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Abstract. We consider the primitive two-colored digraphs whose uncolored digraph has
n + s vertices and consists of one n-cycle and one (n − 3)-cycle. We give bounds on the
exponents and characterizations of extremal two-colored digraphs.
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1. Introduction

A two-colored digraph is a digraph whose arcs are colored red or blue. We allow

loops and both a red arc and a blue arc from i to j. Let D be a two-colored digraph.

D is strongly connected if for each pair (i, j) of vertices there is a walk in D from i

to j. Given a walk w in D, let r(w) and b(w), denote the number of red and blue

arcs, respectively, of w. We call w an (r(w), b(w))-walk, and define the composition

of w to be the vector (r(w), b(w)) or

[

r(w)

b(w)

]

.

A two-colored digraph D is primitive if there exist nonnegative integers h and k

with h + k > 0 such that for each pair (i, j) of vertices there exists an (h, k)-walk in

D from i to j. The exponent exp(D) is the minimum value of h + k taken over all

pairs (h, k) such that for each pair (i, j) of vertices there exists an (h, k)-walk from

i to j ([2]).

Research supported by NNSF of China (No. 10571163) and NSF of Shanxi (Nos.
2007011017, 2008011009).
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Let D be a two-colored digraph and let C = {γ1, γ2, . . . , γl} be the set of cycles

of D. Set M to be the 2 × l matrix whose ith column is the composition of γi,

i = 1, 2, . . . , l. We call M the cycle matrix of D. The content of M , denoted

content(M), is defined to be 0 if the rank of M is less than 2, and the greatest

common divisor of the determinants of the 2 × 2 submatrices of M , otherwise.

There is a natural correspondence between two-colored digraphs and nonnegative

matrix pairs ([2]). The concept of the exponent of a nonnegative matrix pair arises

naturally in the study of finite Markov chains, and some results have already been

obtained ([1], [2], [3], [4], [5]).

Lemma 1.1 ([2]). Let D be a two-colored digraph. Then D is primitive if and

only if D is strongly connected and content(M) = 1.

We consider the two-colored digraphs that have at least one red arc and one blue

arc, and whose uncolored digraph is the digraph as given in Fig. 1, where s > 0,

m > s + 1 and n > m + 1.

n

1

2
. . .

m − 2

m − 1

m

m + 1

m + 2
. . .

n − 2

n − 1

n + 1n + s
. . .

Fig. 1. Digraph D

Clearly, D has only two cycles. One is an n-cycle and the other is an (n−m+s+1)-

cycle. Without loss of generality we may assume that the cycle matrix of D is

M =

[

a b

n − a n − m + s + 1 − b

]

for some integers a and b with n/2 6 a 6 n.

Theorem 1.2 ([4]). Let D be a two-colored digraph as given in Fig. 1 and let

m = s + 1 + t. Then D is primitive if and only if t > 1, (at + 1)/n or (at − 1)/n is

integer, and b = a − (at + 1)/n or b = a − (at − 1)/n.
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Theorem 1.3. Let D be a two-colored digraph as given in Fig. 1 and let

m = s + 1 + t. If D is primitive, then gcd{t, n} = 1.

P r o o f. Note that

|M | =

∣

∣

∣

∣

a b

n − a n − t − b

∣

∣

∣

∣

=

∣

∣

∣

∣

a b

n n − t

∣

∣

∣

∣

=

∣

∣

∣

∣

a b − a

n −t

∣

∣

∣

∣

.

Since |M | = ±1, we have gcd{t, n} = 1. �

Theorem 1.4. Let D be a two-colored digraph as given in Fig. 1 and let m =

s + 1 + t. Then D is primitive if and only if |a(n − t) − bn| = 1.

P r o o f. Since |M | = a(n − t) − bn, the theorem follows from Lemma 1.1. �

Theorem 1.5. LetD be a two-colored digraph as given in Fig. 1 and letm = s+4.

Then D is primitive if and only if

(1) n = 3q + 1, a = 2q + 1, and b = 2q − 1; or

(2) n = 3q + 2, a = 2q + 1, and b = 2q − 1.

P r o o f. By Theorem 1.3 we have 3 ∤ n. So let n = 3q + 1 or n = 3q + 2, where

q > 2.

When n = 3q + 1, then by Theorem 1.2, (3a + 1)/(3q + 1) or (3a − 1)/(3q + 1) is

integer. Noting that n/2 6 a 6 n, we have a = 2q + 1 and b = 2q − 1. So the cycle

matrix of D is

M =

[

2q + 1 2q − 1

q q − 1

]

.

When n = 3q + 2, then by Theorem 1.2, (3a + 1)/(3q + 2) or (3a − 1)/(3q + 2) is

integer. Noting that n/2 6 a 6 n, we have a = 2q + 1 and b = 2q − 1. So the cycle

matrix of D is

M =

[

2q + 1 2q − 1

q + 1 q

]

.

The theorem follows. �

Let D be the two-colored digraph D as given in Fig. 1. In [4], we considered D

with m = s + 2 and gave the set of exponents of families of D. In [5], we considered

D with m = s + 3 and gave the bounds on the exponents and characterizations of

extremal two-colored digraphs. In this paper we consider D with m = s + 4 (that is

t = 3), n > 9, give bounds on the exponents and characterizations of extremal two-

colored digraphs. Throughout the rest of the paper, we let Dn,s denote the collection

of primitive two-colored digraphs that have at least one red arc and one blue arc,

and whose uncolored digraph is the digraph as given in Fig. 1 with m = s + 4.
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2. The case n = 3q + 1

Let n = 3q + 1, and let the cycle matrix of D be

M =

[

2q + 1 2q − 1

q q − 1

]

,

where q > 3. Clearly,

M−1 =

[

1 − q 2q − 1

q −2q − 1

]

.

Theorem 2.1. Let D ∈ D3q+1,s. Then

18q2−12q−3 6 exp(D) 6











12q3 − 2q2 − 3q, if s 6 q − 3,

12q3 − 2q2 + 1, if s = q − 2,

6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2, if s > q − 1.

P r o o f. First, we show that

exp(D) > 18q2 − 12q − 3.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j)

of vertices there is an (h, k)-walk from i to j. By considering i = j = n, we see that

there exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Since there are 2q + 1 red arcs and q blue arcs on the n-cycle, there is a red path

w of length 3 on the n-cycle. Taking i and j to be the initial vertex and terminal

vertex of w, respectively, each walk from i to j can be decomposed into the path w

and cycles. Hence,

Mz =

[

h − 3

k

]

has a nonnegative integer solution. Then

z = M−1

[

h − 3

k

]

=

[

u

v

]

− M−1

[

3

0

]

=

[

u

v

]

−

[

3 − 3q

3q

]

> 0.

So v > 3q. Finally, take i and j to be the terminal and initial vertices of w, respec-

tively. Then the path from i to j has composition either (2q− 2, q) or (2q− 4, q− 1),

so we have that

Mz =

[

h − (2q − 2)

k − q

]

or Mz =

[

h − (2q − 4)

k − (q − 1)

]
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has a nonnegative integer solution. Then

z =

[

u

v

]

− M−1

[

2q − 2

q

]

=

[

u

v

]

−

[

3q − 2

−3q

]

> 0,

or

z =

[

u

v

]

− M−1

[

2q − 4

q − 1

]

=

[

u

v

]

−

[

3q − 3

−3q + 1

]

> 0.

So u > 3q − 3. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 1 3q − 2 ]

[

3q − 3

3q

]

= 18q2 − 12q − 3,

and exp(D) > 18q2 − 12q − 3.

Now, we prove the upper bounds for exp(D). Let pij be the shortest path in D

from vertex i to vertex j, r = r(pij), and b = b(pij).

First, we show that exp(D) 6 12q3 − 2q2 − 3q when s 6 q − 3.

Note that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + 2q2 − q)

[

2q + 1

q

]

(2.1)

+ ((2q + 1)b − qr + 2q2 + q)

[

2q − 1

q − 1

]

=

[

8q3 − 2q

4q3 − 2q2 − q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q and r 6 2q +1. Thus (q−1)r− (2q−1)b+2q2− q > (q−1)r− (2q−

1)q+2q2−q = (q−1)r > 0 and (2q+1)b−qr+2q2+q > (2q+1)b−q(2q+1)+2q2+q =

(2q +1)b > 0. If (q−1)r− (2q−1)b+2q2− q = 0, then b = q, r = 0. Since q > s+3,

so either i or j is on the (n − 3)-cycle.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q−1 and r 6 2q−1. Thus (q−1)r−(2q−1)b+2q2−q > −(2q−1)(q−

1)+2q2−q = 2q−1 > 0 and (2q+1)b−qr+2q2 +q > −q(2q−1)+2q2 +q = 2q > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. Let the

number of red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y,

respectively. Then x + y = 3q − s − 3, and the number of red arcs and blue arcs in

D is 4q − x = q + s + y + 3 and 2q − y − 1, respectively. Since s 6 q − 3, we see that

2q − y 6 3q − s − y − 3 6 r 6 q + s + y + 3 6 2q + y,

y 6 b 6 2q − 1 − y.
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Thus (q−1)r− (2q−1)b+2q2− q > (q−1)(2q− y)− (2q−1)(2q−1− y)+2q2− q =

yq+q−1 > 0, (2q+1)b−qr+2q2+q > (2q+1)y−q(2q+y)+2q2+q = yq+y+q > 0.

By virtue of (2.1), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (q−1)r− (2q−1)b+2q2−q times and around

the (n − 3)-cycle (2q + 1)b − qr + 2q2 + q times is an (8q3 − 2q, 4q3 − 2q2 − q)-walk

from i to j. So exp(D) 6 12q3 − 2q2 − 3q when s 6 q − 3.

Secondly, we show that exp(D) 6 12q3 − 2q2 + 1 when s = q − 2.

Note that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + 2q2 − q + 1)

[

2q + 1

q

]

(2.2)

+ ((2q + 1)b − qr + 2q2 + q)

[

2q − 1

q − 1

]

=

[

8q3 + 1

4q3 − 2q2

]

.

Similarly to the above, we can show that the walk that starts at vertex i, follows pij

to vertex j, and along the way goes around the n-cycle (q−1)r−(2q−1)b+2q2−q+1

times and around the (n−3)-cycle (2q+1)b−qr+2q2+q times is an (8q3+1, 4q3−2q2)-

walk from i to j. So exp(D) 6 12q3 − 2q2 + 1 when s = q − 2.

Finally, we show that exp(D) 6 6q3+2(3s+7)q2−2(2s+5)q−s−2 when s > q−1.

Note that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2)

[

2q + 1

q

]

(2.3)

+ ((2q + 1)b − qr + q2 + sq + 3q)

[

2q − 1

q − 1

]

=

[

4q3 + 2(2s + 5)q2 − (2s + 5)q − s − 2

2q3 + 2(s + 2)q2 − (2s + 5)q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q and r 6 2q + 1. Thus (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2 >

−(2q − 1)q + q2 + 2q + (q − 1)2 − 2 = q − 1 > 0 and (2q + 1)b − qr + q2 + sq + 3q >

−q(2q + 1) + q2 + (q − 1)q + 3q = q > 0.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q−1 and r 6 2q−1. Thus (q−1)r− (2q−1)b+ q2 +2q + sq− s−2 >

−(2q−1)(q−1)+q2+2q+(q−1)2−2 = 3q−2 > 0 and (2q+1)b−qr+q2+sq+3q >

−q(2q − 1) + q2 + (q − 1)q + 3q = 3q > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s+4 → s+5 → . . . → n. Let the number of

red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y, respectively.
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Then x + y = 3q − s − 3, and the numbers of red arcs and blue arcs in D are

4q − x = q + s + y + 3 and 2q − y − 1, respectively. We see that

3q − s − y − 3 6 r 6 q + s + y + 3,

y 6 b 6 2q − 1 − y.

Thus (q − 1)r− (2q − 1)b + q2 + 2q + sq − s− 2 > (q− 1)(3q − s− y − 3)− (2q− 1)×

(2q − 1 − y) + q2 + 2q + sq − s − 2 = yq > 0, and (2q + 1)b − qr + q2 + sq + 3q >

(2q + 1)y − q(q + s + y + 3) + q2 + sq + 3q = y(q + 1) > 0.

By virtue of (2.3), the walk that starts at vertex i, follows pij to vertex j and

along the way goes around the n-cycle (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2

times and around the (n − 3)-cycle (2q + 1)b − qr + q2 + sq + 3q times is a (4q3 +

2(2s + 5)q2 − (2s + 5)q − s − 2, 2q3 + 2(s + 2)q2 − (2s + 5)q)-walk from i to j. So

exp(D) 6 6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2 when s > q − 1.

The theorem now follows. �

3. Extremal two-colored digraphs for the case n = 3q + 1

In this section we give characterizations of extremal two-colored digraphs for the

case n = 3q + 1. The main results are Theorems 3.4, 3.6, 3.7 and 3.11.

If the arcs in a walk w of length t are all red (blue), then we say that these arcs

are t consecutive red (blue) arcs, or w is t consecutive red (blue) arcs. Since there

are 2q + 1 red arcs and q blue arcs on the n-cycle, the n-cycle has at least one 3

consecutive red arcs. Similarly, the (n − 3)-cycle has at least one 3 consecutive red

arcs.

Lemma 3.1. Let D ∈ D3q+1,s. If D has a 3 consecutive red arcs in the path

n − 2 → n − 1 → n → 1 → . . . → s + 6, then

exp(D) > 18q2 − 12q − 3.

P r o o f. Let a → a + 1, a + 1 → a + 2, a + 2 → a + 3 be a 3 consecutive red arcs

in the path n − 2 → n − 1 → n → 1 → . . . → s + 6. Suppose that (h, k) is a pair

of nonnegative integers such that for all pairs (i, j) of vertices there is an (h, k)-walk

from i to j. Considering i = j = n, we see that there exist nonnegative integers u

and v with
[

h

k

]

= M

[

u

v

]

.
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Taking i and j to be a and a + 3, respectively, there is a unique path from i to j,

and each walk from i to j can be decomposed into the path from i to j and cycles.

Hence

Mz =

[

h − 3

k

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − 3

k

]

=

[

u

v

]

− M−1

[

3

0

]

=

[

u

v

]

−

[

3 − 3q

3q

]

> 0.

So v > 3q. Next, take i and j to be a+3 and a, respectively. Since there is a unique

path from i to j, and this path has composition (2q − 2, q), hence

Mz =

[

h − (2q − 2)

k − q

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (2q − 2)

k − q

]

=

[

u

v

]

− M−1

[

2q − 2

q

]

=

[

u

v

]

−

[

3q − 2

−3q

]

> 0.

So u > 3q − 2. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 1 3q − 2 ]

[

3q − 2

3q

]

= 18q2 − 9q − 2,

and exp(D) > 18q2 − 9q − 2 > 18q2 − 12q − 3. �

Lemma 3.2. Let D ∈ D3q+1,s. If D has a 2 consecutive blue arcs or has a

blue-red-blue path of length 3, then

exp(D) > 18q2 − 12q − 3.

P r o o f. If D has a 2 consecutive blue arcs, we can prove that u > 4q − 2 and

v > 4q + 2 similarly to the proof of Lemma 3.1. So

exp(D) > [ 3q + 1 3q − 2 ]

[

4q − 2

4q + 2

]

= 24q2 − 4q − 6 > 18q2 − 12q − 3.

If D has a blue-red-blue path of length 3, we can prove that u > 3q − 1 and

v > 3q + 2 similarly to the proof of Lemma 3.1. So

exp(D) > [ 3q + 1 3q − 2 ]

[

3q − 1

3q + 2

]

= 18q2 − 5 > 18q2 − 12q − 3.

�
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Lemma 3.3. Let D ∈ D3q+1,s. If D has exactly one 3 consecutive red arcs, and

the remaining arcs of D alternate between one blue arc and two red arcs, then

exp(D) = 18q2 − 12q − 3.

P r o o f. We only need to show that exp(D) 6 18q2 − 12q − 3.

Let w be the 3 consecutive red arcs. It is clear that w must be in the path

s + 4 → s + 5 → . . . → n.

Let (i, j) be a pair of vertices and let pij be the shortest path from i to j. Denote

r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + 3q − 3)

[

2q + 1

q

]

(3.1)

+ ((2q + 1)b − qr + 3q)

[

2q − 1

q − 1

]

=

[

12q2 − 6q − 3

6q2 − 6q

]

.

Note that r 6 2(b + 1) + 1 and 2(b − 1) 6 r when b > 1. Consider the following

three cases.

Case 1. Both the vertices i and j are on the (n − 3)-cycle.

If b = 0, r = 3, then (2q + 1)b− qr + 3q = 0, and both i and j are on the n-cycle.

If b = 0, r 6 2, then (2q + 1)b − qr + 3q > 0. If b > 1, since r 6 2(b + 1) + 1, we see

that (2q + 1)b − qr + 3q > (2q + 1)b − q(2b + 3) + 3q = b > 0.

If b = 0, then (q−1)r−(2q−1)b+3q−3 > 0. If b > 1, noting that r > 2(b−1), we

obtain (q−1)r−(2q−1)b+3q−3 > 2(q−1)(b−1)−(2q−1)b+3q−3 = q−b−1 > 0.

Case 2. Both the vertices i and j are on the n-cycle and either i or j is not on the

(n − 3)-cycle.

Clearly, r 6 2q +1 and b 6 q. If 0 6 b 6 q− 2, then (q− 1)r− (2q− 1)b+3q− 3 >

2(q − 1)(b − 1) − (2q − 1)b + 3q − 3 = q − b − 1 > 0. If b = q − 1, r > 2q − 4, then

(q−1)r−(2q−1)b+3q−3 > (q−1)(2q−4)−(2q−1)(q−1)+3q−3 = 0. If b = q−1,

r = 2q−4, then (q−1)r− (2q−1)b+3q−3 = 0 and pij must contain a vertex which

is on the (n − 3)-cycle. If b = q, and either i or j is not on the (n − 3)-cycle, then

r > 2q−1 and (q−1)r−(2q−1)b+3q−3 > (q−1)(2q−1)−(2q−1)q+3q−3 = q−2 > 0.

Noticing that r 6 2(b+1)+1, we see that (2q +1)b− qr +3q > (2q +1)b− q(2b+

3) + 3q = b > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. Let the

number of red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y,

respectively. Then x + y = 3q − s − 3, and the number of red arcs and blue arcs in

D is 4q − x = q + s + y + 3 and 2q − y − 1, respectively.
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If b 6 1, then (q−1)r−(2q−1)b+3q−3 > (q−1)r+q−2 > 0. If b > 2, noting that

r > 2(b−1)+1, we obtain (q−1)r−(2q−1)b+3q−3 > (q−1)(2b−1)−(2q−1)b+3q−3 =

2q− b− 2. When y = 0, since D has exactly one 3 consecutive red arcs, then n → 1,

n → n + 1, s + 3 → s + 4 and n + s → s + 4 are blue. So b 6 2q − 1− y − 2 = 2q − 3

and (q − 1)r − (2q − 1)b + 3q − 3 > 0. When y > 1, then b 6 2q− 1− y 6 2q− 2 and

(q − 1)r − (2q − 1)b + 3q − 3 > 0.

Noticing that r 6 2(b + 1) + 1, we see that (2q + 1)b − qr + 3q > (2q + 1)b −

q(2b + 3) + 3q = b > 0.

By virtue of (3.1), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (q− 1)r− (2q− 1)b+3q− 3 times and around

the (n − 3)-cycle (2q + 1)b − qr + 3q times is a (12q2 − 6q − 3, 6q2 − 6q)-walk from i

to j. So exp(D) 6 18q2 − 12q − 3. �

Lemmas 3.1, 3.2, 3.3 yield the following theorem.

Theorem 3.4. Let D ∈ D3q+1,s. Then exp(D) = 18q2 − 12q − 3 if and only

if D has exactly one 3 consecutive red arcs, and the remaining arcs of D alternate

between one blue arc and two red arcs.

Now, we characterize the extremal digraphs in D3q+1,s whose exponents attain

the upper bounds.

Lemma 3.5. Let D ∈ D3q+1,s with s 6 q − 2. If 2q + 1 red arcs on the n-cycle

are not consecutive, then

exp(D) < 12q3 − 2q2 − 3q.

P r o o f. Let (i, j) be a pair of vertices and let pij be the shortest path from i

to j. Denote r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + 2q2 − q)

[

2q + 1

q

]

(3.2)

+ ((2q + 1)b − qr + 2q2 + q − 1)

[

2q − 1

q − 1

]

=

[

8q3 − 4q + 1

4q3 − 2q2 − 2q + 1

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q and r 6 2q + 1. If b 6 q − 1, then (q − 1)r − (2q − 1)b + 2q2 − q >

(q − 1)r− (2q − 1)(q − 1) + 2q2 − q = (q − 1)r + 2q− 1 > 0. If b = q, since the q blue

arcs on the n-cycle are not consecutive, r > 1 and (q − 1)r − (2q − 1)b + 2q2 − q >

(q − 1) − (2q − 1)q + 2q2 − q = q − 1 > 0.
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If r = 2q + 1, then b > 1 and (2q + 1)b − qr + 2q2 + q − 1 > (2q + 1) − q(2q +

1) + 2q2 + q − 1 = 2q > 0. Otherwise r 6 2q and (2q + 1)b − qr + 2q2 + q − 1 >

(2q + 1)b − 2q2 + 2q2 + q − 1 = (2q + 1)b + q − 1 > 0.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q−1 and r 6 2q−1. So (q−1)r−(2q−1)b+2q2−q > −(2q−1)(q−1)+

2q2−q = 2q−1 > 0 and (2q+1)b−qr+2q2+q−1 > (2q+1)b−q(2q−1)+2q2+q−1 =

(2q + 1)b + 2q − 1 > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s+4 → s+5 → . . . → n. Let the number of

red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y, respectively.

Then x + y = 3q − s − 3, and

2q − y − 1 6 3q − s − y − 3 6 r 6 q + s + y + 3 6 2q + 1 + y,

y 6 b 6 2q − 1 − y.

Thus (q−1)r−(2q−1)b+2q2−q > (q−1)(2q−y−1)−(2q−1)(2q−1−y)+2q2−q =

qy > 0, and (2q+1)b−qr+2q2+q−1 > (2q+1)y−q(2q+1+y)+2q2+q−1 = qy+y−1.

If y > 0, then (2q + 1)b − qr + 2q2 + q − 1 > qy + y − 1 > 0. If y = 0, r 6 2q, then

(2q + 1)b − qr + 2q2 + q − 1 > q − 1 > 0. If y = 0, r = 2q + 1, then b > 1 and

(2q + 1)b − qr + 2q2 + q − 1 > 2q + 1 − q(2q + 1) + 2q2 + q − 1 = 2q > 0.

By virtue of (3.2), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (q−1)r− (2q−1)b+2q2−q times and around

the (n−3)-cycle (2q+1)b−qr+2q2+q−1 times is a (8q3−4q+1, 4q3−2q2−2q+1)-

walk from i to j. So exp(D) 6 12q3 − 2q2 − 6q + 2 < 12q3 − 2q2 − 3q. �

Theorem 3.6. Let D ∈ D3q+1,s with s 6 q − 3. Then exp(D) = 12q3 − 2q2 − 3q

if and only if 2q + 1 red arcs on the n-cycle are consecutive.

P r o o f. We only need to show that if 2q + 1 red arcs on the n-cycle are

consecutive, then exp(D) > 12q3 − 2q2 − 3q.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of

vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there

exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Since there are 2q + 1 consecutive red arcs on the n-cycle, the remaining q arcs of

the n-cycle are consecutive blue arcs. Taking i and j to be the initial vertex and the
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terminal vertex of 2q + 1 consecutive red arcs on the n-cycle, respectively, there is a

unique path from i to j, and this path has composition (2q + 1, 0). Hence

Mz =

[

h − (2q + 1)

k

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (2q + 1)

k

]

=

[

u

v

]

− M−1

[

2q + 1

0

]

=

[

u

v

]

−

[

q + 1 − 2q2

2q2 + q

]

> 0.

So v > 2q2 + q. Next, taking i and j to be the initial vertex and the terminal vertex

of q consecutive blue arcs on the n-cycle, respectively, there is a unique path from i

to j, and this path has composition (0, q). Hence

Mz =

[

h

k − q

]

has a nonnegative integer solution. Necessarily

z =

[

u

v

]

− M−1

[

0

q

]

=

[

u

v

]

−

[

2q2 − q

−2q2 − q

]

> 0.

So u > 2q2 − q. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 1 3q − 2 ]

[

2q2 − q

2q2 + q

]

= 12q3 − 2q2 − 3q,

and exp(D) > 12q3 − 2q2 − 3q. �

Theorem 3.7. Let D ∈ D3q+1,s with s = q − 2. Then exp(D) = 12q3 − 2q2 + 1

if and only if s + 3 → s + 4 → s + 5 → . . . → n → 1 are red, and the other arcs are

blue.

P r o o f. Necessity. Let exp(D) = 12q3− 2q2 +1. By Lemma 3.5, 2q +1 red arcs

on the n-cycle are consecutive. Assuming that there is at least one blue arc in the

path s +3 → s + 4 → s + 5 → . . . → n → 1, we show that exp(D) 6 12q3 − 2q2 − 3q.

Let (i, j) be a pair of vertices and let pij be the shortest path in D from i to j.

Denote r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + 2q2 − q)

[

2q + 1

q

]

(3.3)

+ ((2q + 1)b − qr + 2q2 + q)

[

2q − 1

q − 1

]

=

[

8q3 − 2q

4q3 − 2q2 − q

]

.
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Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q and r 6 2q+1. Thus (q−1)r−(2q−1)b+2q2−q > (q−1)r−(2q−1)q+

2q2− q = (q−1)r > 0 and (2q +1)b− qr+2q2 + q > (2q +1)b− q(2q +1)+2q2 + q =

(2q +1)b > 0. If (q−1)r− (2q−1)b+2q2− q = 0, then r = 0, b = q and pij contains

the vertex which is on the (n − 3)-cycle.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q−1 and r 6 2q−1. Thus (q−1)r− (2q−1)b+2q2− q > −(2q−1)×

(q−1)+2q2−q = 2q−1 > 0 and (2q+1)b−qr+2q2+q > −q(2q−1)+2q2+q = 2q > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3 and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s+4 → s+5 → . . . → n. Let the number of

red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y, respectively.

Then x+y = 2q−1, and the number of red arcs and blue arcs inD is 4q−x = 2q+y+1

and 2q−y−1, respectively. We see that 2q−y−1 6 r 6 2q+y+1 and y 6 b 6 2q−

y−1. Thus (q−1)r−(2q−1)b+2q2−q > (q−1)(2q−y−1)−(2q−1)(2q−y−1)+2q2−q =

yq > 0, and (2q+1)b− qr+2q2 + q > (2q+1)y− q(2q+y +1)+2q2 + q = yq +y > 0.

By virtue of (3.3), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (q−1)r− (2q−1)b+2q2−q times and around

the (n − 3)-cycle (2q + 1)b − qr + 2q2 + q times is a (8q3 − 2q, 4q3 − 2q2 − q)-walk

from i to j. So exp(D) 6 12q3 − 2q2 − 3q < 12q3 − 2q2 + 1, a contradiction.

Sufficiency. Let s + 3 → s + 4 → s + 5 → . . . → n → 1 be red and the other arcs

be blue. We only need to show that exp(D) > 12q3 − 2q2 + 1.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of

vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there

exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Taking i = s + 3 and j = 1, there is a unique path from i to j, and this path has

composition (2q + 1, 0). Hence

Mz =

[

h − (2q + 1)

k

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (2q + 1)

k

]

=

[

u

v

]

− M−1

[

2q + 1

0

]

=

[

u

v

]

−

[

q + 1 − 2q2

2q2 + q

]

> 0.
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So v > 2q2 + q. Next, taking i = 1 and j = s + 3, there is a unique path from i to j,

and this path has composition (0, q). Noting that this path does not contain any

vertex on the (n−3)-cycle, we infer that each walk of length greater than q from i to

j can be decomposed into the path from i to j and z1 n-cycles and z2 (n− 3)-cycles,

and z1 > 0. This implies that there are integers z1 > 0 and z2 > 0 such that

M

[

z1

z2

]

=

[

h

k − q

]

.

Necessarily
[

z1

z2

]

=

[

u

v

]

− M−1

[

0

q

]

=

[

u

v

]

−

[

2q2 − q

−2q2 − q

]

.

So u > 2q2 − q + 1. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 1 3q − 2 ]

[

2q2 − q + 1

2q2 + q

]

= 12q3 − 2q2 + 1,

and exp(D) > 12q3 − 2q2 + 1. Sufficiency is proved. �

Let the number of red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be

x and y, respectively. Note that x = 3q − y − s − 3 6 3q − s − 3. Let r denote the

number of red arcs in D. Then r = 4q − x > q + s + 3, and r = q + s + 3 if and only

if x = 3q − s− 3, that is, the arcs s + 4 → s + 5, s + 5 → s + 6, . . ., n− 1 → n must

be red.

Lemma 3.8. Let D ∈ D3q+1,s with s > q − 1, and let D have exactly q + s + 3

red arcs. If the q + s + 3 red arcs are consecutive, then

exp(D) = 6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2.

P r o o f. We only need to show that exp(D) > 6q3+2(3s+7)q2−2(2s+5)q−s−2.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of

vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there

exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Since D has exactly q + s + 3 red arcs, the arcs s + 4 → s + 5, s + 5 → s + 6, . . .,

n − 1 → n are red. This implies that there exist s − q + 4 red arcs in the path

n → 1 → 2 → . . . → s + 4 and s − q + 2 red arcs in the path n → n + 1 → . . . →

n + s → s + 4, respectively.
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Taking i and j to be the initial vertex and the terminal vertex of q + s + 3 con-

secutive red arcs, respectively, then there is a unique path from i to j, and this path

has composition (q + s + 3, 0). Hence

Mz =

[

h − (q + s + 3)

k

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (q + s + 3)

k

]

=

[

u

v

]

− M−1

[

q + s + 3

0

]

=

[

u

v

]

−

[

−q2 − (s + 2)q + (s + 3)

q2 + (s + 3)q

]

> 0.

So v > q2 + (s + 3)q. Next, taking i and j to be the terminal vertex and the initial

vertex of q + s + 3 consecutive red arcs, respectively, there is a unique path from i

to j, and this path has composition (3q − s − 3, 2q − 1). Hence

Mz =

[

h − (3q − s − 3)

k − (2q − 1)

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (3q − s − 3)

k − (2q − 1)

]

=

[

u

v

]

− M−1

[

3q − s − 3

2q − 1

]

=

[

u

v

]

−

[

q2 + (s + 2)q − (s + 2)

−q2 − (s + 3)q + 1

]

> 0.

So u > q2 + (s + 2)q − (s + 2). Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 1 3q − 2 ]

[

q2 + (s + 2)q − (s + 2)

q2 + (s + 3)q

]

= 6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2,

and exp(D) > 6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2. �

Lemma 3.9. Let D ∈ D3q+1,s with s > q − 1, and let D have exactly q + s + 3

red arcs. If the q + s + 3 red arcs are not consecutive, then

exp(D) < 6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2.
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P r o o f. Let (i, j) be a pair of vertices and let pij be the shortest path in D from

i to j. Denote r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2)

[

2q + 1

q

]

(3.4)

+ ((2q + 1)b − qr + q2 + sq + 2q)

[

2q − 1

q − 1

]

=

[

4q3 + 2(2s + 4)q2 − (2s + 4)q − s − 2

2q3 + (2s + 3)q2 − (2s + 4)q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q and r 6 2q + 1. Thus (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2 >

−(2q − 1)q + q2 + 2q + (q − 1)2 − 2 = q − 1 > 0 and (2q + 1)b − qr + q2 + sq + 2q >

−q(2q + 1) + q2 + (q − 1)q + 2q = 0.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q−1 and r 6 2q−1. Thus (q−1)r− (2q−1)b+ q2 +2q + sq− s−2 >

−(2q−1)(q−1)+q2+2q+(q−1)2−2 = 3q−2 > 0 and (2q+1)b−qr+q2+sq+2q >

−q(2q − 1) + q2 + (q − 1)q + 2q = 2q > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n, and the arcs

s + 4 → s + 5, s + 5 → s + 6, . . ., n − 1 → n must be red. So

3q − s − 3 6 r 6 q + s + 3,

0 6 b 6 2q − 1.

Thus (q−1)r− (2q−1)b+q2+2q+sq−s−2 > (q−1)(3q−s−3)− (2q−1)(2q−1)+

q2 + 2q + sq − s − 2 = 0. If r 6 q + s + 2, then (2q + 1)b − qr + q2 + sq + 2q >

−q(q + s + 2) + q2 + sq + 2q = 0. If r = q + s + 3, then b > 1, and (2q + 1)b − qr +

q2 + sq + 2q > 2q + 1 − q(q + s + 3) + q2 + sq + 2q = q + 1 > 0.

By virtue of (3.4), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2

times and around the (n − 3)-cycle (2q + 1)b − qr + q2 + sq + 2q times is a
(

4q3 +

2(2s + 4)q2 − (2s + 4)q − s − 2, 2q3 + (2s + 3)q2 − (2s + 4)q
)

-walk from i to j. So

exp(D) 6 6q3 +(6s+11)q2−2(2s+4)q−s−2 < 6q3 +2(3s+7)q2−2(2s+5)q−s−2.

�
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Lemma 3.10. Let D ∈ D3q+1,s with s > q − 1 and let there be at least one blue

arc in the path s + 4 → s + 5 → . . . → n. Then

exp(D) < 6q3 + 2(3s + 7)q2 − 2(2s + 5)q − s − 2.

P r o o f. Let (i, j) be a pair of vertices and let pij be the shortest path from i

to j. Denote r = r(pij) and b = b(pij). Let the number of red arcs and blue arcs

in the path s + 4 → s + 5 → . . . → n be x and y, respectively. Then y > 1 and

x 6 3q − s − 4. We see that
[

r

b

]

+ ((q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2)

[

2q + 1

q

]

(3.5)

+ ((2q + 1)b − qr + q2 + sq + 3q − 1)

[

2q − 1

q − 1

]

=

[

4q3 + 2(2s + 5)q2 − (2s + 7)q − s − 1

2q3 + 2(s + 2)q2 − (2s + 6)q + 1

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q and r 6 2q + 1. Thus (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2 >

−(2q− 1)q + q2 +2q +(q− 1)2− 2 = q− 1 > 0 and (2q +1)b− qr+ q2 + sq +3q− 1 >

−q(2q + 1) + q2 + (q − 1)q + 3q − 1 = q − 1 > 0.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q−1 and r 6 2q−1. Thus (q−1)r− (2q−1)b+ q2 +2q + sq− s−2 >

−(2q−1)(q−1)+q2+2q+(q−1)2−2 = 3q−2 > 0 and (2q+1)b−qr+q2+sq+3q−1 >

−q(2q − 1) + q2 + (q − 1)q + 3q − 1 = 3q − 1 > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. So

3q − s − y − 3 6 r 6 q + s + y + 3,

y 6 b 6 2q − 1 − y.

Thus (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2 > (q − 1)(3q − s − y − 3) −

(2q−1)(2q−1−y)+q2+2q+sq−s−2 = yq > 0 and (2q+1)b−qr+q2+sq+3q−1 >

(2q + 1)y − q(q + s + y + 3) + q2 + sq + 3q − 1 = y(q + 1) − 1 > 0.

By virtue of (3.5), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (q − 1)r − (2q − 1)b + q2 + 2q + sq − s − 2

times and around the (n − 3)-cycle (2q + 1)b − qr + q2 + sq + 3q − 1 times is a

(4q3 +2(2s+5)q2− (2s+7)q−s−1, 2q3 +2(s+2)q2− (2s+6)q+1)-walk from i to j.

So exp(D) 6 6q3 +2(3s+7)q2−(4s+13)q−s < 6q3 +2(3s+7)q2−2(2s+5)q−s−2.

�
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Lemmas 3.8, 3.9, and 3.10 yield the following result.

Theorem 3.11. Let D ∈ D3q+1,s with s > q − 1. Then exp(D) = 6q3 + 2(3s +

7)q2 − 2(2s + 5)q − s− 2 if and only if there are exactly q + s + 3 red arcs in D, and

all the red arcs are consecutive.

4. The case n = 3q + 2

Let n = 3q + 2 and let the cycle matrix of D be

M =

[

2q + 1 2q − 1

q + 1 q

]

,

where q > 3. Clearly,

M−1 =

[

q −2q + 1

−q − 1 2q + 1

]

.

Theorem 4.1. Let D ∈ D3q+2,s. Then

18q2 − 5 6 exp(D) 6

{

12q3 + 14q2 + 2q − 1, if s 6 q − 2,

6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3), if s > q − 1.

P r o o f. First, we show that exp(D) > 18q2 − 5.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of

vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there

exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Let the length of the longest red path in D be l. Since there are 2q + 1 red arcs

and q + 1 blue arcs on the n-cycle, we see that l > 2.

Case 1. l = 2.

In this case, there is a blue-red-blue path w of length 3 on the n-cycle. Taking i

and j to be the initial vertex and terminal vertex of w, respectively, the path from i

to j has composition (1, 2). So

Mz =

[

h − 1

k − 2

]
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has a nonnegative integer solution. Then

z =

[

u

v

]

− M−1

[

1

2

]

=

[

u

v

]

−

[

−3q + 2

3q + 1

]

> 0.

So v > 3q+1. Next, let i and j be the terminal and initial vertices of w, respectively.

Then the path from i to j has composition either (2q, q − 1) or (2q − 2, q − 2), so we

have that

Mz =

[

h − 2q

k − (q − 1)

]

or Mz =

[

h − (2q − 2)

k − (q − 2)

]

has a nonnegative integer solution. Then

z =

[

u

v

]

− M−1

[

2q

q − 1

]

=

[

u

v

]

−

[

3q − 1

−3q − 1

]

> 0,

or

z =

[

u

v

]

− M−1

[

2q − 2

q − 2

]

=

[

u

v

]

−

[

3q − 2

−3q

]

> 0.

So u > 3q − 2. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 2 3q − 1 ]

[

3q − 2

3q + 1

]

= 18q2 − 5.

Case 2. l > 3.

In this case, there is a red path w of length 3. Taking i and j as the initial vertex

and terminal vertex of w, respectively, the path from i to j has composition (3, 0).

So

Mz =

[

h − 3

k

]

has a nonnegative integer solution. Then

z = M−1

[

h − 3

k

]

=

[

u

v

]

− M−1

[

3

0

]

=

[

u

v

]

−

[

3q

−3q − 3

]

> 0.

So u > 3q. Next, let i and j be the terminal and initial vertices of w, respectively.

Then the path from i to j has composition either (2q − 2, q + 1), (2q − 4, q), or

(4q − 3, 2q + 1) (this case arises only if s + 4 = n − 1, i = n + 1 and j = s + 3 or

i = 1 and j = n + s ), so we have that

Mz =

[

h − (2q − 2)

k − (q + 1)

]

, Mz =

[

h − (2q − 4)

k − q

]

, or Mz =

[

h − (4q − 3)

k − (2q + 1)

]
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has a nonnegative integer solution. Then

z =

[

u

v

]

− M−1

[

2q − 2

q + 1

]

=

[

u

v

]

−

[

−3q + 1

3q + 3

]

> 0,

z =

[

u

v

]

− M−1

[

2q − 4

q

]

=

[

u

v

]

−

[

−3q

3q + 4

]

> 0,

or

z =

[

u

v

]

− M−1

[

4q − 3

2q + 1

]

=

[

u

v

]

−

[

−3q + 1

3q + 4

]

> 0.

So v > 3q + 3. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 2 3q − 1 ]

[

3q

3q + 3

]

= 18q2 + 12q − 3,

and exp(D) > 18q2 − 5.

Next, we show that exp(D) 6 12q3 + 14q2 + 2q − 1 when s 6 q − 2.

Let (i, j) be a pair of vertices and let pij be the shortest path in D from i to j.

Denote r = r(pij) and b = b(pij). We see that
[

r

b

]

+ ((2q − 1)b − qr + 2q2 + q)

[

2q + 1

q + 1

]

(4.1)

+ ((q + 1)r − (2q + 1)b + 2q2 + 3q + 1)

[

2q − 1

q

]

=

[

8q3 + 8q2 − 1

4q3 + 6q2 + 2q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q + 1 and r 6 2q + 1. If b = 0 and r = 2q + 1, then (2q − 1)b − qr +

2q2 +q = −q(2q+1)+2q2+q = 0 and either i or j is on the (n−3)-cycle. Otherwise,

(2q−1)b−qr+2q2+q > −q(2q+1)+2q2+q = 0. For (q+1)r−(2q+1)b+2q2+3q+1,

we have (q +1)r− (2q +1)b+2q2+3q +1 > (q +1)r− (2q +1)(q +1)+2q2+3q +1 =

(q + 1)r > 0.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q and r 6 2q−1. Thus (2q−1)b−qr+2q2+q > −q(2q−1)+2q2+q =

2q > 0 and (q+1)r− (2q+1)b+2q2+3q+1 > −(2q+1)q+2q2+3q+1 = 2q+1 > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. Let the

number of red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y,

respectively. Then x + y = 3q − s − 2, and the number of red arcs and blue arcs in

D is 4q − x = q + s + y + 2 and 2q − y + 1, respectively. Since s 6 q − 2, we see that

2q − y 6 3q − s − y − 2 6 r 6 q + s + y + 2 6 2q + y,

y 6 b 6 2q − y + 1.
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Thus (2q−1)b− qr+2q2 + q > (2q−1)y− q(2q + y)+2q2 + q = q +(q−1)y > 0, and

(q+1)r−(2q+1)b+2q2+3q+1 > (q+1)(2q−y)−(2q+1)(2q−y+1)+2q2 +3q+1 =

yq + q > 0.

By virtue of (4.1), the walk that starts at vertex i, follows pij to vertex j, and along

the way goes around the n-cycle (2q−1)b−qr+2q2+q times and around the (n−3)-

cycle (q +1)r− (2q +1)b+2q2 +3q +1 times is a (8q3 +8q2− 1, 4q3 +6q2 +2q)-walk

from i to j. So exp(D) 6 12q3 + 14q2 + 2q − 1 when s 6 q − 2.

Finally, we show that exp(D) 6 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3) when

s > q − 1.

Let (i, j) be a pair of vertices and let pij be the shortest path in D from i to j.

Denote r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((2q − 1)b − qr + q2 + 2q + sq)

[

2q + 1

q + 1

]

(4.2)

+ ((q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 3)

[

2q − 1

q

]

=

[

4q3 + 2(2s + 5)q2 + (2s + 5)q − s − 3

2q3 + 2(s + 3)q2 + (2s + 5)q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q + 1 and r 6 2q +1. Thus (2q− 1)b− qr + q2 +2q + sq > (2q− 1)b−

q(2q+1)+q2+2q+(q−1)q = (2q−1)b > 0 and (q+1)r−(2q+1)b+q2+sq+3q+s+3 >

(q + 1)r − (q + 1)(2q + 1) + q2 + (q − 1)(q + 1) + 3q + 3 = (q + 1)r + 1 > 0. If

(2q − 1)b − qr + q2 + 2q + sq = 0, hence b = 0, r = 2q + 1, s = q − 1, and either i or

j is on the (n − 3)-cycle.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q and r 6 2q − 1. Thus (2q − 1)b − qr + q2 + 2q + sq > −q(2q − 1) +

q2 + 2q + (q − 1)q = 2q > 0 and (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 3 >

−(2q + 1)q + q2 + (q − 1)(q + 1) + 3q + 3 = 2q + 2 > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3 and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. Let the

number of red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y,

respectively. Then x + y = 3q − s − 2, and the number of red arcs and blue arcs in

D is 4q − x = q + s + y + 2 and 2q − y + 1, respectively. We see that

3q − s − y − 2 6 r 6 q + s + y + 2,

y 6 b 6 2q − y + 1.
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Thus (2q−1)b−qr+q2+2q+sq > (2q−1)y−q(q+s+y+2)+q2+2q+sq = y(q−1) > 0,

and (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 3 > (q + 1)(3q − s− y − 2)− (2q + 1)×

(2q − y + 1) + q2 + sq + 3q + s + 3 = yq > 0.

By virtue of (4.2), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (2q − 1)b − qr + q2 + 2q + sq times and

around the (n − 3)-cycle (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 3 times is a

(4q3 + 2(2s + 5)q2 + (2s + 5)q − s− 3, 2q3 + 2(s + 3)q2 + (2s + 5)q)-walk from i to j.

So exp(D) 6 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3) when s > q − 1.

The theorem follows. �

5. Extremal two-colored digraphs for the case n = 3q + 2

In this section we give characterizations of extremal two-colored digraphs for the

case n = 3q + 2. The main results are Theorems 5.4, 5.6 and 5.10.

Lemma 5.1. Let D ∈ D3q+2,s. If the length of the longest red path in D is

greater than or equal to 3, then

exp(D) > 18q2 − 5.

P r o o f. From the proof of Theorem 4.1, it is clear. �

Lemma 5.2. Let D ∈ D3q+2,s. If the length of the longest red path in D is 2 and

there is a blue-red-blue path w in the path n − 2 → n − 1 → n → 1 → . . . → s + 6,

then

exp(D) > 18q2 − 5.

P r o o f. Suppose that (h, k) is a pair of nonnegative integers such that for all

pairs (i, j) of vertices there is an (h, k)-walk from i to j. Considering i = j = n, we

see that there exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Taking i and j to be the initial vertex and terminal vertex of w, respectively, then

the path from i to j has composition (1, 2). So we have that

Mz =

[

h − 1

k − 2

]
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has a nonnegative integer solution. Then

z =

[

u

v

]

− M−1

[

1

2

]

=

[

u

v

]

−

[

−3q + 2

3q + 1

]

> 0.

So v > 3q+1. Next, let i and j be the terminal and initial vertices of w, respectively.

Then the path from i to j has composition (2q, q − 1), so we have that

Mz =

[

h − 2q

k − (q − 1)

]

has a nonnegative integer solution. Then

z =

[

u

v

]

− M−1

[

2q

q − 1

]

=

[

u

v

]

−

[

3q − 1

−3q − 1

]

> 0.

So u > 3q − 1. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 2 3q − 1 ]

[

3q − 1

3q + 1

]

= 18q2 + 3q − 3 > 18q2 − 5.

This implies the lemma. �

Lemma 5.3. Let D ∈ D3q+2,s. If the length of the longest red path in D is 2,

and there is a blue-red-blue path w in the path s + 4 → s + 5 → . . . → n, then

exp(D) = 18q2 − 5.

P r o o f. We only need to show that

exp(D) 6 18q2 − 5.

Let (i, j) be a pair of vertices and let pij be the shortest path from i to j. Denote

r = r(pij), b = b(pij). We see that

[

r

b

]

+ ((2q − 1)b − qr + 3q − 2)

[

2q + 1

q + 1

]

(5.1)

+ ((q + 1)r − (2q + 1)b + 3q + 1)

[

2q − 1

q

]

=

[

12q2 − 2q − 3

6q2 + 2q − 2

]

.

Noting that r 6 2(b + 1) = 2b + 2 and r > 2(b− 1)− 1 = 2b− 3 when b > 2, we have

b 6 1

2
(r+3). When r = 0, then b 6 1, and (q+1)r−(2q+1)b+3q+1 > q > 0. When

r > 1, then (q+1)r−(2q+1)b+3q+1 > (q+1)r−(2q+1)1

2
(r+3)+3q+1 = 1

2
(r−1) > 0,
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and if (q + 1)r − (2q + 1)b + 3q + 1 = 0 then r = 1 and b = 2. This implies that pij

is the path w, and both i and j are on the n-cycle.

Now we prove that (2q − 1)b − qr + 3q − 2 > 0 and if (2q − 1)b − qr + 3q − 2 = 0

then pij must contain a vertex which is on the (n − 3)-cycle.

Case 1. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q, r 6 2q−1, and r 6 2b+2. If r 6 2b+1, then (2q−1)b−qr+3q−2 >

(2q − 1)b − q(2b + 1) + 3q − 2 = 2q − 2 − b > 2q − 2 − q = q − 2 > 0. If r = 2b + 2,

noticing that r 6 2q − 1, we infer that b 6 q − 2 and (2q − 1)b − qr + 3q − 2 =

(2q − 1)b − q(2b + 2) + 3q − 2 = q − 2 − b > 0.

Case 2. Both the vertices i and j are on the n-cycle, and either i or j is not on

the (n − 3)-cycle.

Clearly b 6 q + 1 and r 6 2b + 2. If r 6 2b, then (2q − 1)b − qr + 3q − 2 >

(2q−1)b−2qb+3q−2 = 3q−2−b > 3q−2− (q+1) > 0. If r = 2b+1, noticing that

r 6 2q + 1, we infer that b 6 q and (2q − 1)b − qr + 3q − 2 = 2q − b− 2 > q − 2 > 0.

If r = 2b + 2, noticing r 6 2q + 1, then b 6 q − 1. If b 6 q − 3, r = 2b + 2,

then (2q − 1)b − qr + 3q − 2 = (2q − 1)b − q(2b + 2) + 3q − 2 = q − b − 2 > 0. If

b = q − 2, r = 2b + 2 = 2q − 2, since the length of the longest red path in D is 2 and

there is a blue-red-blue path in s + 4 → s + 5 → . . . → n, so in this case we have

(2q− 1)b− qr +3q− 2 = (2q− 1)b− q(2b+2)+3q− 2 = q− b− 2 = 0 and either i or

j is on the (n− 3)-cycle. If b = q − 1, r = 2b + 2 = 2q, then i and j are the terminal

and initial vertices of w, respectively, and both i and j are on the (n − 3)-cycle, so

this is not the case.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3 and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s+4 → s+5 → . . . → n. So r 6 2(b+1)−1 =

2b + 1. Let the number of blue arcs in the path s + 4 → s + 5 → . . . → n be y. Then

2 6 y 6 b 6 2q − y + 1. If b = 2q − y + 1, then n → 1, n → n + 1, s + 3 → s + 4 and

n + s → s +4 are red. So r 6 2(b+1)− 1− 2 = 2b− 1, and (2q− 1)b− qr +3q− 2 >

(2q − 1)b− q(2b− 1) + 3q − 2 = 4q − 2− b = 4q − 2− 2q + y − 1 = 2q − 3 + y > 0. If

b 6 2q − y 6 2q − 2, then (2q − 1)b − qr + 3q − 2 > (2q − 1)b − q(2b + 1) + 3q − 2 =

2q − 2 − b > 0.

By virtue of (5.1), the walk that starts at vertex i, follows pij to vertex j, and

goes (2q−1)b− qr+3q−2 times around the n-cycle and (q +1)r− (2q +1)b+3q +1

times around the (n− 3)-cycle is a (12q2 − 2q − 3, 6q2 + 2q − 2)-walk from i to j. So

exp(D) 6 18q2 − 5. �

Lemmas 5.1, 5.2, 5.3 yield the following theorem.

678



Theorem 5.4. Let D ∈ D3q+2,s. Then exp(D) = 18q2 − 5 if and only if the

length of the longest red path in D is 2, and there is a blue-red-blue path in the path

s + 4 → s + 5 → . . . → n.

Now, we characterize the extremal digraphs in D3q+2,s whose exponents attain

the upper bounds.

Lemma 5.5. Let D ∈ D3q+2,s with s 6 q − 2. If 2q + 1 red arcs on the n-cycle

are not consecutive, then

exp(D) < 12q3 + 14q2 + 2q − 1.

P r o o f. Let (i, j) be a pair of vertices and let pij be the shortest path in D from

i to j. Denote r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((2q − 1)b − qr + 2q2 + q)

[

2q + 1

q + 1

]

(5.2)

+
(

(q + 1)r − (2q + 1)b + 2q2 + 3q
)

[

2q − 1

q

]

=

[

8q3 + 8q2 − 2q

4q3 + 6q2 + q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q + 1 and r 6 2q + 1. Thus (2q − 1)b − qr + 2q2 + q > (2q − 1)b −

q(2q + 1) + 2q2 + q = (2q − 1)b > 0. If (2q − 1)b − qr + 2q2 + q = 0, then b = 0

and r = 2q + 1. Noting that s + 4 6 q + 2 < 2q + 3, we infer that either i or

j is on the (n − 3)-cycle. For (q + 1)r − (2q + 1)b + 2q2 + 3q, if b 6 q, then

(q + 1)r − (2q + 1)b + 2q2 + 3q > (q + 1)r − (2q + 1)q + 2q2 + 3q = (q + 1)r + 2q > 0.

If b = q + 1, noting that the q + 1 blue arcs on the n-cycle are not consecutive, then

r > 1 and (q+1)r− (2q+1)b+2q2 +3q > (q+1)− (2q+1)(q+1)+2q2 +3q = q > 0.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q and r 6 2q−1. Thus (2q−1)b−qr+2q2+q > −q(2q−1)+2q2+q =

2q > 0 and (q + 1)r − (2q + 1)b + 2q2 + 3q > −(2q + 1)q + 2q2 + 3q = 2q > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s+4 → s+5 → . . . → n. Let the number of

red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be x and y, respectively.

Then x + y = 3q − s − 2, and

2q − y 6 3q − s − y − 2 6 r 6 q + s + y + 2 6 2q + y,

y 6 b 6 2q − y + 1.
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Thus (2q− 1)b− qr+2q2 + q > (2q− 1)y− q(2q + y)+2q2 + q = q +(q− 1)y > 0 and

(q + 1)r − (2q + 1)b + 2q2 + 3q > (q + 1)(2q − y)− (2q + 1)(2q − y + 1) + 2q2 + 3q =

yq + q − 1 > 0.

By virtue of (5.2), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (2q− 1)b− qr + 2q2 + q times and around the

(n−3)-cycle (q +1)r− (2q +1)b+2q2 +3q times is an (8q3 +8q2−2q, 4q3 +6q2 + q)-

walk from i to j. So exp(D) 6 12q3 + 14q2 − q < 12q3 + 14q2 + 2q − 1. �

Theorem 5.6. LetD ∈ D3q+2,s with s 6 q−2. Then exp(D) = 12q3+14q2+2q−1

if and only if 2q + 1 red arcs on the n-cycle are consecutive.

P r o o f. By Lemma 5.5 and Theorem 4.1, we only need to show that if 2q + 1

red arcs on the n-cycle are consecutive, then exp(D) > 12q3 + 14q2 + 2q − 1.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of

vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there

exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Since there are 2q +1 consecutive red arcs on the n-cycle, the remaining q +1 arcs

of the n-cycle are consecutive blue arcs. Taking i and j to be the initial vertex and

the terminal vertex of 2q + 1 consecutive red arcs on the n-cycle, respectively, there

is a unique path from i to j, and this path has composition (2q + 1, 0). Hence

Mz =

[

h − (2q + 1)

k

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (2q + 1)

k

]

=

[

u

v

]

− M−1

[

2q + 1

0

]

=

[

u

v

]

−

[

2q2 + q

−2q2 − 3q − 1

]

> 0.

So u > 2q2 + q. Next, taking i and j to be the initial vertex and the terminal vertex

of q consecutive blue arcs on the n-cycle, respectively, there is a unique path from i

to j, and this path has composition (0, q + 1). Hence

Mz =

[

h

k − (q + 1)

]

has a nonnegative integer solution. Necessarily

z =

[

u

v

]

− M−1

[

0

q + 1

]

=

[

u

v

]

−

[

−2q2 − q + 1

2q2 + 3q + 1

]

> 0.
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So v > 2q2 + 3q + 1. Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 2 3q − 1 ]

[

2q2 + q

2q2 + 3q + 1

]

= 12q3 + 14q2 + 2q − 1,

and exp(D) > 12q3 + 14q2 + 2q − 1. �

Let the number of red arcs and blue arcs in the path s + 4 → s + 5 → . . . → n be

x and y, respectively. Note that x = 3q − y − s − 2 6 3q − s − 2. Let r denote the

number of red arcs in D. Then r = 4q − x > q + s + 2, and r = q + s + 2 if and only

if x = 3q − s− 2, that is, the arcs s + 4 → s + 5, s + 5 → s + 6, . . ., n− 1 → n must

be red.

Lemma 5.7. Let D ∈ D3q+2,s with s > q − 1, and let D have exactly q + s + 2

red arcs. If the q + s + 2 red arcs are consecutive, then

exp(D) = 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3).

P r o o f. We only need to show that exp(D) > 6q3 + 2(3s + 8)q2 + 2(2s + 5)q −

(s + 3).

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of

vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there

exist nonnegative integers u and v with

[

h

k

]

= M

[

u

v

]

.

Since D has exactly q + s + 2 red arcs, the arcs s + 4 → s + 5, s + 5 → s + 6, . . .,

n − 1 → n are red. This implies that there exist s − q + 3 red arcs in the path

n → 1 → 2 → . . . → s + 4 and s − q + 1 red arcs in the path n → n + 1 → . . . →

n + s → s + 4, respectively.

Taking i and j to be the initial vertex and the terminal vertex of q + s + 2 con-

secutive red arcs, respectively, then there is a unique path from i to j, and this path

has composition (q + s + 2, 0). Hence

Mz =

[

h − (q + s + 2)

k

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (q + s + 2)

k

]

=

[

u

v

]

− M−1

[

q + s + 2

0

]

=

[

u

v

]

−

[

q2 + (s + 2)q

−q2 − (s + 3)q − (s + 2)

]

> 0.
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So u > q2 + (s + 2)q. Next, taking i and j to be the terminal vertex and the initial

vertex of q + s + 2 consecutive red arcs, respectively, there is a unique path from i

to j, and this path has composition (3q − s − 2, 2q + 1). Hence

Mz =

[

h − (3q − s − 2)

k − (2q + 1)

]

has a nonnegative integer solution. Necessarily

z = M−1

[

h − (3q − s − 2)

k − (2q + 1)

]

=

[

u

v

]

− M−1

[

3q − s − 2

2q + 1

]

=

[

u

v

]

−

[

−q2 − (s + 2)q + 1

q2 + (s + 3)q + (s + 3)

]

> 0.

So v > q2 + (s + 3)q + (s + 3). Thus

h + k = [ 1 1 ] M

[

u

v

]

> [ 3q + 2 3q − 1 ]

[

q2 + (s + 2)q

q2 + (s + 3)q + (s + 3)

]

= 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3),

and exp(D) > 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3). �

Lemma 5.8. Let D ∈ D3q+2,s with s > q − 1, and let D have exactly q + s + 2

red arcs. If the q + s + 2 red arcs are not consecutive, then

exp(D) < 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3).

P r o o f. Let (i, j) be a pair of vertices and let pij be the shortest path in D from

i to j. Denote r = r(pij) and b = b(pij). We see that

[

r

b

]

+ ((2q − 1)b − qr + q2 + 2q + sq)

[

2q + 1

q + 1

]

(5.3)

+
(

(q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2
)

[

2q − 1

q

]

=

[

4q3 + 2(2s + 5)q2 + (2s + 3)q − s − 2

2q3 + 2(s + 3)q2 + (2s + 4)q

]

.

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q + 1 and r 6 2q + 1. Thus (2q − 1)b − qr + q2 + 2q + sq >

(2q−1)b−q(2q+1)+q2+2q+(q−1)q = (2q−1)b > 0 and (q+1)r− (2q+1)b+q2 +

sq +3q +s+2 > (q +1)r− (q +1)(2q +1)+ q2+(q−1)(q +1)+3q +2 = (q +1)r > 0.
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If (2q − 1)b − qr + q2 + 2q + sq = 0, then b = 0, r = 2q + 1, s = q − 1, and either i

or j is on the (n − 3)-cycle.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q and r 6 2q − 1. Thus (2q − 1)b − qr + q2 + 2q + sq > −q(2q − 1) +

q2 + 2q + (q − 1)q = 2q > 0 and (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 >

−(2q + 1)q + q2 + (q − 1)(q + 1) + 3q + 2 = 2q + 1 > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3, and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. So

3q − s − 2 6 r 6 q + s + 2,

0 6 b 6 2q + 1.

Thus (2q − 1)b − qr + q2 + 2q + sq > −q(q + s + 2) + q2 + 2q + sq = 0. If b 6 2q,

then (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 > (q + 1)(3q − s− 2)− 2q(2q + 1) +

q2 + sq + 3q + s + 2 = 2q > 0. Let b = 2q + 1. Since the q + s + 2 red arcs are not

consecutive, we have r > 3q− s− 1 and (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 >

(q + 1)(3q − s − 1) − (2q + 1)(2q + 1) + q2 + sq + 3q + s + 2 = q > 0.

By virtue of (5.3), the walk that starts at vertex i, follows pij to vertex j, and

along the way goes around the n-cycle (2q − 1)b − qr + q2 + 2q + sq times and

around the (n − 3)-cycle (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 times is a

(4q3 +2(2s+5)q2 +(2s+3)q−s−2, 2q3 +2(s+3)q2 +(2s+4)q)-walk from i to j. So

exp(D) 6 6q3+2(3s+8)q2+(4s+7)q−(s+2) < 6q3+2(3s+8)q2+2(2s+5)q−(s+3).

�

Lemma 5.9. Let D ∈ D3q+2,s with s > q − 1 and let there be at least one blue

arc in the path s + 4 → s + 5 → . . . → n. Then

exp(D) < 6q3 + 2(3s + 8)q2 + 2(2s + 5)q − (s + 3).

P r o o f. Let (i, j) be a pair of vertices and let pij be the shortest path in D

from i to j. Denote r = r(pij) and b = b(pij). Let the number of red arcs and blue

arcs in the path s + 4 → s + 5 → . . . → n be x and y, respectively. Then y > 1 and

x 6 3q − s − 3. We see that
[

r

b

]

+ ((2q − 1)b − qr + q2 + 2q + sq)

[

2q + 1

q + 1

]

(5.4)

+ ((q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2)

[

2q − 1

q

]

=

[

4q3 + 2(2s + 5)q2 + (2s + 3)q − s − 2

2q3 + 2(s + 3)q2 + (2s + 4)q

]

.
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Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b 6 q + 1 and r 6 2q + 1. Thus (2q − 1)b − qr + q2 + 2q + sq >

(2q−1)b−q(2q+1)+q2+2q+(q−1)q = (2q−1)b > 0 and (q+1)r− (2q+1)b+q2 +

sq +3q +s+2 > (q +1)r− (q +1)(2q +1)+ q2+(q−1)(q +1)+3q +2 = (q +1)r > 0.

If (2q − 1)b − qr + q2 + 2q + sq = 0, then b = 0, r = 2q + 1, s = q − 1, and either i

or j is on the (n − 3)-cycle.

Case 2. Both the vertices i and j are on the (n − 3)-cycle.

Clearly, b 6 q and r 6 2q − 1. Thus (2q − 1)b − qr + q2 + 2q + sq > −q(2q − 1) +

q2 + 2q + (q − 1)q = 2q > 0 and (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 >

−(2q + 1)q + q2 + (q − 1)(q + 1) + 3q + 2 = 2q + 1 > 0.

Case 3. The vertex i (or j) is on the path 1 → 2 → . . . → s + 3 and the vertex j

(or i) is on the path n + 1 → . . . → n + s.

Clearly, the path pij contains the path s + 4 → s + 5 → . . . → n. So

3q − s − y − 2 6 r 6 q + s + y + 2,

y 6 b 6 2q − y + 1.

Thus (2q−1)b−qr+q2+2q+sq > (2q−1)y−q(q+s+y+2)+q2+2q+sq = y(q−1) > 0,

and (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 > (q + 1)(3q − s− y − 2)− (2q + 1)×

(2q − y + 1) + q2 + sq + 3q + s + 2 = yq − 1 > 0.

By virtue of (5.4), the walk that starts at vertex i, follows pij to vertex j and

along the way goes around the n-cycle (2q − 1)b − qr + q2 + 2q + sq times and

around the (n − 3)-cycle (q + 1)r − (2q + 1)b + q2 + sq + 3q + s + 2 times is a

(4q3 +2(2s+5)q2 +(2s+3)q−s−2, 2q3 +2(s+3)q2 +(2s+4)q)-walk from i to j. So

exp(D) 6 6q3+2(3s+8)q2+(4s+7)q−(s+2) < 6q3+2(3s+8)q2+2(2s+5)q−(s+3).

�

Lemmas 5.7, 5.8, and 5.9 yield the following result.

Theorem 5.10. Let D ∈ D3q+2,s with s > q − 1. Then exp(D) = 6q3 +

2(3s + 7)q2 + (2s + 5)q − 2(s + 3) if and only if there are exactly q + s + 2 red

arcs in D, and all red arcs are consecutive.
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