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Abstract. In this paper we study some special residuated lattices, namely, idempotent
residuated chains. After giving some properties of Green’s relation D on the monoid reduct
of an idempotent residuated chain, we establish a structure theorem for idempotent residu-
ated chains. As an application, we give necessary and sufficient conditions for a band with
an identity to be the monoid reduct of some idempotent residuated chain. Finally, based on
the structure theorem for idempotent residuated chains, we obtain some characterizations
of subdirectly irreducible, simple and strictly simple idempotent residuated chains.
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1. Introduction

A residuated lattice, or a residuated lattice-ordered monoid, is an algebra L =

(L,∧,∨, ·, \, /, e) such that (L,∧,∨) is a lattice, (L, ·, e) is a monoid and multiplica-

tion is residuated with respect to the order by the division operations \, /; i.e., for

all a, b, c ∈ L,

a · b 6 c⇔ a 6 c/b⇔ b 6 a\c.

The last condition is equivalent to the fact that (L,∧,∨, ·, e) is a lattice-ordered

monoid and for all a, b ∈ L, the sets {c ∈ L : ac 6 b} and {c ∈ L : ca 6 b} both

contain largest elements.

In the late 1930’s, M.Ward and R. F.Dilworth introduced the concept of residuated

lattices in a more restrictive form which is a natural generalization of the notion of

the ideal lattices of rings with identity. Since that time, there has been substantial

research regarding some specific classes of residuated structures (see [1]–[5]).

This work is supported by a grant of NSF, China # 10471112 and a grant of Shaanxi
Provincial Natural Science Foundation # 2005A15.
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It is easy to see that the class of all residuated lattices denoted by RL, is a vari-

ety. By an idempotent residuated lattice we mean a residuated lattice satisfying the

additional identity x2 ≈ x. Idempotent residuated lattices are regarded as a com-

mon generalization of Brouwerian algebras and generalized Boolean algebras. The

class of all idempotent residuated lattices, denoted by IdRL, is a subvariety of the

variety of all residuated lattices. N. Galatos studied minimal subvarieties of IdRL

in [2]. He constructed uncountably many atoms in the subvariety lattice of IdRL

by making use of a class of strictly simple idempotent residuated chains. By an

idempotent residuated chain we mean an idempotent residuated lattice for which its

lattice reduct is a chain. D. Stanovský in [1] studied commutative idempotent resid-

uated chains, that is, idempotent residuated chains satisfying the additional identity

xy ≈ yx. He gave some characterizations of commutative idempotent residuated

chains.

In the present paper we will investigate idempotent residuated chains. In order to

obtain a structure theorem for idempotent residuated chains, we recall some prop-

erties of Green’s relations on a band and the decomposition theorem for a band in

Section 2. Also, some concepts and known results in the theory of residuated lattices

are recalled. In Section 3, we give some basic properties of Green’s relation D on

the monoid reducts of an idempotent residuated chain. By making use of the above

results, we describe a structure theorem for idempotent residuated chains in terms

of a chain and a family of sets which satisfy some simple compatibility conditions in

Section 4. As an application, we give necessary and sufficient conditions for a band

with an identity to be the monoid reduct of some idempotent residuated chain in

Section 5. Finally, based on the structure theorem for idempotent residuated chains,

we obtain some characterizations of subdirectly irreducible, simple and strictly sim-

ple idempotent residuated chains in Section 6. In particular, we prove that there are

precisely six distinct classes of strictly simple idempotent residuated chains.

2. Preliminaries

In what follows, we shall use the notion and notation from [3], [7]. Other undefined

terms can be found in [2], [6]. We first recall some of the basic facts concerning

Green’s relations on the semigroup S. We refer to S1 as the monoid obtained from S

by adjoining an identity if necessary. Green’s relations are the equivalence relations

defined by

L = {(a, b) ∈ S × S : S1a = S1b}, R = {(a, b) ∈ S × S : aS1 = bS1},

J = {(a, b) ∈ S × S : S1aS1 = S1bS1}, H = L ∩R,D = 〈L ∪ R〉,
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where the final expression denotes the equivalence relation generated by L and R.

Evidently, L is a right congruence while R is a left congruence. Another property of

Green’s relations is as follows:

Lemma 2.1 [7]. The relations L and R commute and D = L ◦ R = R ◦ L.

A band is a semigroup in which each element is an idempotent; a semilattice is a

commutative band. A rectangular band is a band S in which xyz = xz for all x, y, z ∈

S. The following results are well known and can be proved by Proposition 2.1.4 and

Theorem 4.1.3 of [7]. On any band S, Green’s relations D and J coincide and

constitute a congruence such that S/D is a semilattice. Let D♮ : S → S/D be the

natural homomorphism. We denote the semilattice S/D by Y , and for each α in

Y we denote α(D♮)−1 by Dα. Each Dα is both a D-class of S and a rectangular

band. Hence S is the disjoint union of the rectangular bands Dα (α ∈ Y ), and the

congruence property of D gives that DαDβ = {ab : a ∈ Dα, b ∈ Dβ} ⊆ Dαβ . We say

that S is a semilattice of rectangular bands. Thus we have

Theorem 2.2 [7]. Every band is a semilattice of rectangular bands.

We recall some of the basic facts about RL. Note that in a residuated lattice, the

division operations are determined by multiplication and the order; in particular,

a\b = max{c ∈ L : ac 6 b} and b/a = max{c ∈ L : ca 6 b}.

In a residuated lattice term, we assume that multiplication has priority over the

division operations, which, in turn, have priority over the lattice operations. So, for

example, we write x/yz ∧ u\v for [x/(yz)] ∧ (u\v).

Lemma 2.3 [5]. Residuated lattices satisfy the following identities:

(1) x(y ∨ z) ≈ xy ∨ xz and (y ∨ z)x ≈ yx ∨ zx,

(2) x\(y ∧ z) ≈ (x\y) ∧ (x\z) and (y ∧ z)/x ≈ (y/x) ∧ (z/x),

(3) x/(y ∨ z) ≈ (x/y) ∧ (x/z) and (y ∨ z)\x ≈ (y\x) ∧ (z\x),

(4) (x/y)y 6 x and y(y\x) 6 x,

(5) x(y/z) 6 xy/z and (z\y)x 6 z\yx,

(6) (x/y)/z ≈ x/zy and z\(y\x) ≈ yz\x,

(7) x\(y/z) ≈ (x\y)/z,

(8) x/e ≈ x ≈ e\x,

(9) e 6 x/x and e 6 x\x.

Moreover, if a residuated lattice has a least element ⊥, then it has a greatest

element ⊤ as well, and ⊤ = ⊥/⊥ = ⊥\⊥.

For each element a in a residuated lattice L we define two unary polynomials

̺a(x) = ax/a ∧ e and λa(x) = a\xa ∧ e, the right and left conjugate of x by a. A
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subset S of a residuated lattice L is called normal if ̺u(x), λu(x) ∈ S for all u ∈ L

and all x ∈ S. The closed interval {u ∈ L : x 6 u 6 y} is denoted by [x, y]. As for

posets, we call S convex if [x, y] ⊆ S for all x, y ∈ S. We define κu(x, y) = (u∧x)∨y.

Note that for a sublattice S the property of being convex is equivalent to κu(x, y) ∈ S

for all u ∈ L and x, y ∈ S. Thus a convex normal subalgebra is precisely a subalgebra

of L that is closed under λ, ̺ and κ.

Theorem 2.4 [3], [5]. The convex normal subalgebras of a residuated lattice L

form a lattice, CN(L), which is isomorphic to the congruence lattice, CON(L), of

L via S 7→ θS = {(a, b) ∈ L2|(a/b ∧ e)(b/a ∧ e) ∈ S} and θ 7→ [e]θ, the θ-class of e.

For a subset S of a residuated lattice L let cn(S) denote the intersection of all

convex normal subalgebras containing S. When S = {s}, we write cn(s) rather than

cn({s}). Let

∆(S) = {s ∧ e/s ∧ e : s ∈ S},

Γ(S) = {λu1
◦ ̺u2

◦ λu3
◦ · · · ◦ ̺u2n

(s) : n ∈ ω, ui ∈ L, s ∈ S}

Π(S) = {s1 · s2 · · · sn : n ∈ ω, si ∈ S} ∪ {e}.

Theorem 2.5 [3], [5]. The convex normal subalgebra generated by a subset S in

a residuated lattice L is

cn(S) = {a ∈ L : x 6 a 6 x\e for some x ∈ ΠΓ∆(S)}.

Lemma 2.6 [1]. Let L be a lattice-ordered idempotent monoid and a, b ∈ L.

Then the following statements are true:

(1) a ∧ b 6 ab 6 a ∨ b;

(2) if a, b > e, then ab = a ∨ b;

(3) if a, b 6 e, then ab = a ∧ b;

(4) if a 6 e 6 ab, then ab = b;

(5) if ab 6 e 6 a, then ab = b.

3. Green’s relation D on the monoid reduct of

an idempotent residuated chain

It is well-known that Green’s relations play a crucial role in the study of any

semigroups. It is natural to find the important properties of Green’s relation D

on the monoid reduct of an idempotent residuated chain. This is the main aim

of this section. For brevity, throughout this section we always assume that L =
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(L,∧,∨, ·, \, /, e) is an idempotent residuated chain. We denote the D-class contain-

ing the element a by Da. To begin with, we verify the following fact which is the

crucial observation enabling the study to get under way.

Proposition 3.1.

(1) For all a ∈ L, Da contains at most two elements. Moreover, if b ∈ Da and b 6= a,

then either a > e, b < e or a < e, b > e.

(2) For all a ∈ L, (Da, ·) is either a left zero semigroup or a right zero semigroup.

P r o o f. (1) Let a, b ∈ L and a D b. Since (L, ·) is a semilattice of rectangular

bands, by Theorem 2.2, (Da, ·) is a rectangular band. If a, b 6 e, then by Lemma 2.6

(3), a = aba = min{a, b} = bab = b. Similarly, if a, b > e, then a = b. Hence for

a 6= b, either a > e, b < e or a < e, b > e. Thus, for any a ∈ L, Da contains at most

two elements.

(2) Let a ∈ L and b ∈ Da. Then by Lemma 2.1 there exists c ∈ L such that

a L c R a and so c ∈ Da. By (1), |Da| 6 2, it follows that either c = a or c = b

and so b L a or b R a. Thus (Da, ·) is either a left zero semigroup or a right zero

semigroup. �

On any band S the natural ordering 6n is given by for all a, b ∈ S, a 6n b if and

only if ab = ba = a. By Theorem 2.2 (L, ·) is a semilattice of rectangular bands.

Hence (L/D, ·) is a semilattice. So we have the natural ordering on (L/D, ·) by

defining for all a, b ∈ L, Da 6∗ Db if and only if Da ·Db = Da.

In the following we write x ≺ y(x ≺∗ y) for the fact that x is covered by y; i.e.,

x < y(x <∗ y) and for every z, if x 6 z 6 y(x 6∗ z 6∗ y), then z = x or z = y. We

now describe the relationship between the imposed ordering 6, the natural ordering

6n on L and the natural ordering 6∗ on L/D.

Proposition 3.2.

(1) (L/D, 6∗) is a chain with the greatest element De.

(2) If a, b ∈ L such that a 6 e and b 6 e, then a 6 b if and only if a 6n b if and

only if Da 6∗ Db.

(3) If a, b ∈ L such that a > e and b > e, then a 6 b if and only if b 6n a if and

only if Db 6∗ Da.

(4) If a, b ∈ L such that a 6 e and b > e, then a <n b if and only if Da <∗ Db.

(5) If a, b ∈ L such that a 6 e and b > e, then b <n a if and only if Db <∗ Da.

(6) If a, b ∈ L such that a < e and b > e, then a and b are non-comparable for 6n

if and only if Da = Db.
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P r o o f. (1) It is easy to see that De is the greatest element in (L/D, 6∗). By

Lemma 2.6, for all a, b ∈ L we have ab = a or ab = b. This implies that Da ·Db = Da

or Da ·Db = Db. Hence Da 6∗ Db or Db 6∗ Da. This proves (1).

(2) Let a, b ∈ L be such that a 6 e and b 6 e. If a 6 b, then a = ab = ba = a∧b by

Lemma 2.6(3), and so a 6n b. If a 6n b, then a = ab = ba and soDa = Dab = Da·Db.

Hence Da 6∗ Db. If Da 6∗ Db, then Da = Dab = Da · Db, and so ab ∈ Da. By

Lemma 2.6(3) ab = a ∧ b 6 e, and so by Proposition 3.1(1) we have ab = a. Hence

a 6 b.

(3) is established similarly.

(4) Let a, b ∈ L be such that a 6 e and b > e. If a <n b, then a = ab = ba and

so Da = Dab = Da · Db. Hence Da 6∗ Db. Suppose that Da = Db. Then a and b

are non-comparable for 6n. It is a contradiction. Thus Da <∗ Db. Conversely, if

Da <∗ Db, then Da = Dab = Da ·Db, and so ab ∈ Da. Suppose that ab > e. Then by

Lemma 2.6(4), ab = b. It is a contradiction. Hence ab 6 e and so by Lemma 2.6(5),

ab = a. Similarly, ba = a. Thus a <n b.

(5): is similar to (4).

(6) Let a, b ∈ L be such that a < e and b > e. Suppose that a and b are non-

comparable for 6n. If Da 6= Db, then (1) implies Da <∗ Db or Db <∗ Da. So by (4)

and (5) we have a <n b or b <n a. It is a contradiction. Hence Da = Db. Conversely,

let Da = Db. Then either a = ab, b = ba or a = ba, b = ab. Hence a and b are

non-comparable for 6n . �

Example 3.3. Let L = {b1, b2, b5}∪{a3, a4, a5}∪{e}. We define an order relation

on L by b1 < b2 < b5 < e < a5 < a4 < a3; see Figure 1(1). Obviously, this is a total

order on L. We also define a multiplication by

ai ◦ aj = amin{i,j}, bi ◦ bj = bmin{i,j},

ai ◦ bj =

{
ai if i < j or i = j = 5,

bj if j < i,

and

bj ◦ ai =

{
ai if i < j,

bj if j < i or i = j = 5.

Finally, we define two division operations on L, by x/y = max{z|zy 6 x} and

y\x = max{z|yz 6 x}; note that maximum elements exist. Hence L is an idempotent

residuated chain. Let D1 = {b1}, D2 = {b2}, D3 = {a3}, D4 = {a4}, D5 = {b5, a5},

De = {e}. Then L/D = {D1, D2, D3, D4, D5, De} and the natural ordering 6∗ on

L/D is as follows: D1 <∗ D2 <∗ D3 <∗ D4 <∗ D5 <∗ De; see Figure 1(2). The

natural ordering 6n on L is as follows: b1 <n b2 <n a3 <n a4 <n b5, a5 <n e; see
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Figure 1(3). By Proposition 3.2, we can obtain the imposed ordering 6 on L from

the natural ordering 6n on L; see Figure 1(4).
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The next proposition describes some properties of the set of equivalence classes of

D on L which play a crucial role in this paper.

Proposition 3.4.

(1) If a ∈ L and a > e, then there exists a unique element b < e in L with Db <∗ Da,

satisfying the following condition:

(RC) if D ∈ (L/D, 6∗) such that Db <∗ D <∗ Da and c ∈ D, then c > e.

(2) If b ∈ L and b < e, then there exists a unique element a > e in L with Db <∗ Da

satisfying the following condition:

(RC′) if D ∈ (L/D, 6∗) such that Db <∗ D <∗ Da and c ∈ D, then c < e.

P r o o f. (1) Let a ∈ L and a > e.

• Suppose that (Da, ·) is a left zero semigroup. Let b = a\e. Then by

Lemma 2.3(4), ab 6 e. By Lemma 2.6, ab = b 6 e. Hence Db 6∗ Da.

Since a 6= b and (Da, ·) is a left zero semigroup, we have Db <∗ Da. If

Db ≺
∗ Da, then b satisfies condition (RC). Assume that Db is not covered

by Da. Suppose that there exists D ∈ (L/D, 6∗) with Db <∗ D <∗ Da and

c ∈ D such that c < e. By Lemma 2.6, b = bc < c. But ac = c < e. It is a

contradiction. Hence b satisfies condition (RC).

• Assume that (Da, ·) is a right zero semigroup. Let b = e/a. Then by

Lemma 2.3(4), ba 6 e. By Lemma 2.6, ba = b. Hence Db <∗ Da. By a

similar argument to the above, b satisfies condition (RC).

Up to now, we have proved the existence of b. The uniqueness of b is trivial.

(2): is similar to (1). �
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4. Construction

Let (Y, 6∗) be a chain with greatest element 1 and X be a subset of Y . Let

D = {Dα : α ∈ Y } be a family of pairwise disjoint sets indexed by Y . Let partial

mappings

ϕ : Y → Y ; α 7→ ϕ(α)

and

φ : Y → Y ; α 7→ φ(α)

be given. We call (Y, X ; D ; ϕ, φ) an YD-system if the following conditions hold:

(YD1) for each α ∈ Y \ {1}, Dα is either the set {aα, bα} or one of {aα} and {bα},

where aα 6= bα;

(YD1′) for 1 ∈ Y , we have D1 = {e}, where e = a1 = b1;

(YD2) Domϕ = {α ∈ Y \ {1} : aα ∈ Dα};

(YD2′) Dom φ = {α ∈ Y \ {1} : bα ∈ Dα};

(YD3) if α ∈ Dom ϕ, then ϕ(α) <∗ α and Dϕ(α) contains bϕ(α);

(YD3′) if α ∈ Dom φ, then α <∗ φ(α) and Dφ(α) contains aφ(α);

(YD4) if β ∈ Y such that ϕ(α) <∗ β <∗ α, then Dβ contains exactly aβ ;

(YD4′) if β ∈ Y such that α <∗ β <∗ φ(α), then Dβ contains exactly bβ.

Given an YD-system (Y, X ; D ; ϕ, φ), put L =
⋃

α∈Y

Dα. Define a binary relation 6

on the set L as follows.

Let a ∈ Dα, b ∈ Dβ. a 6 b in L if one of the following conditions is satisfied:

(P1) α 6∗ β in Y and a = bα;

(P2) β 6∗ α in Y and b = aβ .

Lemma 4.1. (L, 6) is a chain.

P r o o f. We first prove that the binary relation 6 is a partial order on L.

Obviously, 6 is reflexive. Let a ∈ Dα, b ∈ Dβ be such that a 6 b and b 6 a. We

consider four cases:

(1) If α 6∗ β, a = bα and β 6∗ α, b = bβ , then α = β and so a = b.

(2) If α 6∗ β, a = bα and α 6∗ β, a = aα, then α = β = 1 and a = b = e.

(3) If β 6∗ α, b = aβ and β 6∗ α, b = bβ, then α = β = 1 and a = b = e.

(4) If β 6∗ α, b = aβ and α 6∗ β, a = aα, then α = β and so a = b.

Hence 6 is antisymmetric. Let a ∈ Dα, b ∈ Dβ and c ∈ Dγ be such that a 6 b

and b 6 c. We consider four cases:

(1) If α 6∗ β, a = bα and β 6∗ γ, b = bβ , then α 6∗ γ and so a 6 c.

(2) If α 6∗ β, a = bα and γ 6∗ β, c = aγ , then a 6 c, since (Y, 6∗) is a chain.

(3) If β 6∗ α, b = aβ and β 6∗ γ, b = bβ, then α = β = γ = 1 and so a = b = c = e.

460



(4) If β 6∗ α, b = aβ and γ 6∗ β, c = aγ , then γ 6∗ α and so a 6 c.

We have proved that 6 is transitive. Therefore 6 is a partial order on L. It is

clear that (L, 6) is a chain. �

We define a multiplication ◦ on the ordered set (L, 6) as follows:

aα ◦ aβ = amin{α,β}, bα ◦ bβ = bmin{α,β},

aα ◦ bβ =

{
aα if α <∗ β or α = β ∈ X,

bβ if β <∗ α or α = β /∈ X,

and

bβ ◦ aα =

{
aα if α <∗ β or α = β /∈ X,

bβ if β <∗ α or α = β ∈ X.

Lemma 4.2. (L, 6, ◦) is a partially ordered band with an identity e.

P r o o f. It is easy to see that (L, ◦) is a band with an identity e. Let a ∈ Dα,

b ∈ Dβ, c ∈ Dγ and a 6 b in L. Suppose that α 6∗ β and a = bα. We need to

consider four cases:

(a) If α <∗ β <∗ γ or α <∗ γ 6∗ β , then by the definition of 6, a 6 c. By the

definition of multiplication, a ◦ c = c ◦ a = a, b ◦ c ∈ {b, c} and c ◦ b ∈ {b, c}. Hence

a ◦ c 6 b ◦ c and c ◦ a 6 c ◦ b.

(b) α = γ 6∗ β.

• If α ∈ X , then a ◦ c = a = bα, c ◦ a = c and c ◦ b = c. It follows that a ◦ c 6 b ◦ c

and c ◦ a 6 c ◦ b.

• If α /∈ X , then a ◦ c = c, b ◦ c = c and c ◦ a = a = bα. Hence a ◦ c 6 b ◦ c and

c ◦ a 6 c ◦ b.

(c) If α = β <∗ γ, then a ◦ c = a 6 b = b ◦ c and c ◦ a = a 6 b = c ◦ b.

(d) If γ <∗ α 6∗ β, then a ◦ c = b ◦ c = c and c ◦ a = c ◦ b = c.

Similarly, if β 6∗ α and b = aβ , then a ◦ c 6 b ◦ c and c ◦ a 6 c ◦ b. Thus (L, 6, ◦)

is a partially ordered band with an identity e. �

We define two division operations \ and / on L as follows: for α ∈ Y \ {1} and

β ∈ Y , let

bα\bβ =





aφ(α) if α 6∗ β and α /∈ X,

aα if α 6∗ β , α ∈ X and Dα contains aα,

aφ(α) if α 6∗ β , α ∈ X and Dα does not contain aα,

bβ if β <∗ α,
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aα\bβ =





bϕ(α) if α 6∗ β and α ∈ X,

bα if α 6∗ β , α /∈ X and Dα contains bα,

bϕ(α) if α <∗ β , α /∈ X and Dα does not contain bα,

bβ if β <∗ α,

bα\aβ =





aφ(α) if α <∗ β and α /∈ X,

aα if α <∗ β , α ∈ X and Dα contains aα,

aφ(α) if α <∗ β , α ∈ X and Dα does not contain aα,

aβ if β 6∗ α,

aα\aβ =





bϕ(α) if α <∗ β and α ∈ X,

bα if α <∗ β , α /∈ X and Dα contains bα,

bϕ(α) if α <∗ β , α /∈ X and Dα does not contain bα,

aβ if β 6∗ α,

bβ/bα =





aφ(α) if α 6∗ β and α ∈ X,

aα if α 6∗ β , α /∈ X and Dα contains aα,

aφ(α) if α 6∗ β , α /∈ X and Dα does not contain aα,

bβ if β <∗ α,

bβ/aα =





bϕ(α) if α 6∗ β and α /∈ X,

bα if α 6∗ β , α ∈ X and Dα contains bα,

bϕ(α) if α <∗ β , α ∈ X and Dα does not contain bα,

bβ if β <∗ α,

aβ/bα =





aφ(α) if α <∗ β and α ∈ X,

aα if α <∗ β , α /∈ X and Dα contains aα,

aφ(α) if α <∗ β , α /∈ X and Dα does not contain aα,

aβ if β 6∗ α,

aβ/aα =





bϕ(α) if α <∗ β and α /∈ X,

bα if α <∗ β , α ∈ X and Dα contains bα,

bϕ(α) if α <∗ β , α ∈ X and Dα does not contain bα,

aβ if β 6∗ α,

for c ∈ L, let

e\c = c and c/e = c.

We denote by IRLC(Y, X ; D ; ϕ, φ) the above (L,∧,∨, ◦, \, /, e).
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Theorem 4.3. L = IRLC(Y, X ; D ; ϕ, φ) is an idempotent residuated chain.

P r o o f. We need only to prove that for all a, b ∈ L, a/b = max{c : c ◦ b 6 a}

and b\a = max{c : b ◦ c 6 a}. Let a = bβ ∈ L, b = bα ∈ L \ {e}. To show that

b\a = max{c : b ◦ c 6 a}, we need to consider the following cases:

(1) If α 6∗ β and α /∈ X or α 6∗ β, α ∈ X and Dα does not contain aα, then

bα\bβ = aφ(α). Let c ∈ Dγ be such that bα ◦ c 6 bβ . If c = bγ , then c = bγ < aφ(α).

If c = aγ , then α <∗ γ. Hence by (YD4′), φ(α) 6∗ γ and so c = aγ 6 aφ(α).

(2) If α 6∗ β, α ∈ X and Dα contains aα, then bα\bβ = aα. Let c ∈ Dγ be such

that bα ◦ c 6 bβ. If c = bγ , then c 6 aα. If c = aγ , then α 6∗ γ and so c = aγ 6 aα.

(3) If β <∗ α, then bα\bβ = bβ. Let c ∈ Dγ be such that bα◦c 6 bβ . If c = aγ , then

bα ◦ aγ = {bα, aγ}. But bβ < bα and bβ < aγ . It is a contradiction. Hence c = bγ . So

bα ◦ bγ = bα∧γ 6 bβ . It follows that α ∧ γ 6∗ β. Since β <∗ α, γ = α ∧ γ 6∗ β. Thus

c = bγ 6 bβ.

Similarly we can show that for all a, b ∈ L, a/b = max{c : c ◦ b 6 a} and b\a =

max{c : b ◦ c 6 a}. Hence IRLC(Y, X ; D ; ϕ, φ) is an idempotent residuated chain.

�

In the remainder of this section, we prove that any idempotent residuated

chain is isomorphic to some IRLC(Y, X ; D ; ϕ, φ). For convenience, in what fol-

lows, let L = (L,∧,∨, ·, \, /, e) be an idempotent residuated chain. By Propo-

sition 3.2(1), (L/D, 6∗) is a chain with greatest element De. Let X = {Da ∈

L/D : (Da, ·) is a left zero semigroup}. Put D = {Da : Da ∈ L/D}. By Proposi-

tion 3.4(1)and (2), we can define two partial mappings ϕ and φ as follows:

ϕ : L/D → L/D; Da 7→ max{Db ∈ L/D|b < e and Db <∗ Da}

and

φ : L/D → L/D; Db 7→ min{Da ∈ L/D|a > e and Db <∗ Da},

where Dom ϕ = {Da ∈ L/D : a > e} and Dom φ = {Db ∈ L/D : b < e}.

Lemma 4.4. (L/D, X ; D ; ϕ, φ) is an YD-system.

P r o o f. For the sake of simplicity, we identify L/D with Y which contains a

greatest element 1, and denote D = {Dα : α ∈ Y }. By Proposition 3.1(1), for each

α ∈ Y \ {1} we have Dα = {aα, bα} or one of {aα} and {bα}, where aα > e, bα < e.

Let x ∈ D1, then e = exe = x. Hence D1 = {e}, where e = a1 = b1. This shows

(YD1) and (YD1′).

By the definitions of ϕ and φ, conditions (YD2–4) and (YD2′–4′) hold. �
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Theorem 4.5. L is equal to IRLC(L/D, X ; D ; ϕ, φ).

P r o o f. For convenience, we denote by 61 the imposed ordering on IRLC(L/D,

X ; D ; ϕ, φ). We need only to prove that a · b = a ◦ b and 6=61 for all a, b ∈ L. Let

a, b ∈ L. We need to consider four cases:

(1) If a 6 e, b 6 e, then a · b = a ∧ b by Lemma 2.6(3). If a 6 b, then by

Proposition 3.2, Da 6∗ Db and so by the definition of ◦, a ◦ b = a. Hence a · b =

a ◦ b = a. If a > b, then by Proposition 3.2, Db 6∗ Da. and so by the definition of ◦,

a ◦ b = b. Hence a · b = a ◦ b = b.

(2) If a > e, b > e, then by a similar argument to (1), a · b = a ◦ b.

(3) a > e and b 6 e.

• If Da <∗ Db or Da = Db and (Da·) is a left zero semigroup, then a ◦ b = a and

by Lemma 2.6, a · b ∈ {a, b}. Hence a · b = a and so a · b = a ◦ b.

• If Db <∗ Da or Da = Db and (Da·) is a right zero semigroup, then a◦ b = b and

by Lemma 2.6, a · b ∈ {a, b}. Hence a · b = b and so a · b = a ◦ b.

(4) If a 6 e and b > e, then by a similar argument to (3), a ◦ b = a · b.

Let a, b ∈ L be such that a 6 b; we need to consider three cases:

(1) If a 6 e, b 6 e, then by Proposition 3.2(2), Da 6∗ Db and so by the definition

of 61, a 61 b.

(2) If a > e, b > e, then by Proposition 3.2(3), Db 6∗ Da and so by the definition

of 61, a 61 b.

(3) If a 6 e and b > e, then a 61 b.

Let a, b ∈ L be such that a 61 b. We need to consider two cases:

(1) Da 6∗ Db and a 6 e. If b 6 e, then by Proposition 3.2(2), a 6 b. If b > e,

then a 6 b.

(2) Db 6∗ Da and b > e. If a > e, then by Proposition 3.2(3), a 6 b. If a 6 e,

then a 6 b.

Hence the orders 6 and 61 coincide. Thus L is equal to IRLC(L/D, X ; D ; ϕ, φ).

�

As a conclusion, we have, by Theorems 4.3 and 4.5, the following theorem.

Theorem 4.6. Let (Y, X ; D ; ϕ, φ) be an YD-system. Then IRLC(Y, X ; D ; ϕ, φ)

is an idempotent residuated chain. Conversely, any such residuated lattice can be

constructed in this manner.
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5. Application

In this section we use the above theorem to obtain a structure theorem for commu-

tative idempotent residuated chains and establish necessary and sufficient conditions

for a band with an identity to be the monoid reduct of some idempotent residuated

chain. In addition, we give some characterizations of idempotent residuated chains.

Theorem 5.1. Let (Y, X ; D ; ϕ, φ) be an YD-system. If D is a family of pairwise

disjoint singletons, then IRLC(Y, X ; D ; ϕ, φ) is a commutative idempotent resid-

uated chain. Conversely, any such residuated lattice can be constructed in this

manner.

P r o o f. We need only to prove that IRLC(Y, X ; D ; ϕ, φ) is commutative. Now

let a, b ∈ IRLC(Y, X ; D ; ϕ, φ). Then there exist α, β ∈ Y such that a ∈ Dα, b ∈ Dβ.

If α = β, then because for all α ∈ Y , Dα contains exactly one element, it follows that

a = b. Hence ab = ba. If α <∗ β, then ab = ba = a. If β <∗ α, then ab = ba = b. We

have proved that IRLC(Y, X ; D ; ϕ, φ) is commutative. �

Theorem 5.2. A band L with identity e is the monoid reduct of some idempotent

residuated chain if and only if L satisfies the following conditions:

(TR1) (L/D, 6∗) is a chain where the partial order 6∗ is the natural ordering on

L/D;

(TR2) each D-class of L contains at most two elements;

(TR3) ab = ba = a for all a, b ∈ L with Da <∗ Db;

(TR4) if D ∈ L/D \ {De} and D contains exactly one element, then D satisfies

one of the following conditions:

(D1) there exists D+ ∈ L/D satisfying

(i) D <∗ D+;

(ii) if D′ ∈ L/D such that D <∗ D′ <∗ D+, then D′ contains exactly one

element;

(iii) if D+ 6= De, then there exists D′′ ∈ L/D such that D′′ ≺∗ D+;

(D2) there exists D∗ ∈ L/D satisfying

(i) D∗ <∗ D;

(ii) if D′ ∈ L/D such that D∗ <∗ D′ <∗ D, then D′ contains exactly one

element;

(iii) there exists D′′ ∈ L/D such that D∗ ≺∗ D′′;

(TR5) if D ∈ L/D\{De} and D contains two elements, then D satisfies conditions

(D1) and (D2).

P r o o f. In the forward direction this is obvious. Conversely, suppose that

L is a band with an identity e and satisfies conditions (TR1–5). For the sake of
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simplicity, we identify (L/D, 6∗) with (Y, 6∗) which has a greatest element 1. Now

let L =
⋃

α∈Y

Dα be the semilattice decomposition of L over rectangular bands Dα for

α ∈ Y . Put D = {Dα : α ∈ Y } and Y1 = {α ∈ Y : Dα contains two elements}. Let

D1 = {e}, where e = a1 = b1. For any α ∈ Y1, we define Dα = {aα, bα}. Let α ∈ Y1.

We distinguish two cases.

C a s e I . For all β ∈ Y such that α <∗ β, Dβ contains only one element. By

condition (TR5), we can choose α∗ ∈ Y and 1 is interpreted as α+. Hence we obtain

the closed intervalHα = [α∗, 1] and there exists an element γ in Y such that α∗ ≺∗ γ.

For any β ∈ Y such that α <∗ β <∗ 1, let Dβ = {bβ}. For any γ′ ∈ Y such that

α∗ <∗ γ′ <∗ α, let Dγ′ = {aγ′}. If Dα∗ contains exactly one element, then we define

Dα∗ = {bα∗}.

C a s e I I . There exists β ∈ Y such that α <∗ β and Dβ contains two elements.

By condition (TR5), we can choose α∗ and α+ in Y . Hence we obtain the closed

interval Hα = [α∗, α+] and there exist element β, γ in Y such that β ≺∗ α+ and

α∗ ≺∗ γ. For any β′ ∈ Y such that α <∗ β′ <∗ α+, let Dβ′ = {bβ′}. If Dα+

contains exactly one element, then we define Dα+ = {aα+}. For any γ′ ∈ Y such

that α∗ <∗ γ′ <∗ α, let Dγ′ = {aγ′}. If Dα∗ contains exactly one element, then we

define Dα∗ = {bα∗}.

Let α, β ∈ Y1 be such that α <∗ β. If |Hα ∩Hβ | > 2, then we choose α+ to be

γ which covers β∗. Thus we obtain a family of closed intervals {Hα : α ∈ Y1} such

that for α, β ∈ Y1 with α 6= β, |Hα ∩Hβ | 6 2.

We arbitrarily choose α ∈ Y \
⋃

δ∈Y1

Hδ such that α 6= 1. We need to consider three

cases:

(1)We can choose α∗ in Y \
⋃

δ∈Y1

Hδ. So we obtain the set Hα = {β ∈ Y : [α∗, β] ⊆

Y \
⋃

δ∈Y1

Hδ}. For each β ∈ Hα, let

Dβ =

{
{aβ} if β 6= α∗,

{bβ} if β = α∗.

(2) We can only choose α+ in Y \
⋃

δ∈Y1

Hδ. So we obtain the set Hα = {β ∈

Y : [β, α+] ⊆ Y \
⋃

δ∈Y1

Hδ}. For each β ∈ Hα, let

Dβ =

{
{bβ} if β 6= α+,

{aβ} if β = α+.

(3) We cannot choose α+, α∗ in Y \
⋃

δ∈Y1

Hδ.
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• If there exists γ ∈ Y1 such that γ <∗ α and [γ, α] ∩ (
⋃

δ∈Y1

Hδ) ⊆ Hγ , then there

exists ζ ∈ Hγ such that ζ ≺∗ γ+. Hence, when ζ is interpreted as α∗, we have

the set Hα = {β ∈ Y : [α∗, β] ⊆ (Y \
⋃

δ∈Y1

Hδ) ∪ {α
∗, γ+}}. For each β ∈ Hα

such that γ+ <∗ β, let Dβ = {aβ}.

• If there does not exist γ ∈ Y1 such that γ <∗ α and [γ, α]∩(
⋃

δ∈Y1

Hδ) ⊆ Hγ , then

by (TR4) there exists β ∈ Y1 such that α <∗ β and [α, β] ∩ (
⋃

δ∈Y1

Hδ) ⊆ Hβ ,

thereby there exists η ∈ Hβ such that β∗ ≺∗ η. Hence, when η is interpreted

as α+, we have the set Hα = {γ ∈ Y : [γ, α+] ⊆ (Y \
⋃

δ∈Y1

Hδ) ∪ {α
+, β∗}}. For

each γ ∈ Hα such that γ <∗ β∗, let Dγ = {bγ}.

We repeat the above proceeding, replacing
⋃

δ∈Y1

Hδ by corresponding subsets of Y .

Then we obtain a family of sets {Hα : α ∈ Y2} such that for all α, β ∈ Y1 ∪ Y2 with

α 6= β, |Hα ∩Hβ | 6 2. By Zorn’s Lemma, Y \ {1} ⊆
⋃

α∈Y1∪Y2

Hα. Now we define two

partial mappings ϕ and φ from Y to Y . Put Dom ϕ = {α ∈ Y \ {1} : aα ∈ Dα} and

Dom φ = {α ∈ Y \ {1} : bα ∈ Dα}. For any α ∈ Domϕ there exists β ∈ Y1 ∪ Y2 such

that α ∈ Hβ and α 6= β∗. Let

ϕ(α) =

{
β∗ if α 6= β+,

γ (γ ≺∗ β+) if α = β+.

For any α ∈ Dom φ there exists β ∈ Y1 ∪ Y2 such that α ∈ Hβ and α 6= β+. Let

φ(α) =

{
β+ if α 6= β∗,

γ (β∗ ≺∗ γ) if α = β∗.

It is easy to see that ϕ and φ are well defined. Let

X = {α ∈ Y : (Dα, ·) is a left zero semigroup}.

It is easy to see that (Y, X ; D ; ϕ, φ) is an YD-system. By Theorem 4.3, L =

IRLC(Y, X ; D ; ϕ, φ) is an idempotent residuated chain. By condition (TR3) and

the definition of multiplication of IRLC(Y, X ; D ; ϕ, φ), (L, ·) is the monoid reduct

of IRLC(Y, X ; D ; ϕ, φ). �

The following result is an immediate consequence of Theorem 5.2.
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Corollary 5.3. A finite band L with an identity e is the monoid reduct of some

idempotent residuated chain if and only if L satisfies conditions (TR1–3) and the

following condition:

(FTR) there exists a ∈ L such that ab = ba = a for all b ∈ L.

Corollary 5.4. A semilattice L with an identity e is the monoid reduct of some

commutative idempotent residuated chain if and only if for all a, b ∈ L, ab = a or

ab = b.

P r o o f. By Theorem 5.2, in the forward direction this is clear. Conversely, let

L be a semilattice with an identity e. So we have the natural ordering on (L, ·) : for

all a, b ∈ L, a 6 b if and only if a · b = a. For all a, b ∈ L, we have ab = a or ab = b.

This implies that a 6 b or b 6 a. Thus (L, 6) is a chain and by Exercise 4.7.18

of [7], (L, 6, ·) is a partially ordered band with an identity e. We define a division

operation \ on L as follows:

a\b =

{
e if a 6 b,

b if b < a.

It is easy to see that (L,∧,∨, ·, \, /, e) is a commutative idempotent residuated chain.

�

The remainder of this section is devoted to describing idempotent residuated

chains.

Proposition 5.5. Let L = (L,∧,∨, ·, e) be a structure such that (L,∧,∨) is a

chain and (L, ·, e) is a band with an identity e. Then L is a lattice-ordered monoid

if and only if L satisfies the following conditions:

(LO1) if a, b > e, then ab = a ∨ b;

(LO2) if a, b 6 e, then ab = a ∧ b;

(LO3) if a 6 e 6 b, then (1) either ab = a or ab = b, (2) either ba = a or ba = b.

P r o o f. By Lemma 2.6, it is easy to see that if L is a lattice-ordered monoid,

then L satisfies (LO1–3).

Conversely, suppose that L satisfies (LO1–3). Let a, b ∈ L and a 6 b. We need to

prove that ac 6 bc and ca 6 cb for every c ∈ L. We consider three cases:

(1) a, b > e. If c > e, then ac = ca = a∨ c and bc = cb = b∨ c. Since a 6 b 6 b∨ c

and c 6 b ∨ c, we have a ∨ c 6 b ∨ c. This implies ac 6 bc and ca 6 cb. If c < e,

then ac ∈ {a, c} and bc ∈ {b, c}. Hence the only bad situation is ac = a and bc = c.

We prove that it is actually impossible. Suppose that ac = a and bc = c. Then
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Da 6∗ Dc 6∗ Db and a 6= b. Since aba = a ∨ b = b, we have Db <∗ Da. It is a

contradiction. This implies ac 6 bc. Similarly, we can prove that ca 6 cb.

(2) a, b 6 e. By a similar argument to (1), ac 6 bc and ca 6 cb.

(3) a 6 e 6 b. If c 6 e, then ac = ca = a ∧ c and bc, cb ∈ {b, c}. Hence ac 6 bc

and ca 6 cb. If c > e, then ac, ca ∈ {a, c} and bc = cb = b ∨ c. Hence ac 6 bc and

ca 6 cb. �

Corollary 5.6 [1]. Let L = (L,∧,∨, ·, e) be a structure such that (L,∧,∨) is a

chain and (L, ·, e) is a semilattice with an identity e. Then L is a lattice-ordered

monoid if and only if L satisfies (LO1), (LO2) and (LO3).

By Proposition 3.4 and the proof of Theorem 4.6, the next fact is straightforward:

Proposition 5.7. Let L = (L,∧,∨, ·, e) be a lattice-ordered monoid such

that (L,∧,∨) is a chain and (L, ·, e) is a band with an identity e. Then L =

(L,∧,∨, ·, \, /, e) is a residuated lattice for some \ and / if and only if L satisfies the

following conditions:

(1) if a ∈ L and a > e, then there exists an element b < e in L with Db <∗ Da

satisfying condition (RC);

(2) if b ∈ L and b < e, then there exists an element a > e in L with Db <∗ Da

satisfying condition (RC′).

Corollary 5.8. Let L = (L,∧,∨, ·, e) be a finite lattice-ordered monoid such

that (L,∧,∨) is a chain and (L, ·, e) is a band with an identity e. Then L =

(L,∧,∨, ·, \, /, e) is a residuated lattice for some \ and / if and only if L satisfies

the following condition:

(FBR) if ⊥ is the least element of L, then ⊥a = a⊥ = ⊥ for all a ∈ L.

Corollary 5.9. Let L = (L,∧,∨, ·, e) be a lattice-ordered monoid such that

(L,∧,∨) is a chain and (L, ·, e) is a semilattice with an identity e. Then L =

(L,∧,∨, ·, \, e) is a residuated lattice for some \ if and only if L satisfies the fol-

lowing conditions:

(1) if a ∈ L and a > e, then there exists an element b < e in L with Db <∗ Da

satisfying condition (RC);

(2) if b ∈ L and b < e, then there exists an element a > e in L with Db <∗ Da

satisfying condition (RC′).
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Corollary 5.10 [1]. Let L = (L,∧,∨, ·, e) be a finite lattice-ordered monoid

such that (L,∧,∨) is a chain and (L, ·, e) is a semilattice with an identity e. Then

L = (L,∧,∨, ·, \, e) is a residuated lattice for some \ if and only if L satisfies (FBR).

6. Subdirectly irreducible idempotent residuated chains

The main aim of this section is to characterize subdirectly irreducible, simple and

strictly simple idempotent residuated chains.

We have the following residuated lattice terms: l(x) = x\e, r(x) = e/x. Moreover,

we consider binary relations defined by

x
r
−→ y ⇔ r(x) = y,

x −→
l

y ⇔ l(x) = y,

x −→ y ⇔ r(x) = y or l(x) = y.

By the structure of idempotent residuated chains we have the following crucial

lemma:

Lemma 6.1. Let L = IRLC(Y, X ; D ; ϕ, φ) be an idempotent residuated chain.

Let α ∈ Y be such that Dα contains two elements.

(1) If (Dα, ·) is a left zero semigroup, then

bϕ(α) ←
l

aα ⇄ bα
r
→ aφ(α).

(2) If (Dα, ·) is a right zero semigroup, then

bϕ(α)
r
← aα ⇄ bα →

l
aφ(α).

P r o o f. This is easy. �

Let C2 be the two-element idempotent residuated chain, C2 = {⊥,⊤}, ⊤ = e.

Let C3 be the three-element idempotent residuated chain, C3 = {⊥, e,⊤}, ⊥ <

e < ⊤. Note that C2 is the only two-element idempotent residuated chain. The next

proposition gives some characterizations of convex normal subalgebras of idempotent

residuated chains.
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Proposition 6.2. Let L = IRLC(Y, X ; D ; ϕ, φ) be an idempotent residuated

chain.

(1) Let α ∈ Y \ {1} and aα ∈ Dα. Then

(i) ϕ(α) ≺∗ φ(ϕ(α));

(ii) if |Dϕ(α)| = |Dφ(ϕ(α))| = 1, then Aα = {bϕ(α), e, aφ(ϕ(α))} ∼= C3;

(iii) Aα = [bϕ(α), aφ(ϕ(α))] is a convex normal subalgebra of L if and only if

|Dϕ(α)| = 1.

(2) Let bα ∈ Dα. Then

(i) if φ(α) 6= 1, then ϕ(φ(α)) ≺∗ φ(α);

(ii) if φ(α) 6= 1 and |Dφ(α)| = |Dϕ(φ(α))| = 1, then Bα = {bϕ(φ(α)), e, aφ(α)} ∼=

C3;

(iii) if φ(α) = 1 and |Dα| = 1, then B̃α = {bα, e} ∼= C2;

(iv) Bα = [bα, aφ(α)] is a convex normal subalgebra of L if and only if |Dα| = 1.

P r o o f. (1) Suppose that there exists β ∈ Y such that ϕ(α) <∗ β <∗ φ(ϕ(α)).

By (YD4′), Dβ contains exactly bβ. Since ϕ(α) <∗ β <∗ α, Dβ contains exactly

aβ . It is a contradiction. That is, (i) holds. Let |Dϕ(α)| = |Dφ(ϕ(α))| = 1. Then

by Lemma 6.1 and (i), bϕ(α)\e = e/bϕ(α) = bϕ(α)\aφ(ϕ(α)) = aφ(ϕ(α))/bϕ(α) =

aφ(ϕ(α))/aφ(ϕ(α)) = aφ(ϕ(α))\aφ(ϕ(α)) = bϕ(α)/bϕ(α) = bϕ(α)\bϕ(α) = aφ(ϕ(α)) and

aφ(ϕ(α))\e = e/aφ(ϕ(α)) = bϕ(α). It is easy to see that bϕ(α)aφ(ϕ(α)) = aφ(ϕ(α))bϕ(α) =

bϕ(α). Hence Aα = {bϕ(α), e, aφ(ϕ(α))} ∼= C3. This proves (ii). Assume that

|Dϕ(α)| = 1. By the proof of Theorem 4.6 and Lemma 6.1, for all x, y ∈

[bϕ(α), aφ(ϕ(α))] and u ∈ L, we have {xy, yx, x ∧ y, x ∨ y, x\y, y\x, x/y, y/x, ̺u(x),

λu(x), κu(x, y)} ⊆ [bϕ(α), aφ(ϕ(α))]. Hence Aα is a convex normal subalgebra of L.

Conversely, let Aα = [bϕ(α), aφ(ϕ(α))] be a convex normal subalgebra of L. Suppose

that |Dϕ(α)| = 2. By Lemma 6.1, bϕ(ϕ(α)) ∈ cn(bϕ(α)) ⊆ Aα. But by hypothesis,

bϕ(ϕ(α)) /∈ Aα, it’s a contradiction. This shows (iii).

(2) is established similarly. �

We are now ready to give some characterizations of subdirectly irreducible idem-

potent residuated chains.

Theorem 6.3. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial idempotent residu-

ated chain. Then the following statements are equivalent:

(1) L is subdirectly irreducible;

(2) L satisfies one of the following conditions:

(SI1) there exists α ∈ Y such that α ≺∗ 1;

(SI2) there exists α ∈ Y \ {1} such that for all β ∈ Y \ {1} with α <∗ β, either

Dβ = {aβ} or Dβ = {aβ, bβ} and {γ ∈ [α, β] : |Dγ | = 2} is a finite set;
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(3) there exists u ∈ L such that u < e and for all v ∈ L \ {u} with uv = vu = u,

either v > e or v < e, |Dv| = 2 and [u, v] is a finite set.

P r o o f. (1) ⇒ (2) Suppose that L is subdirectly irreducible, and L does not

satisfy conditions (SI1) and (SI2). By Theorem 2.4, there exists a convex normal

subalgebra S of L such that S is the minimum convex normal subalgebra in CN(L)−

{e}. We choose bα ∈ S \ {e}. Suppose that there exists β ∈ Y \ {1} with α <∗ β

such that Dβ contains exactly bβ. By Proposition 6.2(2) and Theorem 2.5, cn(bβ) =

Bβ = [bβ , aφ(β)] ⊆ S. Since bα /∈ [bβ , aφ(β)] and Bβ is a convex normal subalgebra

of L, it is a contradiction. Suppose that there exists β ∈ Y \ {1} with α <∗ β such

that |Dβ| = 2 and {γ ∈ [α, β] : |Dγ | = 2} is infinite set. Then since cn(bβ) = S, by

Theorem 2.5 and Lemma 6.1 there is a sequence of transitions

bβ = z1 → z2 → . . .→ zn = bα,

where the relation → is defined above. Hence |{γ ∈ [α, β] : |Dγ | = 2}| 6 n. It is a

contradiction.

(2)⇒ (1) If L satisfies (SI1), then there exists α ∈ Y such that α ≺∗ 1. Let s ∈ Dα.

By Lemma 6.1 and Proposition 6.2 it is easy to see that cn(s) is the minimum convex

normal subalgebra in CN(L) − {e}. Hence L is subdirectly irreducible. Suppose

that L satisfies (SI2). We arbitrarily choose β in Y \ {1} such that α <∗ β. If

Dβ = {aβ, bβ}, then since {γ ∈ [α, β] : |Dγ | = 2} is a finite set, Lemma 6.1implies

that for all x ∈ [bβ , aβ] and x 6= e there is a sequence of transitions

x = z1 → z2 → . . .→ zn = bβ,

where the relation→ is defined above. So bβ ∈ cn(x). Hence cn(bβ) is the minimum

convex normal subalgebra in CN(L) − {e}. This implies that L is subdirectly irre-

ducible. If Dβ = {aβ}, then, by similar arguments to the above bϕ(β) ∈ cn(x) for all

x ∈ [bϕ(β), aβ ] and x 6= e. Since aβ ∈ cn(bϕ(β)), we have aβ ∈ cn(x). Hence cn(aβ)

is the minimum convex normal subalgebra in CN(L) − {e}. This shows that L is

subdirectly irreducible.

(2) ⇒ (3) Suppose that L satisfies (SI1). Then there exists α ∈ Y such that

α ≺∗ 1. Suppose that Dα contains bα. Let u = bα. If v ∈ Dβ such that u 6= v and

uv = vu = u, then u <n v. So Du <∗ Dv by Proposition 3.2. Hence α <∗ β. Thus

β = 1 and v = e. Suppose that Dα = {aα}. Let u = bϕ(α). If v ∈ Dβ such that

u 6= v and uv = vu = u, then u <n v. So by Proposition 3.2, Du <∗ Dv. Hence

ϕ(α) <∗ β 6 1. Thus v > e. Assume L satisfies (SI2). Then there exists α ∈ Y \ {1}

such that for all β ∈ Y \ {1} with α <∗ β, either Dβ = {aβ} or Dβ = {aβ, bβ} and

{γ ∈ [α, β] : |Dγ | = 2} is a finite set. Suppose that Dα contains bα. Let u = bα. If
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v ∈ Dβ′ such that u 6= v and uv = vu = u, then u <n v. So by Proposition 3.2,

Du <∗ Dv and α <∗ β′. Thus either v > e or v < e, |Dv| = |Dβ′ | = 2 and [u, v] is a

finite set. Suppose that Dα = {aα}. Let u = bϕ(α). If v ∈ Dβ′ such that u 6= v and

uv = vu = u, then u <n v. So by Proposition 3.2, Du <∗ Dv and ϕ(α) <∗ β′. Thus

either v > e or v < e, |Dv| = |Dβ′ | = 2 and [u, v] is a finite set.

(3) ⇒ (2) Suppose that u ∈ L such that u < e and for all v ∈ L \ {u} with

uv = vu = u, either v > e or v < e, |Dv| = 2 and [u, v] is a finite set. Assume L does

not satisfy (SI1). Then there exists v ∈ L\{e} such that Du <∗ Dv. Let Dv = Dα.

Thus for all β ∈ Y \ {1} with α <∗ β, either Dβ = {aβ} or Dβ = {aβ , bβ} and

{γ ∈ [α, β] : |Dγ | = 2} is a finite set. �

As a consequence of Theorem 6.3, we have:

Corollary 6.4. If L is a finite idempotent residuated chain, then L is subdirectly

irreducible.

By Theorem 6.3 and Corollary 2.3 of [1] we have:

Corollary 6.5. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial commutative idem-

potent residuated chain. Then the following statements are equivalent:

(1) L is subdirectly irreducible;

(2) L satisfies (SI1) or the following condition:

(SIC) there exists α ∈ Y \ {1} such that for all β ∈ Y \ {1} with α <∗ β,

Dβ = {aβ};

(3) There exists a ∈ L \ {e} such that for all b ∈ L \ {a} such that ab = a, b > e;

(4) e is completely join-irreducible.

By the proof of Theorem 6.3 we can similarly obtain some characterizations of

simple idempotent residuated chain.

Theorem 6.6. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial idempotent residu-

ated chain. Then the following statements are equivalent:

(1) L is simple;

(2) for any α ∈ Y \ {1} such that α is not the least element of Y , either Dα = {aα}

or Dα = {aα, bα} and for β ∈ Y \ {1} with α 6∗ β, {γ ∈ [α, β] : |Dγ | = 2} is a

finite set;

(3) for each u ∈ L such that u is not the least element of L, either u > e or u < e,

|Du| = 2 and for v ∈ L with u 6 v < e, [u, v] is a finite set.

This implies the next fact
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Corollary 6.7. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial commutative idem-

potent residuated chain. Then the following statements are equivalent:

(1) L is simple;

(2) Y has a least element β and for any α ∈ Y \ {1, β}, Dα = {aα};

(3) there exists a unique element b ∈ L such that b < e.

Example 6.8. Let Y = {0, 1, 2, 3, 4, } ∪ {⊤} where 0 <∗ 1 <∗ 2 <∗ 3 <∗ 4 <∗ ⊤;

see Figure 2(1). Let X = {0, 1, 3, 4} ⊆ Y . Let A = {b0, b1, b2, a2, a3, a4, e}; see

Figure 2(2). We define an order relation on A by a2 > a3 > a4 > e > b2 > b1 > b0;

see Figure 2(3). We can define a multiplication operation and two division operations

on A described in Section 4. Then by Theorem 4.3, A is an idempotent residuated

chain and by Theorem 6.3, A is subdirectly irreducible. Note by Theorem 6.6, A is

not simple.
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A nontrivial algebra L is called strictly simple, if it lacks nontrivial proper subalge-

bras and congruences. By Theorem 2.4 the absence of nontrivial proper subalgebras

in a residuated lattice is enough to establish strict simplicity.

Example 6.9. Let Y = {0, 1, 2, 3, 4} ∪ {⊤} where 0 <∗ 1 <∗ 2 <∗ 3 <∗ 4 <∗ ⊤;

see Figure 3(1). Let X = {0, 1, 3, 4} ⊆ Y . Let B = {b0, b1, a1, b2, a2, a3, a4, e};

see Figure 3(2). We define an order relation on B by a1 > a2 > a3 > a4 > e >

b2 > b1 > b0; see Figure 3(3). We can define a multiplication operation and two

division operations on B described in Section 4. Then by Theorem 4.3, B is an

idempotent residuated chain and by Theorem 6.6, B is simple. It is easy to see that

C = {b0, b1, a1, b2, a2, a3, e} is a subalgebra of B. Hence B is not strictly simple.

We now describe some characterizations of strictly simple idempotent residuated

chains.
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Theorem 6.10. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial idempotent resid-

uated chain. Then the following statements are equivalent:

(1) L is strictly simple;

(2) L satisfies one of the following conditions:

(ST1) if Y has not a least element and Y \ {1} has not a greatest element, then

for all α ∈ Y \ {1}, |Dα| = 2 and for α′ ∈ Y \ {1} with α 6∗ α′, [α, α′] is a

finite set;

(ST2) if Y has not a least element and Y \ {1} has a greatest element γ, then Dγ

contains aγ and for all α ∈ Y \ {1, γ}, |Dα| = 2 and for α′ ∈ Y \ {1} with

α 6∗ α′, [α, α′] is a finite set;

(ST3) if Y has a least element β and Y \ {1} has not a greatest element, then for

all α ∈ Y \ {1, β}, |Dα| = 2 and for α′ ∈ Y \ {1} with α 6∗ α′, [α, α′] is a

finite set;

(ST4) if Y has a least element β and Y \ {1} has a greatest element γ, then for

γ 6= β, Dγ contains aγ and for any α ∈ Y \ {1, γ, β}, |Dα| = 2 and for

α′ ∈ Y \ {1} with α 6∗ α′, [α, α′] is a finite set;

(3) for u, v ∈ L with u 6 v < e, [u, v] is a finite set and for each a ∈ L such that

a is not the least element of L, either |Da| = 2 or a > e and for all b ∈ L\{e},

ab = ba = b.

P r o o f. (1)⇒ (2) Let L be strictly simple. We consider four cases:

(a) Y has not a least element and Y \ {1} has not a greatest element. Suppose

that there exists α ∈ Y \ {1}, |Dα| = 1.

• If Dα contains bα, then by Theorem 6.6, L is not simple. It is a contradiction.

• Suppose that Dα contains aα. We denote the subalgebra generated by aα by

A. By the proof of Theorem 4.6 and Lemma 6.1, for all x ∈ A, x 6 bϕ(α) or

x > aα. It is a contradiction.

Thus L satisfies (ST1).

(b) Y has not a least element and Y \{1} has a greatest element γ. We need to show

that Dγ contains aγ . Suppose that Dγ contains exactly bγ . By Proposition 6.2(2),

B̃γ = {bγ , e} ∼= C2. It is a contradiction. Hence L satisfies (ST2).

(c) Y has a least element β and Y \ {1} has not a greatest element. By a similar

argument to (a), condition (ST3) holds in L.

(d) Y has a least element β and Y \ {1} has a greatest element γ. By a similar

argument to (b), condition (ST4) holds in L.

(2)⇒ (1) It follows from Theorem 6.6 and Lemma 6.1.

(2)⇔ (3) This is clear. �
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Corollary 6.11. If L = IRLC(Y, X ; D ; ϕ, φ) is an idempotent residuated chain

and strictly simple, then |L| 6 ω.

P r o o f. Suppose that L is an idempotent residuated chain and strictly simple.

If Y has not a least element, then by Theorem 6.10 and Proposition 6.2, for each

α ∈ Y \ {1}, there exist β, γ ∈ Y such that β ≺∗ α ≺∗ γ. Hence |Y | 6 ω. Thus

|L| 6 ω. If Y has a least element β, then by a similar argument to the above, |Y | 6 ω

and so |L| 6 ω. �

As a consequence of Theorem 6.10, we have:

Corollary 6.12. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial commutative idem-

potent residuated chain. Then L is strictly simple if and only if L ∼= C2 or L ∼= C3.

Example 6.13. Let Y = Z ∪ {⊤} , S ⊆ Z. We define an order relation 6∗ on

Y by: for all i, j ∈ Z, i 6∗ j is the same as on Z for the usual order; for all i ∈ Z,

i <∗ ⊤; see Figure 4(1). Let NS = {ai : i ∈ Y \ {⊤}} ∪ {bi : i ∈ Y \{⊤}} ∪ {e};

see Figure 4(2). We define an order relation 6 on NS by bi < bj < e < ak < al,

for all i, j, k, l ∈ Z such that i <∗ j and k∗ > l; see Figure 4(3). We can define a

multiplication operation and two division operations on NS described in Section 4.

Then by Theorem 4.3, NS is an idempotent residuated chain. By Theorem 6.10, NS

is strictly simple.
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Example 6.14. Let Y = N∪{⊤}, T ⊆ N. We define an order relation6∗ on Y by:

for all i, j ∈ N, i 6∗ j is the same as on N for the usual order; for all i ∈ N, i <∗ ⊤; see
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Figure 5(1). Let NT = {ai : i ∈ Y \{⊤, 0}}∪{bi : i ∈ Y \{⊤}}∪{e}; see Figure 5(2).

We define an order relation 6 on NT by b0 < bi < bj < e < ak < al < a1, for all

i, j, k, l ∈ N such that 0 <∗ i <∗ j and k∗ > l∗ > 1; see Figure 5(3). We can define a

multiplication operation and two division operations on NT described in Section 4.

Then by Theorem 4.3, NT is an idempotent residuated chain. By Theorem 6.10, NT

is strictly simple.

Example 6.15. Let Y = Z
− ∪ {⊤}, X ⊆ Z

−, NX = {ai : i ∈ Y \ {⊤}} ∪ {bi :

i ∈ Y \ {⊤}} ∪ {e}. We define an order relation 6∗ on Y by: for all i, j ∈ Z
−,

i 6∗ j is the same as on Z
− for the usual order; for all i ∈ Z

−, i <∗ ⊤. We

define an order relation 6 on NX by bi < bj < b−1 ≺ e ≺ a−1 < ak < al, for all

i, j, k, l ∈ Z
− such that i <∗ j <∗ −1 and −1∗ > k∗ > l; see Figure 6. We can define

a multiplication operation and two division operations on NX described in Section

4. Then by Theorem 4.3, NX is an idempotent residuated chain. Let ÑX = {ai : i ∈

Y \ {⊤}} ∪ {bi : i ∈ Y \ {−1,⊤}} ∪ {e}. We define an order relation 6 on ÑX by

bi < bj < b−2 ≺ e ≺ a−1 < ak < al, for all i, j, k, l ∈ Z
− such that i <∗ j <∗ −2

and −1∗ > k∗ > l; see Figure 7. We can define a multiplication operation and two

division operations on ÑX described in Section 4. Then by Theorem 4.3, ÑX is an

idempotent residuated chain. By Theorem 6.10, NX and ÑX are strictly simple.
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Example 6.16. Let Y = {0, 1, . . . , n} ∪ {⊤}, M ⊆ {0, 1, . . . , n}, nM = {ai :

i ∈ Y \ {⊤, 0}} ∪ {bi : i ∈ Y \ {⊤}} ∪ {e}. We define an order relation 6∗ on

Y by: for all i, j ∈ {0, 1, . . . , n}, i 6∗ j is the same as on N for the usual order;

for all i ∈ {0, 1, . . . , n}, i <∗ ⊤. We define an order relation 6 on nM by b0 6

bi 6 bj 6 bn ≺ e ≺ an 6 ak 6 al 6 a1, for all i, j, k, l ∈ {0, 1, . . . , n} such

that 0 6∗ i 6∗ j 6∗ n and n∗ > k∗ > l∗ > 1; see Figure 8. We can define a

multiplication operation and two division operations on nM described in Section 4.
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Then by Theorem 4.3, nM is an idempotent residuated chain. Let ñM = {ai : i ∈

Y \ {⊤, 0}} ∪ {bi : i ∈ Y \ {⊤, n}} ∪ {e}. We define an order relation 6 on ñM by

b0 6 bi 6 bj 6 bn−1 ≺ e ≺ an 6 ak 6 al 6 a1, for all i, j, k, l ∈ {0, 1, . . . , n} such

that 0 6∗ i 6∗ j 6∗ n − 1 and n∗ > k∗ > l∗ > 1; see Figure 9. We can define a

multiplication operation and two division operations on ñM described in Section 4.

Then by Theorem 4.3, ñM is an idempotent residuated chain. By Theorem 6.10, nM

and ñM are strictly simple.

LetK = {NS : S ⊆ Z}∪{NT : T ⊆ N}∪{NX : X ⊆ Z
−}∪{ÑX : X ⊆ Z

−}∪{nM :

n ∈ N, M ⊆ {0, 1, . . . , n}} ∪ {ñM : n ∈ N, M ⊆ {0, 1, . . . , n}}. We may prove the

following characterization of strictly simple idempotent residuated chains by using

Theorem 6.10.

Theorem 6.17. Let L = IRLC(Y, X ; D ; ϕ, φ) be a nontrivial idempotent resid-

uated chain. Then L is strictly simple if and only if L ∈ I(K).

P r o o f. Let L = IRLC(Y, X ; D ; ϕ, φ) be strictly simple. Then by Theorem 6.10

and Lemma 6.1, for all a, b ∈ L \ {e}, (a, b) is in the transitive closure of the relation

→ defined above. Suppose that a ∈ Dα, b ∈ Dβ . Then the closed interval [α, β] of Y

is a finite set. By Theorem 6.10, we need to consider four cases:

(a) If Y has not a least element and Y \ {1} has not a greatest element, then by

the proof of Corollary 6.11, Y ∼= Z ∪ {⊤}. Hence L ∈ I({NS : S ⊆ Z}).

(b) If Y has not a least element and Y \{1} has a greatest element, then by the proof

of Corollary 6.11, Y ∼= Z
− ∪ {⊤}. Hence L ∈ I({NX : X ⊆ Z

−} ∪ {ÑX : X ⊆ Z
−}).

(c) If Y has a least element and Y \ {1} has not a greatest element, then by the

proof of Corollary 6.11, Y ∼= N ∪ {⊤}. Hence L ∈ I({{NT : T ⊆ N}).

(d) If Y has a least element and Y \ {1} has a greatest element, then by the proof

of Corollary 6.11, Y ∼= {0, 1, . . . , n} ∪ {⊤} where n ∈ N. Hence L ∈ I({nM : n ∈

N, M ⊆ {0, 1, . . . , n}} ∪ {ñM : n ∈ N, M ⊆ {0, 1, . . . , n}}).

Thus L ∈ I(K).

Conversely, it’s easy to see that if L ∈ I(K), then L is strictly simple. �
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