) =
∂2ỹ(ξ, t)

∂ξ2
dt − (

√
5/2 + 1/2)ỹt(ξ, t) dt + ỹt(ξ, t) dw(t),

ỹ(ξ, 0) = y0(ξ), ỹt(ξ, 0) = y1(ξ).

ii) Let P =
(√

5/2 + 1/2
)
I be the unique nonnegative solution of (53). Since

the stochastic system {A − BB∗P, Gi} is uniformly exponentially stable, we de-
duce easily by Theorem 9 in [23] that the deterministic system {A − BB∗P} is
uniformly exponentially stable. Obviously A − BB∗P = A −

(√
5/2 + 1/2

)
B gen-

erates a C0-semigroup T (t). Then T ∗(t) is also a C0-semigroup, generated by

A∗ −
(√

5/2 + 1/2
)
B = −A −

(√
5/2 + 1/2

)
B. Let us denote a =

(√
5/2 + 1/2

)

and Λa =
√

Λ − (a/2)2I. After an easy computation we obtain the formula

T ∗(t) = e−(a/2)t

(
cos(Λat) + a/2

Λa

sin(Λat) − 1
Λa

sin(Λat)

(Λa + (a/2)2

Λa

) sin(Λat) cos(Λat) − a/2
Λa

sin(Λat)

)
.

Here cos(Λat)(y) =
∞∑

n=1
cos(

√
n2

π
2 − a2/4t)〈y, fn〉L2(0,1)fn. The remainders of the

operators are defined similarly. In view of (47) we get

g(t) =

∫ ∞

t

e−(1/2)σT ∗(σ − t)(̺0) dσ = e−(1/2)t

∫ ∞

0

e−(1/2)uT ∗(u)(̺0) du.

Since ̺0 = (0, f1), we have

g(t) = (g1(t), g2(t))
T = e−(1/2)t

(
− 4

2 +
√

5 + 4π
2
,

2

2 +
√

5 + 4π
2

)T√
2 sin πξ.

Applying Theorem 21 it follows that the optimal control for the tracking problem is

ũ(t) =
(
0,−

[(√
5/2 + 1/2

)
yt(t) + g2(t)

])T
,

where y(t) is the mild solution of the corresponding control system {A : B, Gi : 0}.
Also

J(0, ũ) = lim
t→∞

1

t

[ ∫ t

0

e−σ‖
√

2 sin(πξ)‖2
L2(0,1) dσ −

∫ t

s

‖g2(σ)‖2
L2(0,1) dσ

]

= lim
t→∞

1

t

∫ t

0

e−σ
(
1 − 2

2 +
√

5 + 4π
2

)
dσ = 0.
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We note that if we consider the tracking problem ii) for r(t) = ̺0, then evidently

the optimal cost J(0, ũ) = (
√

5 + 4π
2)/(2 +

√
5 + 4π

2) is obtained for

ũ(t) =

(
0,−

[(√
5

2
+

1

2

)
yt(t) +

2

2 +
√

5 + 4π
2
f1

])T

.

5. Concluding Remarks

In this paper we solved a linear quadratic, as well as a tracking problem, under

uniform observability and stabilizability conditions. In view of Theorem 10 we see

that the stochastic uniform observability property can be easily verified as compared

with the detectability condition (see [10]). However, there are some situations where

the stochastic uniform observability property cannot be achieved. This is the case

when the family A(t), t > 0 generates a compact evolution operator and the Hilbert

spaceH is of infinite dimension (we refer to [23] for details). Obviously, in this case we

cannot use the results in present paper. However, if stabilizability and detectability

conditions are fulfilled, then we can solve the optimal control problems following

the way indicated by G.Da Prato and A. Ichikawa in [10], [12]. Therefore, on the

one side, our results make the ones in [10], [12] more complete, since they cover the

case of stochastically uniformly observable systems which are not detectable and,

on the other hand, they are an alternative to the approach of G. Da Prato and A.

Ichikawa. (We refer here to the cases where both the detectability and stochastic

uniform observability properties hold and the latter is easier to be verified.)
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