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CONVEX-COMPACT SETS AND BANACH DISCS
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Abstract. Every relatively convex-compact convex subset of a locally convex space is
contained in a Banach disc. Moreover, an upper bound for the class of sets which are
contained in a Banach disc is presented. If the topological dual E′ of a locally convex space
E is the σ(E′, E)-closure of the union of countably many σ(E′, E)-relatively countably
compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively)
compact.
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1. Introduction

The possibility to include a certain bounded subset A of a locally convex space

(E, T ) in a Banach disc (i.e., a bounded absolutely convex set in (E, T ) such that

EA :=
⋃
n

nA, endowed with the norm ‖ · ‖A given by the Minkowski gauge of A, is

a Banach space) has a big impact on its structure (in particular, the set A becomes

strongly bounded, i.e., bounded on bounded subsets of the space (E′, σ(E′, E))—the

topological dual E′ of (E, T ) endowed with the topology σ(E′, E) of the pointwise

convergence on all points in E), and is the basic fact in the proof of the important

Banach-Mackey theorem (see, for example, [4, §20.11(3)]). It is then convenient to

be able to check if this happens with a minimum of requirements. This is so for

sequentially complete absolutely convex bounded subsets of a locally convex space

([4, §20.11(2)]) and for convex relatively countably compact subsets ([2, p. 17]).

Let (E, ) be a locally convex space. An adherent point of a filter (Fi)I in E is an

element in
⋂
I

Fi. An adherent point of a net (xi) in E is an adherent point (in the

former sense) of the filter (Fi := {xj : j > i}).

Research supported in part by Project MTM2005-08210 (Spain) and the Universidad
Politécnica de Valencia.

773



We collect in the following definition several of the most useful concepts when

dealing with compactness in a general locally convex space.

Definition 1. A subset A of a locally convex space (E, ) is said to be

• (relatively) countably compact ((R)NK) if every sequence of points in A has an

adherent point in A (in Ā);

• (relatively) sequentially compact ((R)SK) if every sequence in A has a subse-

quence which converges to a point in A (in Ā);

• (relatively) compact ((R)K) if every net in A has an adherent point in A (in Ā);

• (relatively) convex-compact ((R)CK) if the following holds: suppose that K1 ⊃

K2 ⊃ . . . is a decreasing sequence of closed convex subsets of E for which all

the intersections Kn ∩ A are non-empty; then the sequence (Kn ∩ A) has an

adherent point in A (in Ā).

Obviously, (R)K sets are (R)NK and (R)SK sets are (R)NK, too. It is easy to

prove (see, for example, [4, §24.3(3)]) that every (R)NK set is (R)CK. The converse

does not hold. A RCK set is always bounded ([4, §24.3(3)]). The closure of a RCK

set does not need to be CK (see Example 9 below). The concept of (R)CK is due to

Šmulian (see references in [1, Ch. III, §2]).

As we mentioned before, the following result holds:

Theorem 2 ([2], p. 17). Every convex RNK subset A of a locally convex space E

is contained in a Banach diskU ⊂ E.

In this paper, we extend this result to the class of RCK sets. We provide also

an upper bound for classes of sets which are contained in a Banach disc together

with some other results about CK sets; in particular, we prove that σ(E, E′)-(R)CK

implies σ(E, E′)-(R)K when there is a sequence of σ(E′, E)-RNK subsets of E′ whose

union is σ(E′, E)-dense in E′ (in particular, if (E, ) has a coarser metrizable locally

convex topology).

2. Banach discs

The following result is well known, so its proof will be omitted.

Theorem 3. Let A be a bounded subset of a complete locally convex space E.

Then, the map

T : ℓ1(A) −→ E

given by

(αa)a∈A
T

−→
∑

a∈A

αa a

is well defined and continuous and D := T (Bℓ1(A)) is a Banach disc.
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The following result extends [4, §20.11(2)] and [2, p. 17, Lemma] to the class of

convex and CK subsets of an arbitrary locally convex space.

Theorem 4. Every convex, RCK subset A of a locally convex space (E, T ) is

contained in a Banach disc D ⊂ E.

P r o o f. Let Ẽ be the completion of E and D the Banach disc in Ẽ constructed

in Theorem 3. We shall prove that, in fact, D ⊂ E. This will conclude the proof.

To that end, let us denote by ẼD the Banach space generated by D in Ẽ and

let ‖ · ‖D be its norm. Given a ∈ D, it can be written as a =
∞∑

i=1

αi ai (the sum

converges in ‖ · ‖D and, in particular, also in T ), where ai ∈ A, αi 6= 0 for every i

and
∞∑

i=1

|αi| 6 1. We can split this sum as

a =

∞∑

i=1

βi bi

︸ ︷︷ ︸
b

−
∞∑

i=1

γi ci

︸ ︷︷ ︸
c

,

where βi > 0, γi > 0, bi ∈ A and ci ∈ A.

Let sn =
n∑
1

βi, s =
∞∑
1

βi and xn = (1/sn)
n∑
1

βi bi. Then xn ∈ A and (xn)

‖ · ‖D-tends to (1/s) b ∈ Ẽ.

Let Kn be the sequence of closed convex sets in (E, T ) defined as

Kn = conv
[
{xi : i ∈ N}

⋂(1

s
b +

1

n
D

)]

Thus, K1 ⊃ K2 ⊃ . . . and Kn ∩A 6= ∅ (observe that D contains the open unit ball in

the norm ‖ · ‖D). Therefore, there exists x ∈ E such that x ∈
∞⋂
1

(Kn ∩ A). Let U(0)

be any closed neighborhood of 0 in (E, T ). By the fact that D is bounded, there

exists n ∈ N such that (1/n)D ⊂ U(0). Then (all closures taken in (E, T )),

x ∈ Kn ∩ A ⊂ Kn ⊂ conv[(1/s) b + (1/n)D]

= [(1/s) b + (1/n)D] ⊂ [(1/s) b + U(0)] = (1/s) b + U(0).

Therefore, x = (1/s) b, so b ∈ E. Analogously, c ∈ E. This implies, finally, that

a ∈ E. �

If A is absolutely convex, we can be a little bit more precise, since we have D = A

if A is CK. In case that A is just RCK, we can only say that A ⊆ D ⊆ Ā.
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Corollary 5. Let A be an absolutely convex, (R)CK subset of a locally convex

space. Then A is a Banach disc (A is contained in a Banach disc D such that D ⊆ Ā).

Since convex RCK sets are contained in a Banach disc, we can use, for example,

[4, §20.11(3)] to conclude the following result.

Corollary 6. Every convex, RCK subset A of a locally convex space (E, ) is

strongly bounded, i.e., sup
u∈B, x∈A

|u(x)| < ∞, for each σ(E′, E)-bounded set B ∈ E′.

Further criteria for weak compactness use, for example, the interchangeable limit

condition, as in [5] and [3]. Given a locally convex space (E, T ), we say that two sets,

A ⊂ E and B ⊂ E′, interchange limits (and we write A ∼ B) if lim
n

lim
m

〈xn, x′
m〉 =

lim
m

lim
n
〈xn, x′

m〉 whenever (xn) (resp. (x′
m)) is a sequence in A (resp. in B) such

that both iterated limits exist. Let µ(E, E′) be the Mackey topology on E, i.e., the

topology on E of the uniform convergence on the family of all absolutely convex

and σ(E′, E) compact subsets of E′. A central result in [3] is that a bounded subset

of a µ(E, E′)-quasicomplete locally convex space E is σ(E, E′)-RK if and only if

it interchanges limits with every absolutely convex σ(E′, E)-K subset of E′. If A is

RCK then A ∼ B for every absolutely convex and σ(E′, E)-K subset of E′. This can

be easily deduced from the following fact. Here, E′∗ denotes the algebraic dual of

the topological dual E′ of E.

Lemma 7. Every (R)CK setA in a locally convex space (E, T ) satisfies the follow-

ing property: for every sequence (fn) in E′ and for every element z ∈ Ā(E′∗,σ(E′∗,E′)),

there exists a ∈ A (∈ Ā(E,σ(E,E′))) such that 〈z − a, fn〉 = 0 for all n ∈ N.

This can be proved just by considering the decreasing sequence of closed convex

sets Kn := {x ∈ E : sup{〈z − x, fi〉 : i = 1, 2, . . . , n} 6 1/n}.

With the following example we bound the class of sets in (E, T ) which are included

in a Banach disc.

Example 8. There exists a locally convex space (E, T ) and a bounded subset of

E interchanging limits with every absolutely convex σ(E′, E)-K subset of E′ and yet

not included in a Banach disc.

P r o o f. Let (E, T ) := (ℓ1, σ(ℓ1, ϕ)), where ϕ ⊂ ℓ∞ is the linear space of

all eventually zero sequences (so σ(ℓ1, ϕ) is the topology on ℓ1 of the pointwise

convergence) and let A :=
∞∏

n=1

[−n, n] ∩ ℓ1, a convex and bounded subset of E.

Observe thatA is not β(ℓ1, ϕ)-bounded, where β(ℓ1, ϕ) denotes the strong topology

on ℓ1 for the dual pair 〈ℓ1, ϕ〉, i.e., the topology of the uniform convergence on all

the σ(ϕ, ℓ1)-bounded subsets of ϕ. In order to see this, notice that the set M :=
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[−1, 1]N ∩ ϕ is σ(ϕ, ℓ1)-bounded and yet sup{〈nen, en〉 : n ∈ N} = +∞, where en is

the n-th vector of the canonical basis of ℓ1.

We shall prove that A ∼ U for every absolutely convex and σ(ϕ, ℓ1)-compact

subset of ϕ. The set U is β(ϕ, ℓ1)-bounded by the Banach-Mackey theorem (see,

for example, [4, §20.11(3)]). The topology β(ϕ, ℓ1) is compatible with the dual pair

〈RN, ϕ〉 (this can be seen as follows: given x := (xn) ∈ R
N, the sequence (

n∑
k=1

xkek)n

is in ℓ1 and σ(RN, ϕ)-converges to x, so x is in the σ(RN, ϕ)-closure of a σ(ℓ1, ϕ)-

bounded subset of ℓ1). It follows then that U lies in a finite-dimensional subspace of

ϕ, say span{wi : i = 1, 2, . . . , k}. Assume now that for two sequences (am) in A and

(un) in U the iterated limits

lim
n

lim
m

〈am, un〉, lim
m

lim
n
〈am, un〉

exists. Put un :=
k∑

i=1

λn
i wi, n ∈ N, where λn

i are real numbers. Let u0 :=
k∑

i=1

λ0
i wi

be a σ(ϕ, ℓ1)-adherent point of the sequence (un) and a0 ∈ R
N a σ(RN, ϕ)-adherent

point of the sequence (an). It follows that

lim
n

lim
m

〈am, un〉 = lim
n
〈a0, un〉, lim

m
lim
n
〈am, un〉 = lim

m
〈am, u0〉 = 〈a0, u0〉.

The element u0 is also σ(ϕ, ϕ)-adherent to the sequence (un), so, in particular, λ0
i is

adherent to the sequence (λn
i )n for i = 1, 2, . . . , k. It follows that

〈a0, un〉 =

k∑

i=1

λn
i 〈a0, wi〉

n
−→

k∑

i=1

λ0
i 〈a0, wi〉 = 〈a0, u0〉

and this proves the assertion. Again by the Banach-Mackey theorem, A is not

contained in a Banach disc as it is not β(ℓ1, ϕ)-bounded. �

3. Sometimes convex-compactness implies compactness

In ([2, p. 9]), an example of an absolutely convex sequentially compact subset A

in a locally convex space (E, ) such that Ā is not countably compact is given. We

can prove that, in fact, Ā is not even convex-compact. This provides an example of

a relatively convex-compact set whose closure is not convex-compact.

Example 9. There exists a locally convex space with an absolutely convex, se-

quentially compact (and then countably compact and so convex-compact) subset

whose closure is not convex-compact.
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To present the example, take a Xn be a disjoint sequence of uncountable sets and

define X :=
∞⋃

n=1
Xn. For f : X → R, the support of f is defined as supp f := {x ∈

X | f(x) 6= 0}. Let the vector space

E :=
{

f : X → R | ∃n ∈ N : supp f ∩
∞⋃

m=n

Xm is countable
}

be endowed with the restriction of the topology Tp in R
X of pointwise convergence

on X , denoted again Tp. Clearly, (E, Tp) turns out to be a locally convex space. By

using a diagonal procedure, it is easy to see that the set

A := {f ∈ E | supp f iscountable, ‖f‖∞ 6 1}

is sequentially compact. However, the closure

Ā(E,Tp) (= {f ∈ E | ‖f‖∞ 6 1})

is not convex-compact. To see this, let fn be the characteristic function of
n⋃

i=1

Xi,

n ∈ N. The sequence (fn) is in Ā(E,Tp) and Tp-converges to f ∈ R
X , the characteristic

function of X , which is not in E. Consider now the sets

Kn = conv{fi}
∞
n , n ∈ N.

They form a decreasing sequence of closed convex sets in E such that Kn∩Ā(E,Tp) 6=

∅. If g ∈ Kn then g(x) = 1 for all x ∈
n⋃

k=1

Xk. Thus the sequence Kn ∩ Ā(E,Tp) has

no adherent point in E. �

In Fréchet spaces or in locally convex spaces E with σ(E′, E)-separable dual E′,

several concepts of weak compactness coincide (theorems of Eberlein and Eberlein-

Šmulian, see for example [4, §24]). A criterium for weak compactness in the spirit

of the Eberlein-Šmulian theorem is given in [2, 3.10]:

Theorem 10. A locally convex space E which admits σ(E′, E)-relatively count-

ably compact sets Mn ⊂ E′, n ∈ N, such that

E′ =
∞⋃

n=1

Mn

σ(E′,E)

is σ(E, E′)-angelic (i.e., every σ(E, E′)-relatively countably compact subset of E

is σ(E, E′)-relatively compact, and its σ(E, E′)-closure coincides with its σ(E, E′)-

sequential closure). In particular, the following classes of subsets coincide:
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(i) σ(E, E′)-RNK, σ(E, E′)-RSK, σ(E, E′)-RK,

(ii) σ(E, E′)-NK, σ(E, E′)-SK, σ(E, E′)-K.

We shall prove that there is a similar Eberlein-Šmulian theorem for the class of

(R)CK sets. In fact, it can be stated for a more general class of sets (see the following

definition) including the CK ones.

Definition 11. A subset A of a locally convex space (E, ) is said to be σ(E, E′)-

(relatively) numerably compact (briefly, σ(E, E′)-(R)ΞK) if it is bounded and, given

a sequence (an) in A and a σ(E′∗, E′)-adherent point a′∗ ∈ E′∗ of (an) then, for any

sequence (x′
n) in E′, there exists a point a ∈ A∩span{an ; n ∈ N} (a ∈ span{an ; n ∈

N}) such that 〈a′∗ − a, x′
n〉 = 0 for all n ∈ N.

It is easy to see that σ(E, E′)-(R)CK sets are σ(E, E′)-(R)ΞK. Indeed, it is

easy to check that they are bounded; the second condition can be proved just by

considering the decreasing sequence of closed convex sets Kn := {x ∈ span{an ; n ∈

N} ; sup{|〈a′∗ − x, x′
i〉| ; i = 1, 2, . . . , n} 6 1/n}.

Theorem 12. Let (E, ) be a locally convex space such that in E′ there is a

sequence (Mn) of σ(E′, E)-RNK subsets such that
⋃

n∈N

Mn is σ(E′, E)-dense in E′

(in particular, this is the case if E(T ) has a locally convex topology coarser than

T and metrizable, or more particularly, if E′ is σ(E′, E)-separable). Then every

σ(E, E′)-(R)ΞK set is σ(E, E′)-(R)K.

P r o o f. Let us assume first that (E′, σ(E′, E)) is separable. Let A be a σ(E, E′)-

(R)ΞK subset of E and a′∗ ∈ Āσ(E′∗,E′) a σ(E′∗, E′)-adherent point of a sequence

(an) in A. By definition, given a countable subset N ⊂ E′, there exists aN ∈

A ∩ span{an ; n ∈ N} (aN ∈ span{an ; n ∈ N}), such that aN |N = a′∗|N . Let D

be a countable and σ(E′, E)-dense subset of E′ and let x′ ∈ E′ be an arbitrary

point. Let us consider the points aD∪x′ and aD in E. They coincide on D, so

aD∪x′ = aD. Moreover, 〈a′∗, x′〉 = 〈aD∪x′ , x′〉 (= 〈aD, x′〉). Therefore a′∗|E′ = aD|E′ ,

and so a′∗ ∈ E and A is σ(E, E′)-(R)K since it is bounded. Assume now that (E, )

satisfies the requirement and let (an) be any sequence in A. Let us consider the

separable locally convex space F = span{an}n∈N. Its dual is F ′ = q(E′) = E′/F⊥,

where q : E′ → E′/F⊥ is the canonical mapping. It is easy to see that q(Mn) is

σ(F ′, F )-RNK and that
⋃

n∈N

q(Mn) is dense in (F ′, σ(F ′, F )). Furthermore, the dual

of (F ′, σ(F ′, F )) is F , which is separable. Therefore we can apply Theorem 10 to

conclude that q(Mn) is σ(F ′, F )-RK and so, metrizable in (F ′, σ(F ′, F )). Thus,

q(Mn) is separable, and so it is (F ′, σ(F ′, F )), too.

We claim now that A ∩ F is σ(E, E′)-(R)ΞK. Indeed, let f ′∗ be a σ(F ′∗, F ′)-

adherent point of a given sequence (xn) in F , and let (f ′
n) be a sequence in F ′. The
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element f ′∗ ◦ q (∈ E′∗) is a σ(E′∗, E′)-adherent point to (xn) in E, and there exists

a sequence (e′n) in E′ such that q(e′n) = f ′
n for all n ∈ N. By the assumption, we

can find a ∈ A∩ span{xn ; n ∈ N} ⊂ A ∩F (a ∈ span{xn ; n ∈ N} (⊂ F )) such that

〈e′∗ − a, e′n〉 = 0, i.e., 〈f ′∗ − a, f ′
n〉 = 0, for all n ∈ N. This proves the claim.

We can then apply the first part of the proof to the set A ∩ F to obtain that the

set {an : n ∈ N} is σ(F, F ′)-RNK (with an adherent point in A (in A
σ(F,F ′)

)). This

implies that A is σ(E, E′)-(R)NK. By Theorem 10, A is σ(E, E′)-(R)K. �

We can extend now Theorem 10 to include the class of σ(E, E′)-(R)ΞK sets (and

so σ(E, E′)-(R)CK sets).

Theorem 13. Let (E, ) be a locally convex space which admits σ(E′, E)-relatively

countably compact sets Mn ⊂ E′, n ∈ N, such that

E′ =

∞⋃

n=1

Mn

σ(E′,E)

.

Then, the following classes of sets (in the topology σ(E, E′)) coincide:

(i) σ(E, E′)-K, σ(E, E′)-SK, σ(E, E′)-NK, σ(E, E′)-CK, σ(E, E′) − ΞK.

(ii) σ(E, E′)-RK, σ(E, E′)-RSK, σ(E, E′)-RNK, σ(E, E′)-RCK, σ(E, E′)-RΞK.
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