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Abstract. Let K be a nonempty closed convex subset of a real Hilbert space H such
that K ± K ⊂ K, T : K → H a k-strict pseudo-contraction for some 0 6 k < 1 such that
F (T ) = {x ∈ K : x = Tx} 6= ∅. Consider the following iterative algorithm given by

∀x1 ∈ K, xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)PKSxn, n > 1,

where S : K → H is defined by Sx = kx + (1 − k)Tx, PK is the metric projection of H

onto K, A is a strongly positive linear bounded self-adjoint operator, f is a contraction.
It is proved that the sequence {xn} generated by the above iterative algorithm converges
strongly to a fixed point of T , which solves a variational inequality related to the linear
operator A. Our results improve and extend the results announced by many others.

Keywords: Hilbert space, nonexpansive mapping, strict pseudo-contraction, iterative
algorithm, fixed point
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1. Introduction and preliminaries

Throughout this paper, we use F (T ) to denote the fixed point set of the mapping

T and PK to denote the metric projection of the Hilbert space H onto its closed

convex subset K.

Recall that a self mapping f : K → K is a contraction on K, if there exists a

constant α ∈ (0, 1) such that

(1.1) ‖f(x) − f(y)‖ 6 α‖x − y‖, ∀x, y ∈ K.
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We use ΠK to denote the collection of all contractions on K. That is, ΠK = {f ; f :

K → K a contraction}. An operator A is strongly positive if there exists a constant

γ > 0 with the property

(1.2) 〈Ax, x〉 > γ‖x‖2, ∀x ∈ K.

Recall that a mapping T : K → H is said to be a k-strict pseudo-contraction if

there exists a constant k ∈ [0, 1) such that

(1.3) ‖Tx− Ty‖2 6 ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2

for all x, y ∈ K.

Note that the class of k-strict pseudo-contractions strictly includes the class of

nonexpansive mappings which are mappings T on K such that

(1.4) ‖Tx− Ty‖ 6 ‖x − y‖, ∀x, y ∈ K.

That is, T is a nonexpansive mapping if and only if T is a 0-strict pseudo-contraction.

It is also said to be a pseudo-contraction if k = 1. T is said to be strongly pseudo-

contractive if there exists a positive constant λ ∈ (0, 1) such that T + λI is pseudo-

contractive. Clearly, the class of k-strict pseudo-contractions falls between the classes

of nonexpansive mappings and pseudo-contractions. We remark also that the class of

strongly pseudo-contractive mappings is independent of the class of k-strict pseudo-

contractions (see, e.g., [2]–[4]).

It is very clear that, in a real Hilbert space H , (1.3) is equivalent to

(1.5) 〈Tx − Ty, x− y〉 6 ‖x − y‖2 −
1 − k

2
‖(I − T )x − (I − T )y‖2

for all x, y ∈ K. T is pseudo-contractive if and only if

(1.6) 〈Tx − Ty, x− y〉 6 ‖x − y‖2.

T is strongly pseudo-contractive if and only if there exists a positive constant λ ∈

(0, 1) such that

(1.7) 〈Tx − Ty, x− y〉 6 (1 − λ)‖x − y‖2.

for all x, y ∈ K.

One classical way to study nonexpansive mappings is to use contractions to ap-

proximate a nonexpansive mapping (Browder [3]). More precisely, take t ∈ (0, 1)

and define a contraction Tt : K → K by

(1.8) Ttx = tu + (1 − t)Tx, x ∈ K,
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where u ∈ K is a fixed point. Banach’s contraction mapping principle guarantees

that Tt has a unique fixed point xt in K. It is unclear, in general, what the behavior

of xt is as t → 0, even if T has a fixed point. However, in the case of T having a fixed

point, Browder [3] proved the following well-known strong convergence theorem.

Theorem 1.1. Let K be a bounded closed convex subset of a Hilbert space H , T

a nonexpansive mapping on K. Fix u ∈ K and define zt ∈ K as zt = tu + (1− t)Tzt

for t ∈ (0, 1). Then {zt} converges strongly to a element of F (T ) nearest to u.

For a sequence {αn} of real numbers in [0, 1] and an arbitrary u ∈ K, let the

sequence {xn} in K be iteratively defined by

(1.9) x0 ∈ K, xn+1 = αnu + (1 − αn)Txn, n > 0.

The recursion formula (1.9) was first introduced in 1967 by Halpern [5] in the frame-

work of Hilbert spaces. He proved the strong convergence of {xn} to a fixed point

of T where αn = n−θ.

In 1977, Lions [6] improved the result of Halpern [5], still in Hilbert spaces, by

proving the strong convergence of {xn} to a fixed point of T where the real sequence

{αn} satisfies the following conditions:

(C1): lim
n→∞

αn = 0, (C2):

∞
∑

n=1

αn = ∞ and (C3): lim
n→∞

αn+1 − αn

α2
n+1

= 0.

It was observed that both Halperns and Lions conditions on the real sequence

{αn} excluded the canonical choice {αn} = (n+1)−1. This was overcome in 1992 by

Wittmann [11], who proved, still in Hilbert spaces, the strong convergence of {xn}

to a fixed point of T if {αn} satisfies the following conditions:

(C1): lim
n→∞

αn = 0, (C2):

∞
∑

n=1

αn = ∞ and (C4):

∞
∑

n=1

|αn+1 − αn| < ∞.

In 2002, Xu [14] (see also [13]) improved the result of Lions. To be more precise,

he weakened the condition (C3) by removing the square in the denominator so that

the canonical choice of {αn} = (n + 1)−1 is possible.

More recently, Xu [15] studied the following iterative process by so-called viscosity

approximation which was first introduced by Moudafi [9].

(1.10) x0 = x ∈ K, xn+1 = αnf(xn) + (1 − αn)Txn, n > 0.

Xu [15] proved the following theorem in Hilbert spaces.
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Theorem 1.2. Let H be a Hilbert space,K a closed convex subset ofH , T : K →

K a nonexpansive mapping with F (T ) 6= ∅, and f : K → K a contraction. Let {xn}

be generated by (1.10). Then under the hypotheses

(C1) lim
n→∞

αn = 0;

(C2)
∞
∑

n=1
αn = ∞;

(C5) either
∞
∑

n=1
|αn+1 − αn| < ∞ or lim

n→∞

(αn+1/αn) = 1,

{xn} converges strongly to a fixed point of T , which is the unique solution of some

variational inequality.

Very Recently, Marino and Xu [14] improved the result of Xu [15] by introducing

the following iterative algorithm

(1.11) x0 ∈ H, xn+1 = αnγf(xn) + (I − αnA)Txn, n > 0.

To be more precise, Marino and Xu [8] obtained the following theorem.

Theorem 1.3. Let H be a Hilbert space, K a closed convex subset ofH , T : H →

H a nonexpansive mapping with F (T ) 6= ∅. Let A be a strong positive bounded

linear operator with coefficient γ and f : H → H a contraction with the contractive

coefficient (0 < αn < 1) such that 0 < γ < γ/α. Let {xn} be generated by (1.11).

Then under the hypotheses (C1), (C2) and (C5), {xn} converges strongly to a fixed

point of T , which is the unique solution of some variational inequality related to the

linear operator A.

In this paper, motivated by Browder [3], Halpern [5], Witmann [11], Moudafi [9],

Xu [12]–[15], Marino and Xu [7], [8] and Zhou [16], we introduce a general iterative

algorithm and prove strong convergence theorems for a k-strict pseudo-contraction.

Our results improve and extend the corresponding ones announced by many others.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ([13], [14]). Assume that {αn} is a sequence of nonnegative real

numbers such that

αn+1 6 (1 − γn)αn + δn,

where γn is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∞
∑

n=1
γn = ∞;

(ii) lim sup
n→∞

δn/γn 6 0 or
∞
∑

n=1
|δn| < ∞.

Then lim
n→∞

αn = 0.
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Lemma 1.2 ([8]). Assume that A is a strongly positive linear bounded operator

on a Hilbert space H with the coefficient γ > 0 and 0 < ̺ 6 ‖A‖−1. Then ‖I−̺A‖ 6

1 − ̺γ.

Lemma 1.3 ([8]). Let H be a Hilbert space. Let A be a strongly positive linear

bounded self-adjoint operator with coefficient γ > 0. Assume that 0 < γ < γ/α. Let

T : H → H be a nonexpansive mapping with a fixed point xt ∈ H of the contraction

x 7→ tγf(x) + (1 − tA)Tx. Then {xt} converges strongly as t → 0 to a fixed point x̄

of T , which solves the variational inequality

〈(A − γf)x̄, z − x̄〉 6 0, ∀z ∈ F (T ).

Lemma 1.4. In a Hilbert space H , there holds the inequality

‖x + y‖2 6 ‖x‖2 + 2〈y, (x + y)〉, x, y ∈ H.

Lemma 1.5 ([16]). If T is a k-strict pseudo-contraction on a closed convex subset

K of a real Hilbert space H, then the fixed point set F (T ) is closed convex so that

the projection PF (T ) is well defined.

Lemma 1.6 ([16]). Let T : K → H be a k-strict pseudo-contraction with

F (T ) 6= ∅. Then F (PKT ) = F (T ). Define S : K → H by Sx = λx + (1 − λ)Tx

for each x ∈ K. Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that

F (S) = F (T ).

Lemma 1.7 ([10]). Let {xn} and {yn} be bounded sequences in a Banach space

X and let βn be a sequence in [0, 1] with 0 < lim inf
n→∞

βn 6 lim sup
n→∞

βn < 1. Suppose

xn+1 = (1 − βn)yn + βnxn for all integers n > 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) 6 0.

Then lim
n→∞

‖yn − xn‖ = 0.

2. Main results

Theorem 2.1. Let K be a nonempty closed convex subset of a real Hilbert space

H such that K ± K ⊂ K and T : K → H a k-strict pseudo-contraction for some

0 6 k < 1 with a fixed point. Let A be a strongly positive linear bounded self-adjoint
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operator on K with the coefficient γ and f ∈ ΠK a contraction with the contractive

coefficient (0 < α < 1) such that 0 < γ < γ/α. Let {xn} be a sequence generated by

the following manner:

∀x1 ∈ K, xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)PKSxn, n > 1,

where S : K → H is defined by Sx = kx + (1− k)Tx. If the control sequences {αn}

and {βn} satisfy the following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞
∑

n=1
αn = ∞;

(iii) 0 < lim inf
n→∞

βn 6 lim sup
n→∞

βn < 1,

then {xn} converges strongly to a fixed point q of T , which solves the following

variational inequality

〈γf(q) − Aq, p − q〉 6 0, ∀p ∈ F (T ).

P r o o f. We divide the proof into three parts.

Step 1. First, we show the sequence {xn} is bounded.

From Lemma 1.6, we see that S : K → H is a nonexpansive mapping and F (S) =

F (T ). By our assumptions on T , we know F (T ) 6= ∅ and hence F (S) 6= ∅. By

Lemma 1.6, we see thatF (PKS) = F (S) 6= ∅. Since PK : H → K is a nonexpansive

mapping, we conclude that PKS : K → K is nonexpansive. From the condition (i),

we may assume, without loss of generality, that αn 6 (1 − βn)‖A‖−1 for all n > 1.

Since A is a strongly positive bounded linear operator on K, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ K, ‖x‖ = 1}.

Observe that

〈((1 − βn)I − αnA)x, x〉 = 1 − βn − αn〈Ax, x〉 > 1 − βn − αn‖A‖ > 0,

that is, (1 − βn)I − αnA is positive. It follows that

‖(1 − βn)I − αnA‖ = sup{〈((1 − βn)I − αnA)x, x〉 : x ∈ K, ‖x‖ = 1}

= sup{1 − βn − αn〈Ax, x〉 : x ∈ K, ‖x‖ = 1}

6 1 − βn − αnγ.

Therefore, taking a point p ∈ F (T ), we obtain

‖xn+1 − p‖

= ‖αn(γf(xn) − Ap) + βn(xn − p) + ((1 − βn)I − αnA)(PKSxn − p)‖

6 (1 − βn − αnγ)‖PKSxn − p‖ + βn‖xn − p‖ + αn‖γf(xn) − Ap‖
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6 (1 − βn − αnγ)‖xn − p‖ + βn‖xn − p‖ + αnγα‖xn − p‖ + αn‖γf(p) − Ap‖

= [1 − αn(γ − γα)]‖xn − p‖ + αn‖γf(p) − Ap‖.

By simple inductions, we have

‖xn − p‖ 6 max
{

‖x0 − p‖,
‖Ap − γf(p)‖

γ − γα

}

, n > 1,

which gives that the sequence {xn} is bounded.

Step 2. In this part, we show that lim
n→∞

‖PKSxn − xn‖ = 0.

Put ln = (xn+1 − βnxn)/(1 − βn). That is,

(2.1) xn+1 = (1 − βn)ln + βnxn, n > 1.

Now, we compute ln+1 − ln. Observing that

ln+1 − ln =
αn+1γf(xn+1) + ((1 − βn+1)I − αn+1A)PKSxn+1

1 − βn+1

−
αnγf(xn) + ((1 − βn)I − αnA)PKSxn

1 − βn

=
αn+1(γf(xn+1) − APKSxn+1)

1 − βn+1
−

αn(γf(xn) − APKSxn)

1 − βn

+ PKSxn+1 − PKSxn,

we have

‖ln+1 − ln‖ 6
αn+1

1 − βn+1
‖γf(xn+1) − APKSxn+1‖ +

αn

1 − βn

‖APKSxn − γf(xn)‖

+ ‖PKSxn+1 − PKSxn‖

6
αn+1

1 − βn+1
‖γf(xn+1) − APKSxn+1‖ +

αn

1 − βn

‖APKSxn − γf(xn)‖

+ ‖xn+1 − xn‖.

It follows from the conditions (i) and (iii) that

lim sup
n→∞

{‖ln+1 − ln‖ − ‖xn+1 − xn‖} 6 0.

From Lemma 1.7, we have

(2.2) lim
n→∞

‖xn − ln‖ = 0.
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Observing (2.1) again, we have

‖xn+1 − xn‖ = (1 − βn)‖xn − ln‖.

From the condition (iii) and (2.2), we have

(2.3) lim
n→∞

‖xn − xn+1‖ = 0.

Notice that

‖xn − PKSn‖ 6 ‖xn − xn+1‖ + ‖xn+1 − PKSxn‖

6 ‖xn − xn+1‖ + αn‖γf(xn) − APKSxn‖ + βn‖xn − PKSxn‖,

which yields that

(1 − βn)‖xn − PKSn‖ 6 ‖xn − xn+1‖ + αn‖γf(xn) − APKSxn‖.

It follows from the conditions (i), (iii) and (2.3) that

(2.4) lim
n→∞

‖xn − PKSxn‖ = 0.

Step 3. Finally, we show that xn → q, as n → ∞.

First, we claim that

(2.5) lim sup
n→∞

〈γf(q) − Aq, xn − q〉 6 0,

where q = lim
t→0

xt with xt being the fixed point of the contraction

x 7→ tγf(x) + (I − tA)PKSx.

Then xt solves the fixed point equation xt = tγf(xt) + (I − tA)PKSxt, where t ∈

(0, min{1, ‖A‖−1}). Thus we have

‖xt − xn‖ = ‖(I − tA)(PKSxt − xn) + t(γf(xt) − Axn)‖.

It follows from Lemma 1.4 that

(2.6) ‖xt − xn‖
2 = ‖(I − tA)(PKSxt − xn) + t(γf(xt) − Axn)‖2

6 (1 − γt)2‖PKSxt − xn‖
2 + 2t〈γf(xt) − Axn, xt − xn〉

6 (1 − 2γt + (γt)2)‖xt − xn‖
2 + fn(t)

+ 2t〈γf(xt) − Axt, xt − xn〉 + 2t〈Axt − Axn, xt − xn〉,
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where

(2.7) fn(t) = (2‖xt − xn‖ + ‖xn − PKSxn‖)‖xn − PKSxn‖ → 0, as n → 0.

Observing A is linear and strongly positive and using (1.2), we have

(2.8) 〈Axt − Axn, xt − xn〉 = 〈A(xt − xn), xt − xn〉 > γ‖xt − xn‖
2.

Combining (2.6) and (2.8), we obtain

2t〈Axt − γf(xt), xt − xn〉

6 (γ2t2 − 2γt)‖xt − xn‖
2 + fn(t) + 2t〈Axt − Axn, xt − xn〉

6 (γt2 − 2t)〈A(xt − xn), xt − xn〉 + fn(t) + 2t〈Axt − Axn, xt − xn〉

6 γt2〈A(xt − xn), xt − xn〉 + fn(t).

It follows that

(2.9) 〈Axt − γf(xt), xt − xn〉 6
γt

2
〈Axt − Axn, xt − xn〉 +

1

2t
fn(t).

Let n → ∞ in (2.9) and note that (2.7) yields

(2.10) lim sup
n→∞

〈Axt − γf(xt), xt − xn〉 6
t

2
M1,

where M1 > 0 is an appropriate constant such that M1 > γ〈Axt −Axn, xt − xn〉 for

all t ∈ (0, 1) and n > 1. Taking t → 0 in (2.10), we have

(2.11) lim sup
t→0

lim sup
n→∞

〈Axt − γf(xt), xt − xn〉 6 0.

On the other hand, we have

〈γf(q) − Aq, xn − q〉 = 〈γf(q) − Aq, xn − q〉 − 〈γf(q) − Aq, xn − xt〉

+ 〈γf(q) − Aq, xn − xt〉 − 〈γf(q) − Axt, xn − xt〉

+ 〈γf(q) − Axt, xn − xt〉 − 〈γf(xt) − Axt, xn − xt〉

+ 〈γf(xt) − Axt, xn − xt〉.

It follows that

lim sup
n→∞

〈γf(q) − Aq, xn − q〉

6 ‖γf(q) − Aq‖‖xt − q‖ + ‖A‖‖xt − q‖ lim
n→∞

‖xn − xt‖

+ γα‖q − xt‖ lim
n→∞

‖xn − xt‖ + lim sup
n→∞

〈γf(xt) − Axt, xn − xt〉.
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Therefore, from (2.11), we have

lim sup
n→∞

〈γf(q) − Aq, xn − q〉

= lim sup
t→0

lim sup
n→∞

〈γf(q) − Aq, xn − q〉

6 lim sup
t→0

‖γf(q)− Aq‖‖xt − q‖ + lim sup
t→0

‖A‖‖xt − q‖ lim
n→∞

‖xn − xt‖

+ lim sup
t→0

γα‖q − xt‖ lim
n→∞

‖xn − xt‖ + lim sup
t→0

lim sup
n→∞

〈γf(xt) − Axt, xn − xt〉

6 0.

Hence, (2.5) holds. Now from Lemma 1.4, we have

(2.12) ‖xn+1 − q‖2

= ‖((1 − βn)I − αnA)(PKSxn − q) + βn(xn − p) + αn(γf(xn) − Aq)‖2

6 ‖((1 − βn)I − αnA)(PKSxn − q) + βn(xn − p)‖2

+ 2αn〈γf(xn) − Aq, xn+1 − q〉

6 (1 − αnγ)2‖xn − q‖2 + αnγα(‖xn − q‖2 + ‖xn+1 − q‖2)

+ 2αn〈γf(q) − Aq, xn+1 − q〉,

which implies that

(2.13) ‖xn+1 − q‖2

6
(1 − αnγ)2 + αnγα

1 − αnγα
‖xn − q‖2 +

2αn

1 − αnγα
〈γf(q) − Aq, xn+1 − q〉

6

[

1 −
2αn(γ − αγ)

1 − αnγα

]

‖xn − q‖2

+
2αn(γ − αγ)

1 − αnγα

[ 1

γ − αγ
〈γf(q) − Aq, xn+1 − q〉 +

αnγ2

2(γ − αγ)
M2

]

,

where M2 is an appropriate constant such that M2 > sup
n>1

{‖xn − q‖2}. Put jn =

2αn(γ − αγ)/(1 − αnαγ) and

tn =
1

γ − αγ
〈γf(q) − Aq, xn+1 − q〉 +

αnγ2

2(γ − αγ)
M2.

That is,

(2.14) ‖xn+1 − q‖2
6 (1 − jn)‖xn − q‖ + jntn.

It follows from the conditions (i), (ii) and (2.5) that lim
n→∞

jn = 0,
∞
∑

n=1
jn = ∞ and

lim sup
n→∞

tn 6 0. Apply Lemma 1.1 to (2.14) to conclude that xn → q, as n → ∞. This

completes the proof. �
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3. Applications

As applications of Theorem 2.1, we have the following results immediately.

Theorem 3.1. Let K be a nonempty closed convex subset of a real Hilbert space

H such that K ± K ⊂ K and T : K → H a nonexpansive mapping with a fixed

point. Let A be a strongly positive linear bounded self-adjoint operator with the

coefficient γ and f ∈ ΠK a contraction with the contractive coefficient (0 < α < 1)

such that 0 < γ < γ/α. Let {xn} be a sequence generated by the following manner:

∀x1 ∈ K, xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)PKTxn, n > 1.

If the control sequences {αn} and {βn} satisfy the following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞
∑

n=1
αn = ∞;

(iii) 0 < lim inf
n→∞

βn 6 lim sup
n→∞

βn < 1,

then {xn} converges strongly to a fixed point q of T , which solves the following

variational inequality

〈γf(q) − Aq, p − q〉 6 0, ∀p ∈ F (T ).

Taking A = I, the identity mapping and γ = 1 in Theorem 3.1, we have the

following.

Theorem 3.2. Let K be a nonempty closed convex subset of a real Hilbert space

H and T : K → H a nonexpansive mapping with a fixed point. Let f : K → K be

a contraction with the contractive coefficient (0 < α < 1). Let {xn} be a sequence

generated by the following manner:

∀x1 ∈ K, xn+1 = αnf(xn) + βnxn + (1 − βn − αn)PKTxn, n > 1.

If the control sequences {αn} and {βn} satisfy the following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞
∑

n=1
αn = ∞;

(iii) 0 < lim inf
n→∞

βn 6 lim sup
n→∞

βn < 1,

then {xn} converges strongly to a fixed point q of T , which solves the following

variational inequality

〈f(q) − q, p − q〉 6 0, ∀p ∈ F (T ).
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