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1. Introduction

This note contains an extension theorem for vector-valued modular measures de-

fined on lattice ordered effect algebras. In spite of the presence in [2], [8], [9] of some

results announced in the abstract, we consider it worth-while to revisit theorems

about the range, control theorems, Vitali-Hahn-Saks and Nikodým theorems in the

context of modular measures on effect algebras. Indeed, while in [2], [8], [9] the

results are obtained by imitating the proof of the Boolean case, we here transfer the

results directly from the case of vector-valued measures on Boolean algebras to the

case of vector-valued modular measures on lattice ordered effect algebras. To this

end we make use of a method elaborated by H.Weber (see [32]). Moreover, oper-

ating in this way, we obtain some results completely new such as the generalization

of results on the range obtained by Fischer and Schoeler in the Boolean case or the
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generalization of results obtained by Kluvanek concerning the weak closure of the

range in the Boolean case.

Effect algebras were introduced by Foulis and Bennett in 1994 [15] for modelling

unsharp measurement in a quantum mechanical system. They are a generalization

of many structures which arise in quantum physics and in mathematical economics,

in particular of orthomodular lattices in noncommutative measure theory and MV-

algebras in fuzzy measure theory.

2. Preliminaries

In this section we give some basic definitions and fix some notation.

Definition 2.1. Let (L, 6) be a poset with a smallest element 0 and a greatest

element 1 and let ⊖ be a partial operation on L such that b⊖a is defined if and only

if a 6 b and for all a, b, c ∈ L:

If a 6 b then b ⊖ a 6 b and b ⊖ (b ⊖ a) = a.

If a 6 b 6 c then c ⊖ b 6 c ⊖ a and (c ⊖ a) ⊖ (c ⊖ b) = b ⊖ a.

Then (L, 6,⊖) is called a difference poset (D-poset for short) or a difference lattice

(D-lattice for short) if L is a lattice.

For the rest of the paper, let L be a D-lattice and let (E, τ) be a Hausdorff complete

locally convex linear space.

One defines in L a partial operation ⊕ as follows:

a ⊕ b is defined and a ⊕ b = c if and only if c ⊖ b is defined and c ⊖ b = a.

The operation ⊕ is well-defined by the cancellation law [17, page 13] (a 6 b, c

and b ⊖ a = c ⊖ a implies b = c), and (L,⊕, 0, 1) is an effect algebra (see [17,

Theorem 1.3.4]), that is, the following conditions are satisfied for all a, b, c ∈ L:

If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a;

if b⊕ c is defined and a⊕ (b⊕ c) is defined, then a⊕ b and (a⊕ b)⊕ c are defined,

and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;

there exists a unique a⊥ ∈ E such that a ⊕ a⊥ is defined and a ⊕ a⊥ = 1;

if a ⊕ 1 is defined, then a = 0.

We say that a and b are orthogonal if a 6 b⊥ and we write a ⊥ b. Therefore a⊕b is

defined if and only if a ⊥ b, and in this case a⊕ b = (a⊥ ⊖ b)⊥ by [17, Lemma 1.2.5].

If a1, . . . , an ∈ L we inductively define a1 ⊕ . . . ⊕ an = (a1 ⊕ . . . ⊕ an−1) ⊕ an if the

right-hand side exists. The sum is independent of any permutation of the elements.

We say that a finite family (ai)
n
i=1 of (not necessarily different) elements of L is

orthogonal if a1 ⊕ . . . ⊕ an exists.
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We say that a sequence (an) of elements of L is orthogonal if the set {a1, . . . an}

is orthogonal for every n ∈ N.

Following [20], an element p of L is central if for every a ∈ L

(1) (a ∧ p) ∨ (a ∧ p⊥) = a.

The centre C(L) of L is the set of all central elements. We stress that it is a

Boolean subalgebra of the centre in the lattice theoretical sense. In particular, C(L)

is a sublattice of L.

A function µ on a D-lattice with values in E or in [0, +∞] is called a measure if

for every a, b ∈ L, with a ⊥ b,

µ(a ⊕ b) = µ(a) + µ(b).

A modular measure is a measure which also satisfies the modular law, that is, for all

a, b ∈ L

µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).

A measure µ is called exhaustive if µ(xn) → 0 for every orthogonal sequence (xn).

A sequence of measures (µn) is called uniformly exhaustive if for every orthogonal

sequence (xn), µm(xn) → 0 uniformly in m ∈ N. A measure µ is called σ-order

continuous if the order convergence of sequences implies the convergence with respect

to µ, (i.e. an ↑ a or an ↓ a implies that µ(an) converges to µ(a)); µ is called order

continuous if the same condition holds for nets.

A uniform D-lattice is a D-lattice endowed with a uniformity which makes the

operations ∨,∧ and ⊖ uniformly continuous. We call this uniformity a D-uniformity.

If µ is an E-valued modular measure, it is known that the sets

{(a, b) ∈ L × L : ∀c, d ∈ [a ∧ b, a ∨ b] µ(c) − µ(d) ∈ W},

where W is a neighborhood of 0 in E, form a base for the µ-uniformity U (µ), which

is the weakest D-uniformity that makes µ uniformly continuous (see [1, Theor. 3.2];

compare also [19] and [30, §3.1]). The topology induced by the µ-uniformity is called

the µ-topology. If Λ is a set of modular functions on L, then the supremum of the

λ-uniformities, λ ∈ Λ, is called the Λ-uniformity or the uniformity generated by Λ.

The proof of the following proposition is given in 4.3 of [6].
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Proposition 2.2. Let U be a D-uniformity. Then N(U ) =
⋂

U∈U

U is a D-

congruence and the quotient (L̂, Û ) = (L, U )/N(U ) is a D-lattice endowed with a

Hausdorff D-uniformity.

We recall that, if ‖ · ‖ is a seminorm on E, for a modular measure µ : L → E, the

total variation is the function

|µ|(a) = sup

{ n−1∑

i=0

‖µ(ai+1) − µ(ai)‖ : a0 6 a1 6 . . . 6 an = a

}
, a ∈ L.

By 1.3.10 of [31], |µ| is a modular function and by 3.11 of [13] it is a measure.

For real-valued modular measures on D-lattices the following equivalence holds

([4, Lemma 2.6]):

Proposition 2.3. Let µ : L → R be a modular measure. Then µ is bounded if

and only if µ is exhaustive if and only if µ has bounded variation.

3. The representation theorem

The next theorem repeats “verbatim” [33, Theorem 2.2]. Repeating the proof, we

have only to observe that µD(p) =
∑

d∈D

(λ̃(d ∧ p)/λ̃(d))µ̃(d) (where D is a suitable

decomposition) are measures and this follows from [4, 2.2 and 2.4]. We notice that

the above net is involved in the definition of the extension µ̄ that is its weak limit

and so it is a measure, too.

Theorem 3.1. Let A be a Boolean sublattice of C(L), Λ ⊂ {λ : L → R
+ : λ

is a modular measure}, let U be the Λ-uniformity and µ : (A, U |A) → (E, τ) a

continuous modular measure. Then µ has an extension to an exhaustive continuous

modular measure µ̄ : (L, U ) → (E, τ) with µ̄(L) ⊂ coµ(A).

It turns out that Theorem 3.1 remains true for measures with values in a linear

topological space which is not locally convex, i.e. ℓp 0 < p < 1; we are going to show

this fact.

Theorem 3.2. Let A be a Boolean sublattice of C(L), Λ ⊂ {λ : L → R
+ : λ is a

modular measure}, let U be the Λ-uniformity and µ : (A, U |A) → ℓp (0 < p < 1) a

continuous modular measure. Then µ has an extension to an exhaustive continuous

modular measure µ̄ : (L, U ) → ℓp (0 < p < 1) with µ̄(L) ⊂ cop µ(A), where the

closure is understood in (ℓp, ‖ ‖p).
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P r o o f. The proof proceeds by inspection from 3.1. Since ℓp is continuously

embedded in ℓ1 and our extension theorem holds true for measures with values in

ℓ1, we have only to ensure that starting with µD(L) ⊆ ℓp, its limit µ̄ lies in ℓp

(0 < p < 1).

We claim that the values of µD lie in a bounded set of ℓp: Indeed, by Labuda [18,

Proposition on p. 58] the convex hull of the range of a bounded measure with values

in ℓp is bounded and (e.g. see [30, 2.3]) this implies that the range of a group-valued

measure is bounded (we point out that in ℓp (0 < p < 1) a subset is norm bounded

if and only if it is bounded).

For every a ∈ L, the bounded net µD(a) converges to µ̄(a) weakly, hence coordi-

natewise. Therefore the values of µ̄ lie in ℓp, as desired.

The last inclusion derives from µ̄(L) ⊂ co1 µ(A) proved in Theorem 3.1 and from

the equality co1 µ(A) = cop µ(A). For, co1 µ(A) is a closed, bounded, convex set in

ℓp. It follows from [24, Theorem 1] that co1 µ(A) is compact in ℓp. As the inclusion

of ℓp into ℓ1 is continuous we have co1 µ(A) = cop µ(A).

Finally, the exhaustivity derives from the compactness and [27, 3.2.5]. The exten-

sion is U continuous by [30, 6.1] since µ is exhaustive. �

Notation 3.3. Let V , U be D-uniformities and µ, ν modular measures on L,

then µ ≪ U means that µ-uniformity is weaker than U and µ ⊥ U means that

the infimum between the µ-uniformity and U is the trivial uniformity. If U = ν-

uniformity, we write µ ≪ ν or µ ⊥ ν instead of µ ≪ U or µ ⊥ U .

Repeating line by line [33, Theorem 3.1.7] and applying 3.1 when Weber applies

his Theorem 2.2 and [4, 2.4] when Weber applies his Theorem 3.1.5, one obtains

Theorem 3.4. Let Λ ⊂ {λ : L → R
+ : λ is a modular measure} and let U

be the Λ-uniformity and (L̃, Ũ ) the uniform completion of the quotient (L̂, Û ) :=

(L, U )/N(U ). Then:

(a) For any continuous modular measure µ : (L, U ) → (E, τ), the function µ̂ : L̂ →

E defined by µ̂(x̂) = µ(x) whenever x ∈ x̂ ∈ L̂, has a unique continuous

extension µ̃ : (L̃, Ũ ) → E. Denote by µ̄ : C(L̃) → E the restriction of µ̃ to

C(L̃). Then µ(L) = µ̃(L̃) and coµ(L) = co µ̄(C(L̃)).

(b) If U is generated by the set of all real-valued bounded modular measures on

L, then the map µ 7→ µ̄ defines an isomorphism from the linear space of all

exhaustive modular measures µ : L → E onto the linear space of all order

continuous measures µ̄ : C(L̃) → E.

(c) Let F be a complete locally convex Hausdorff linear space and let ν : (L, U ) →

F , µ : (L, U ) → E be modular measures. Then µ ≪ ν if and only if µ̄ ≪ ν and
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µ ⊥ ν if and only if µ̄ ⊥ ν. Moreover, if T : E → F is a continuous additive

map and ν = T ◦ µ, then ν̂ = T ◦ µ̂, ν̃ = T ◦ µ̃ and ν = T ◦ µ̄.

(d) Let E be a Banach space and µ : (L, U ) → E be a continuous modular measure.

Then µ has bounded variation iff µ̃ has bounded variation. Moreover, if ν := |µ|

is bounded, then ν̃ = |µ̃| and ν = |µ̄|.

Remark 3.5. Applying Theorem 3.2 instead of 3.1, one can observe that Theo-

rem 3.4(a) remains true when one substitutes ℓp (0 < p < 1) for a complete locally

convex Hausdorff linear space.

4. Applications

We illustrate the method of transferring results from the Boolean case to this

setting:

4.1. The control. A measure ν is a control for a set of measures Λ if

ν − uniformity = Λ − uniformity.

Theorem 4.1. Let E be a Banach space and µ : L → E an exhaustive modular

measure. Then there exists an x′ ∈ E′ such that x′ ◦ µ is a control of µ.

P r o o f. By Ribakov’s theorem there exists x′ ∈ E′ such that x′ ◦ µ̄ is a control

for µ̄, by 3.4 x′ ◦ µ is a control of µ. �

In order to prove Theorem 4.4, we need some preparatory stuff.

The following proposition is contained in [30, 6.2].

Proposition 4.2. Let U be a D-uniformity and µn : (L, U ) → (E, τ), n ∈ N, a

pointwise bounded, uniformly exhaustive sequence of continuous modular measures.

Then µn : (L, U ) → (E, τ), n ∈ N, is equicontinuous.

Proposition 4.3. Let U be the uniformity generated by {µn : n ∈ N} where (µn)

is a pointwise bounded sequence of exhaustive modular measures on L with values

in E. Assume the same notation as in 3.4. Then (µn)n∈N is uniformly exhaustive if

and only if (µ̄n)n∈N is uniformly exhaustive.

P r o o f. ⇒: We suppose that (µn) is uniformly exhaustive. Then ν := (µn)n∈N :

L → (l∞(E), τ∞) is exhaustive, besides, from 4.2 (µn) is equicontinuous with respect

to U . Hence ν̂ = (µ̂n)n∈N : (L̂, Û ) → (l∞(E), τ∞) is continuous. Let ν̃ : (L̃, Ũ ) →
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(l∞(E), τ∞) be the continuous extension of ν̂. Then ν̃ = (µ̃n)n∈N. Since ν̃ is exhaus-

tive, (µ̃n) is uniformly exhaustive and hence (µ̄n) is so.

⇐: Suppose that (µ̄n)n∈N is uniformly exhaustive. Then ν := (µ̄n)n∈N : C(L̃) →

(l∞(E), τ∞) is exhaustive. Moreover, by 4.2 here applied to the Boolean case, (µ̄n)

is equicontinuous with respect to Ũ |
C(L̃), i.e. ν : (C(L̃), Ũ |

C(L̃)) → l∞(E) is con-

tinuous. Let ν : (L, U ) → l∞(E) be the measure which corresponds to ν according

to 3.4. Applying 3.4(c) to the projections (xn)n∈N 7→ xn which carry from l∞(E) to

E, one obtains that ν = (µn)n∈N. As ν : (L, U ) → l∞(E) is continuous and hence

exhaustive, (µn) is uniformly exhaustive. �

Theorem 4.4. Let µn : L → E, n ∈ N, be a pointwise bounded, uniformly

exhaustive sequence of modular measures. Then there is a modular measure ν : L →

E which controls (µn).

P r o o f. By 4.3 {µ̄n : n ∈ N} is uniformly exhaustive and by [11, Theorem 2]

it has a control ν : C(L̃) → E. By 3.4 the corresponding measure ν : L → E is a

control for {µn : n ∈ N}. �

4.2. The Vitali-Hahn-Saks theorem.

Theorem 4.5. Let L be σ-complete and let µn : L → E, n ∈ N, be a sequence

of σ-order continuous modular measures which converges pointwise to µ : L → E.

(a) Then the sequence (µn) is uniformly exhaustive and µ is a σ-order continuous

modular measure.

(b) If for every n ∈ N, µn is continuous with respect to a D-uniformity V on L,

then {µn : n ∈ N} ∪ {µ} is equicontinuous with respect to V .

P r o o f. Let U be the uniformity generated by {µn : n ∈ N}. As E is a subspace

of a product of Banach spaces, we may assume that E is a Banach space. Then

(L, U ) is complete by [31, 1.1.4]. Passing to the quotient (L̂, Û ) := (L, U )/N(U )

we can suppose that U is Hausdorff. So (L, U ) = (L̂, Û ) = (L̃, Ũ ). By the

classical Vitali-Hahn-Saks-Nikodým theorem the restrictions µ̄n := µn|C(L), n ∈ N,

are uniformly exhaustive. Hence µn, n ∈ N, are uniformly exhaustive by 4.3 and

therefore {µn : n ∈ N}∪{µ} is uniformly exhaustive. Hence by 4.2, {µn : n ∈ N}∪{µ}

is equicontinuous with respect to U if µn ≪ U for any n ∈ N. �

4.3. The Nikodým theorem. The classical Nikodým boundedness theorem as-

serts that for families of exhaustive measures defined on a σ-algebra, pointwise

boundedness and uniform boundedness are equivalent. It is known that an anal-

ogous result is not true for measures on effect algebras, but it is true for modular

functions on orthomodular lattices.
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Theorem 4.6. Let L be σ-complete and let M be a pointwise bounded set of

σ-order continuous modular measures on L. Then M is uniformly bounded.

P r o o f. Since a subset A of E is bounded if and only if all countable subsets of

A are bounded, we may assume that M is countable, i.e. M := {µn : n ∈ N}. As in

the proof of 4.5 we may assume that E is a Banach space. Let U be the uniformity

generated by {µn : n ∈ N}. Then (L, U ) is complete by [31, 1.1.4]. Passing to

the quotient (L̂, Û ) := (L, U )/N(U ) we may assume that U is Hausdorff. So

(L, U ) = (L̂, Û ) = (L̃, Ũ ). By the classical Nikodým theorem, {µ̄n : n ∈ N} is

uniformly bounded, i.e., for some positive number r we have that µ̄n(C(L)) ⊂ {x ∈

E : ‖x‖ 6 r} for every n ∈ N. By 3.4 µn(L) ⊂ co µ̄n(C(L)) ⊂ {x ∈ E : ‖x‖ 6 r}.

Hence {µn : n ∈ N} is uniformly bounded. �

4.4. The range. First, we present the following theorem which generalizes Klu-

vánek’s result (see [23]). We recall that Kluvánek proved that if m is an E-valued

measure on a σ-algebra and R(m) denotes the range of m, then the weak closure of

R(m) coincides with the closed convex hull of R(m).

We will make use of the concept of “chained”. A uniform space (X, U ) is called

chained if for every x, y ∈ X and every U ∈ U there is a finite sequence x0, . . . , xn ∈

X with x0 = x, xn = y and (xi−1, xi) ∈ U for i = 1, . . . , n. If µ : L → E is a

modular measure, we say that L is µ-chained if L is chained with respect to the

µ-uniformity. In [13, 2.6] it is proved that L is µ-chained if and only if for every 0-

neighborhood U in E there is an orthogonal family (ai)
n
i=1 in L such that

n⊕
i=1

ai = 1

and µ([0, ai]) ⊆ U for i = 1, . . . , n. The latter condition for a real-valued measure µ

on a Boolean algebra means that µ is “strongly continuous” according to [14].

Theorem 4.7. Let µ : L → E be a modular measure such that L is µ-chained.

Then for every a ∈ L, the weak closure of µ([0, a]) is convex.

P r o o f. For A ⊆ E we denote by Āw the weak closure of A. Moreover, let E′

be the topological dual of E. Let a ∈ L. We prove that coµ([0, a]) ⊆ µ([0, a])
w
. Let

y ∈ coµ([0, a]) and f1, . . . , fn ∈ E′. Set ν = (f1◦µ, . . . , fn◦µ). Then ν : L → R
n is a

modular measure such that L is ν-chained, because ν-uniformity 6 µ-uniformity. By

[13] ν([0, a]) is convex. Then (f1(y), . . . , fn(y)) ∈ co ν([0, a]) = ν([0, a]). Therefore

there exists x 6 a such that fi(y) = fi(µ(x)) for every i 6 n. Hence y ∈ µ([0, a])
w
.

�
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Proposition 4.8. Let L be irreducible and complete. Suppose that there exists

a nontrivial order continuous modular measure ν : L → E.

(a) Then there is a unique order continuous modular measure λ : L → R with

λ(1) = 1, λ is strictly increasing and every order continuous modular measure

has the form µ = λµ(1).

(b) If L is atomless, then the range of λ is the closed real unit interval.

P r o o f. (a) Let µ : L → E be a nontrivial order continuous modular measure.

Then for some x′ ∈ E′, x′ ◦ µ is not trivial and has bounded variation by 2.3.

Therefore λ := |x′ ◦ µ|/|x′ ◦ µ|(1) is an increasing modular measure with λ(1) = 1.

Since sup{x ∈ L : λ(x) = 0} ∈ C(L) = {0, 1} by [10, 5.3], λ is strictly positive and

therefore strictly increasing. Moreover, λ is order continuous since λ-uniformity=

x′ ◦ µ-uniformity by [31, 1.3.11].

We will now apply 3.4 to U being the λ-uniformity. Observe that (L, U ) is

complete by [31, 1.1.4] and therefore L = L̂ = L̃. Since the modular measures satisfy

µ(x) = λ(x)µ(1) for x ∈ C(L), they are equal by 3.4. Hence µ = λµ(1).

(b) If L is atomless, then L is connected by [5, 4.3]. Therefore the continuous

image λ(L) is an interval. Since λ is increasing, λ(1) = 1, we get λ(L) = [0, 1]. �

Remark 4.9. Proposition 4.8 remains true for modular measures with values in

ℓp (p < 0 < 1).

We continue by recalling the following theorem which is contained in [5].

Theorem 4.10. Let G be a complete Hausdorff topological Abelian group and let

µ : L → G be an exhaustive modular measure. Then there are exhaustive modular

measures λ and µa (a ∈ A) on L and elements ga ∈ G (a ∈ A) such that

(a) (µa(x))a∈A is uniformly summable in x ∈ L.

(b) µ = λ +
∑

a∈A

µa.

(c) L is λ-chained.

(d) For any a ∈ A, the quotient La := L/N(µa) is an irreducible modular D-lattice

of finite length; µa(x) = h(x̂) · ga where x ∈ L, x̂ is the corresponding element

of the quotient La and h(x̂) is the height of x̂ in La.

(e) λ(L) is dense in an arcwise connected subset of G, in particular λ(L) is con-

nected. The range of
∑

a∈A

µa is relatively compact.

We can refine the previous theorem in the following way:

715



Theorem 4.11. Let L be complete and let µ : L → E be an order continu-

ous modular measure such that the µ-uniformity is Hausdorff. Then there is a µ-

continuous modular measure ν : L → E and there are µ-continuous increasing mod-

ular measures ̺a : L → R and σb : L → R and elements ya, zb ∈ E (a ∈ A, b ∈ B)

with the following properties:

(a) (̺a(x)ya)a∈A and (σb(x)zb)b∈B are summable uniformly in x ∈ L; µ = ν +̺+σ

where ̺ =
∑

a∈A

̺a · ya and σ =
∑

b∈B

σb · zb.

(b) ̺a(L) = [0, 1] for a ∈ A; ̺(L) is convex and compact; σ(L) is compact and

co ν(L) = co ν(C(L)).

(c) The restriction ν|C(L) is an atomless measure.

(d) σ = 0 if and only if L is atomless.

P r o o f. Let A be the set of all atoms a of C(L) for which [0, a] is atomless

and let B be the set of the other atoms of C(L). For p ∈ A ∪ B, the interval [0, p]

is an irreducible lattice. Therefore by 4.8 there is an increasing modular measure

λp : [0, p] → R with λp(p) = 1 and µ(x) = λp(x)µ(p) (x ∈ [0, p]); λp([0, p]) = [0, 1] if

p ∈ A. Let t be the unique complement of sup(A∪B) in C(L). We put ν(x) = µ(x∧t),

̺a(x) = λa(x ∧ a), σb(x) = λb(x ∧ b), ya = µ(a), zb = µ(b) for a ∈ A, b ∈ B, x ∈ L.

Then the measures just defined have the desired properties. Indeed, ̺(L) is the image

of the compact convex set IA under the continuous affine map (ta)a∈A 7→
∑

a∈A

ta · ya

and therefore it is compact and convex. Analogously, using (d) of 4.10 we obtain

that σ(L) is compact; the last assertion of item (b) derives from 3.4(a). Items (c)

and (d) are obvious. �

Now we furnish a tool for transferring immediately results known for classical

measures on Boolean algebras to the context of modular measures defined on D-

lattices.

Theorem 4.12.

(a) Assume that E has the property that µ(A) is compact for every order continuous

atomless measure µ : A → E defined on a complete Boolean algebra. Then

µ(L) is compact (convex, respectively) for every exhaustive modular measure

µ : L → E (with L being µ-chained).

(b) Assume that E is a Banach space and µ(A) is compact (convex) for every

order continuous atomless measure µ : A → E of bounded variation defined

on a complete Boolean algebra. Then µ(L) is compact (convex, respectively)

for every modular measure µ : L → E of bounded variation (with L being

µ-chained).
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P r o o f. We prove only the convexity assertion in (b). The other three asser-

tions can be proved analogously. Let µ : L → E be a modular measure of bounded

variation such that L is µ-chained. We can apply 3.4 to U = µ-uniformity, observing

that by [30, 6.3] µ-uniformity=supx′ ◦µ-uniformity. Since µ(L) = µ̃(L̃), it is enough

to show that µ̃(L̃) is convex. Replacing µ and L by µ̃ and L̃ we may assume that µ

is order continuous and L is complete. Since L is atomless, with the notation of 4.11

we have µ(L) = ν(L) + ̺(L). Observe that ν(L) is convex since ν(C(L)) is convex

by the assumptions and therefore ν(L) = ν(C(L)). Moreover, ̺(L) is convex. Then

µ(L) is convex. �

Observe that in Theorem 4.12 one can replace the order continuous measures on

complete Boolean algebras by σ-additive measures on σ-fields of sets. This follows

from the representation of σ-complete Boolean algebras.

Theorem 4.12 allows us to transfer e.g. the following theorem of Uhl [25], Kadets

[21], Kadets-Shekhtman [22] and Fischer-Schoeler [18] to the setting of modular

measures on D-lattices.

Recall that E is said to have the Radon-Nikodým property if for every σ-algebra of

sets Σ, for every σ-additive nonnegative measure ν on Σ and for every E-valued ν-

continuous measure µ of bounded variation on Σ, there exists a ν-integrable function

f such that µ(A) =
∫

A
f dν for all A ∈ Σ.

E is said to be B-convex if there exists an integer n > 2 and a real number

0 < k < 1 such that for every x1, . . . , xn in E, min
αi=±1

‖
n∑

i=1

αixi‖ 6 kn sup
i6n

‖xi‖.

By virtue of Theorem 4.12 we are able to generalize the following theorem to the

setting of modular measures on D-lattices.

Theorem 4.13. Let F be a field, E be a Banach space and µ : F → E an

atomless σ-additive measure.

If E has the Radon-Nikodým property and µ has bounded variation or if E is B-

convex and µ has bounded variation or if E = c0 or E = ℓp for some p ∈]1, +∞[\{2},

then µ(F ) is convex.

Remark 4.14. Since Theorem 4.12 is still valid for E = ℓp (0 < p < 1), the same

holds true for Theorem 4.13 in ℓp (0 < p < 1).

4.5. The decomposition theorem.

Theorem 4.15. Let F be a locally convex Hausdorff linear space. Let µ : L → E

and ν : L → F be exhaustive modular measures. Then there are exhaustive modular

measures µ1 and µ2 such that µ = µ1 + µ2, µ1 ≪ ν and µ2 ⊥ ν.
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P r o o f. We use the notation as in 3.4 whereU is generated by the set of all real-

valued bounded modular measures on L. By [26, 5.1] µ̄ has a unique decomposition

of the form µ̄ = λ1 + λ2 where λ1 and λ2 are E-valued µ̄-continuous measures on

C(L̃), λ1 ≪ ν and λ2 ⊥ ν. By 3.4 there are exhaustive modular measures µi : L → E

with µ̄i = λi decomposing µ. �

Acknowledgement. I wish to express my gratitude to Professor Hans Weber for

a helpful discussion.
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