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Abstract. In this paper we present some formulae for topological invariants of projective
complete intersection curves with isolated singularities in terms of the Milnor number, the
Euler characteristic and the topological genus. We also present some conditions, involving
the Milnor number and the degree of the curve, for the irreducibility of complete intersection
curves.
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1. Introduction

One interesting and important problem in singularity theory and algebraic geom-

etry is to obtain topological information about a curve in Pn(C) using the equations

which define this curve.

Several topological invariants are known, for example, the Milnor number, the

Euler characteristic and the topological genus. But, computing theses invariants is

a hard problem because, in general, we need to consider some data which is not

contained explicitly in the equations that define the curve. In particular cases, we

have simple formulae. For example, for the topological genus gT (C) of a non-singular

irreducible plane curve C with degree d we have the classical Plücker’s relation

gT (C) = 1
2 (d − 1)(d − 2). However, for the general case we do not have a formula

for this invariant. We present here a formula for computing topological genus of an

irreducible complete intersection curve with isolated singularities.

We also rewrite Plücker’s formula obtained by Kleiman [8] for complete intersection

curves with isolated singularities in terms of the Milnor number and use this formula

This work was partially supported by PROCAD/CAPES and CNPq.
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to establish a criterion for the irreducibility of such curves. In particular, we obtain

an estimate for the Milnor number of a singular point in terms of the degree of the

curve.

2. Affine and projective curves

Let x0, . . . , xn be homogeneous coordinates in P
n := P

n(C), let

U0 = {(x0 : x1 : . . . : xn) ∈ P
n; x0 6= 0}

be the affine chart and let ϕ : U0 → C
n be defined by (x0 : x1 : . . . : xn) 7→

(x1/x0, . . . , xn/x0).

Let X ⊂ C
n be an affine variety. The closure of ϕ−1(X) in P

n with respect to

the Zariski topology is called the projective closure of X in P
n and denoted by X.

We denote by X∞ the part at infinity of X , that is, X∞ = X ∩ H∞ where H∞ =

V (x0) := {(x0 : x1 : . . . : xn) ∈ P
n; x0 = 0} is the hyperplane at infinity.

Let I ⊂ C[x1, . . . , xn] be an ideal and define Ih := 〈fh ; f ∈ I〉 ⊂ C[x0, . . . , xn],

where fh is the homogenization of f with respect to x0. The ideal Ih is called

the homogenization of I. For g ∈ C[x0, . . . , xn], we set g|H∞
:= g(0, x1, . . . , xn) ∈

C[x1, . . . , xn] and denote I∞ := 〈g|H∞
; g ∈ Ih〉 ⊂ C[x1, . . . , xn].

If X ⊂ P
n is a projective variety then Xa = ϕ0(X ∩ U0) ⊂ C

n is called the affine

part of X and if J ⊂ C[x0, . . . , xn] is a homogeneous ideal, then the ideal

Ja := 〈fa(x1, . . . , xn) := f(1, x1, . . . , xn) ; f ∈ J〉

is called the affinization of J .

We observe that it is not sufficient to homogenize an arbitrary set of generators

of I in order to obtain a set of generators of Ih. For example, if we consider the ideal

I = 〈x3 + z2, x3 + y2〉 ⊂ C[x, y, z], then Ih ∋ z2 − y2 6∈ J = 〈x3 + z2u, x3 + y2u〉,

where u is the homogenizing coordinate. Indeed, if we consider the curve X = V (I)

in C
3, then its projective closure X = V (Ih) should meet H∞ only at finitely many

points, while V (J) contains the line {u = x = 0} as a component in H∞.

However, if f1, . . . , fk is a Gröbner basis of I with respect to a degree order-

ing, then Ih = 〈fh
1 , . . . , fh

k 〉 and we have V (I) = V (fh
1 , . . . , fh

k ) and V (I)∞ is

V (fh
1 |H∞

, . . . , fh
k |H∞

).
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Theorem 2.1 (Mumford [11]). Let OX,x be the local ring of a variety X of

dimension d at a point x ∈ X , M the maximal ideal of OX,x and I ⊂ OX,x any

ideal such that I ⊃ M k for some k > 0. Then OX,x/OX,x · I l is a finitely generated

OX,x/M lk-module, hence it has a finite dimension as a complex vector space. Then

there is a polynomial PHS(l) of degree at most d called the Hilbert-Samuel polynomial

such that:

dimC

OX,x

OX,x · I l
= PHS(l) if l ≫ 0.

If

PHS(t) = e ·
td

d!
+ {lower order terms},

then e = ex(I; OX,x), or shorter ex(I), is called the multiplicity of OX,x with respect

to I.

Let X be any variety and x ∈ X . The multiplicity of X at x is the multiplicity of

the local ring OX,x with respect to the maximal ideal M ⊂ OX,x, that is, ex(M ),

and is denoted by mx(X).

Geometrically, we may interpret mx(X) as follows (see [11]). Let X ⊂ C
n be a

variety of dimension d defined by an ideal I ⊂ C[x0, . . . , xn], x ∈ X , and let Cx(X) be

the tangent cone of X at x, that is, Cx(X) = V (Inx(I)), where Inx(I) denotes the

ideal generated by initial forms of all f ∈ I.

We define

mx(X) = min{(X, H)x : H linear space such that {x} = X ∩ H}

where (X, H)x denotes the intersection multiplicity of X and H at x where H is a

linear space of dimension n − d through x, which is transversal to Cx(X).

Example 2.2. Let X be the cuspidal cubic curve given by f = x3 − y2 = 0. The

tangent cone is the x-axis {y = 0} and a line that is transversal to the tangent cone

is H = {x + by = 0} with b ∈ C. Then m0(X) = 2.

Let X ⊂ C
n (or Pn) be an affine (or projective) variety of dimension d. We

define the degree deg(X) of X to be d times the leading coefficient of the Hilbert

polynomial PH of X or O/I (see [6]). A geometric interpretation of the degree is

given in [11]. If X ⊂ C
n (or Pn) is an affine (or projective) variety of dimension d,

then

deg(X) = ♯(X ∩ H),

where ♯ denotes the number of elements counting multiplicity and H ⊂ C
n (or Pn)

is a sufficiently general affine (or projective) hyperplane of dimension n − d.
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If X = C
n then we denote the local ring at x by On,x. We also denote by (X, x) a

germ at x ∈ C
n of a complete intersection curve with isolated singularities X in C

n

defined by equations f1 = 0, . . . , fn−1 = 0 with fi ∈ On,x, that is, X is the affine

curve

X = V (f1, . . . , fn−1) = {P ∈ C
n ; fi(P ) = 0, ∀ i = 1, . . . , n − 1}.

We choose a generic linear projection p : C
n → C and define the space

X1 = V (f1, . . . , fn−1, p)

which is an isolated complete intersection singularity (ICIS) (see [4]).

We let J(f1, . . . , fn−1, p) be the variety defined by the determinant of the Jacobian

matrix and denote by µx(X) the Milnor number of X at x, that is, the codimension

of the Jacobian ideal of X in On,x. Applying the theorem of Greuel in [4] we have

µx(X1) + µx(X) = dimC

On,x

(f1, . . . , fn−1, J(f1, . . . , fn−1, p))

or

µn−1
x (X) + µn

x(X) = dimC

On,x

(f1, . . . , fn−1, J(f1, . . . , fn−1, p))

where µi(X) denotes the Milnor number of X restricted to a linear space of dimen-

sion i in C
n.

Because p is generic we have that X1 is a zero dimensional space and

µx(X1) = dimC

On,x

(f1, . . . , fn−1, p)
− 1 = (X, H)x − 1,

where H = p−1(x) (see [10]). Hence,

(1) µx(X) − (X, H)x + 1 = (X, J(f1, . . . , fn−1, p))x.

We consider now C ⊂ P
n to be a projective complete intersection curve given by

the ideal I = (F1, . . . , Fn−1), where Fi ∈ C[X0, . . . , Xn] is a homogeneous polynomial

of degree di > 0. We can obtain a projective counterpart to formula (1). Indeed,

let P (C) be the relative polar curve defined by J(F1, . . . , Fn−1, p) = 0 where p is as

above. Then we have the following result.
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Lemma 2.3. For any x ∈ C we have

(C, P (C))x = µx(C) + (C, H)x − 1,

where H is a line passing through x and a different point y.

P r o o f. It is sufficient to choose coordinates of Pn such that x = (0 : . . . : 0 : 1) ∈

P
n and y = (0 : . . . : 0 : 1 : 0) ∈ P

n. In this way, if X is the affine curve associated

to C, then the lemma reduces to the affine case, that is, µx(X) + (X, H)x − 1 =

(X, P (X))x. �

We consider as above a complete intersection curve C with isolated singularities

in P
n and the affine curve X associated to C given by f : C

n → C
n−1 with f =

(f1, . . . , fn−1), that is, X = f−1(0), where fi ∈ C[X0, . . . , Xn] is a polynomial of

degree di. Using Bézout’s Theorem we have that d =
n−1∏
i=1

di is the degree of X .

Remark 2.4. If X is a complete intersection curve as above, then applying

Lemma 2.3 and Bézout’s Theorem we obtain

∑

x∈Sing(X)

((X, H)x − 1) = d

n−1∑

i=1

(di − 1) −
∑

x∈Sing(X)

µx(X)

where H is a linear space transverse to X at x and Sing(X) is the set of the singular

points of X .

Using Lemma 2.3 we rewrite Plücker’s formula for complete intersection curves.

Theorem 2.5 (Plücker’s Formula). Let C ⊂ P
n be a complete intersection curve

with isolated singularities defined by the ideal (F1, . . . , Fn−1) ⊂ C[X0, . . . , Xn] where

each Fi is homogeneous of degree di. Then the number ď of hyperplanes through a

fixed general codimension 2-plane in P
n and tangent to C is given by

n−1∏

i=1

di

n−1∑

i=1

(di − 1) −
∑

x∈Sing(C)

(µn
x(C) + µn−1

x (C)).

P r o o f. By Bézout’s Theorem, we have

(C, P (C))Pn =
∑

x∈C∩P (C)

(C, P (C))x

=
∑

x∈(C−Sing(C))∩P (C)

(C, P (C))x +
∑

x∈Sing(C)∩P (C)

(C, P (C))x,

where P (C) is the polar curve (see above).
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By the above observations we have

(C, P (C))x = µn
x(C) + µn−1

x (C)

for singular points of C. Using the geometric interpretation of ď given by Kleiman [8],

we have ď =
∑

x∈(C−Sing(C))∩P (C)

(C, P (C))x and

n−1∏

i=1

di

n−1∑

i=1

(di − 1) = ď +
∑

x∈Sing(C)

µn
x(C) + µn−1

x (C).

�

Remark 2.6. Notice that if C is a plane curve, then the number of tangents ď

through a fixed general point is given by

ď = d(d − 1) − Σx∈Sing(C)(µ
2
x(C) + µ1

x(C))

= d(d − 1) − Σx∈Sing(C)(µx(C) + mx(C) − 1),

which is the classical Plücker’s formula.

Our next result is an extension of the classical formula of Max Noether for complete

intersection curves. Before starting it we require the following result.

Theorem 2.7 (Riemann-Hurwitz [9]). Let X and Y be compact topological

spaces, Y triangulable and let π : X → Y be a continuous open surjective mapping

with finite fibers. Suppose there is a finite subset A ⊂ Y such that π : X \π−1(A) →

Y \ A is a covering with d sheets. Then X is triangulable and

χ(X) = d · χ(Y ) +
∑

y∈A

(♯π−1(y) − d)

where χ(Z) denotes the Euler characteristic of Z.

P r o o f. See [9]. �

Let X and Y be algebraic projective curves, Y smooth and let π : X → Y be a

regular surjective mapping with finite fibers. Then the assumptions of Theorem 2.7

are satisfied with d = deg π (the geometric degree of π) and for every x ∈ X the

multiplicity multx π is defined in such a way that
∑

x∈π−1(y)

multx π = deg(π), and for
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generic y ∈ Y we have multx π = 1 if x ∈ π−1(y) (see the definition of multx(π)

in [11]). With this notation, we have

χ(X) = deg(π) · χ(Y ) −
∑

x∈X

(mult
x

(π) − 1).

If X ⊂ P
n is a complete intersection curve with isolated singularities and Y =

P(C), then by [11, p. 121, Theorem A.10] we have multx π = ex(MY,y · OX,x) =

(X, H)x, where MY,y is the maximal ideal of OY,y and H is a hyperplane that

intercepts transversely X at x.

We have the following theorem.

Theorem 2.8 (Max Noether’s Formula). Let C ⊂ P
n be a complete intersec-

tion curve with isolated singularities defined by F1, . . . , Fn−1 ∈ C[X0, . . . , Xn] where

each Fi is a homogeneous polynomial of degree di. Then

χ(C) = d

(
2 −

n−1∑

i=1

(di − 1)

)
+

∑

x∈C

µx(C),

where d is the degree of C, that is, d =
n−1∏
i=1

di.

P r o o f. We consider a generic projection π : C → P(C) such that π−1(0 : 1) =

H is a hyperplane which intercepts transversely C at x and deg(π) = d. Then using

the fact that χ(P(C)) = 2, Remark 2.4 and Theorem 2.7, we have

χ(C) = d · χ(P(C)) − Σx∈C((C, H)x − 1)

= 2d − d
n−1∑

i=1

(di − 1) +
∑

x∈C

µx(C)

= d

(
2 −

n−1∑

i=1

(di − 1)

)
+

∑

x∈C

µx(C).

�

Remark 2.9.

1. We observe that in the case when C is a projective plane curve of degree d, we

have

χ(C) =
∑

x∈C

µx(C) − d(d − 3).
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2. When the curve C ⊂ P
n is smooth and given by (F1, . . . , Fn−1) where each Fi

is a homogeneous polynomial of degree di, we have

χ(C) =

(n−1∏

i=1

di

)(
1 + n −

n−1∑

i=1

di

)
.

Using Theorem 2.8, we have a formula for the topological genus of an irreducible

complete intersection curve. Note that there exist formulae for computing the arith-

metic genus of projective complete intersections, see for example [1].

Proposition 2.10. Let N : C̃ → C be the normalization of the complete intersec-

tion curve C ⊂ P
n given by (F1, . . . , Fn−1) ⊂ C[X0, . . . , Xn] with Fi a homogeneous

polynomial of degree di and let rx(C) be the number of irreducible components of C

at x ∈ C.

We have

χ(C̃) = χ(C) +
∑

x∈C

(rx(C) − 1)

and if C is irreducible then the topological genus of C, gT (C), is given by

gT (C) = 1 +
1

2
d

(n−1∑

i=1

di − n − 1

)
−

1

2

∑

x∈C

(µx(C) + rx(C) − 1),

where d =
n−1∏
i=1

di.

P r o o f. The normalization N has degree 1 and ♯N−1(x) = rx(C). Then by the

Riemann-Hurwitz theorem and Milnor’s formula µx(C) = (C, P (C))x −rx(C)+1 we

have the first equality. Now using Theorem 2.8 we obtain

χ(C̃) = d

(
2 −

n−1∑

i=1

(di − 1)

)
+

∑

x∈C

(µx(C) + rx(C) − 1).

If C is an irreducible curve then we have the formula of the topological genus gT (C)

using the relation χ(C̃) = 2 − 2gT (C) (see [3]). �
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3. Examples and applications

In this section we present particular cases of the previous results and we deduce

some well known relations.

Example 3.1. Let the irreducible plane cuspidal curve C be given by x2z+y3 = 0.

We have d = 3 and µ = 2. Using Remark 2.9 and Proposition 2.10 we obtain

gT (C) = 0 and χ(C) = 2.

Example 3.2. Using Proposition 2.10, we may obtain some classical formulae for

the genus. For example, if C is an irreducible and smooth curve, then we have

gT (C) = 1 +
1

2
d

(n−1∑

i=1

di − (n + 1)

)
.

In particular, if C is a curve in P3 obtained by the intersection of two hypersurfaces

with degree d1 and d2 (see [12]), we have

gT (C) = 1 +
1

2
d1d2(d1 + d2 − 4).

The last formula is a generalization of the classical case of a plane curve. In fact,

if C is a smooth irreducible plane curve with degree d, then we have

gT (C) = 1 +
1

2
d(d − 3) =

(d − 1)(d − 2)

2
.

Example 3.3. If X is a smooth curve in P
n with gT (X) = 2, then X is not a

complete intersection. In fact, if X is irreducible then using the previous example,

we have 2 = d
(n−1∑

i=1

di − n − 1
)
.

We have two possibilities:

• d = 1 and
n−1∑
i=1

di − n − 1 = 2 implies n = −2, which is absurd.

• d = 2 and
n−1∑
i=1

di − n − 1 = 1, which is also absurd.

Example 3.4. If X is a smooth projective complete intersection curve in P
n

defined by (F1, . . . , Fn−1), where Fi is a homogeneous polynomial with degree di,

then X is diffeomorphic to a torus if and only if (d1, . . . , dn−1) is a partition of n+1.

In fact, Harris in [5] showed that two oriented 2-manifolds are diffeomorphic if and

only if they have the same genus. As the torus has genus 1, then it is sufficient to

show that the curves with the listed properties have genus 1.

983



Using the formula given in Example 3.2 and the fact that (d1, . . . , dn−1) is a

partition of n + 1, that is,
n−1∑
i=1

di = n + 1, we have

gT (X) = 1 +
1

2
d

(n−1∑

i=1

di − n − 1

)
= 1,

proving the result.

4. Irreducibility conditions

In this section we present some conditions involving topological invariants for a

projective complete intersection curve to be irreducible.

Proposition 4.1. Let C ⊂ P
n be a projective complete intersection curve of

degree d =
n−1∏
i=1

di with isolated singularities. Suppose that C has m irreducible

components at a point x ∈ C. Then

µx(C) 6 2d2 + 2m − (n + 2)d.

P r o o f. Let C1, . . . , Cm be the irreducible components of C at x. Using Propo-

sition 2.10 for irreducible curves we have

µx(Cj) 6 (dj − 1)

(n−1∑

i=1

dj
i − 2

)
+

n−1∑

i=1

(dj
i − dj)

where dj =
n−1∏
i=1

dj
i , dj

i is the degree of the equations which define Cj for all i =

1, . . . , n − 1 and j = 1, . . . , m. Also, using the expressions for the Milnor numbers [2],

we obtain

µx(X) − 1 =
r∑

i=1

(µx(Xi) − 1) + 2
r−1∑

i=1

(Xi, Xj)x.

We have

µx(C) + m − 1 = µx

( m⋃

j=1

Cj

)
+ m − 1 =

m∑

j=1

µx(Cj) + 2
∑

16j<k6m

(Cj , Ck)x

6

m∑

j=1

(
(dj − 1)

(n−1∑

i=1

dj
i − 2

)
+

n−1∑

i=1

(dj
i − dj)

)
+ 2

∑

16j<k6m

djdk
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=

m∑

j=1

(
dj

n−1∑

i=1

dj
i

)
− 2

m∑

j=1

dj + 2m − (n − 1)

m∑

j=1

dj + 2
∑

16j<k6m

djdk

=

m∑

j=1

(
dj

n−1∑

i=1

dj
i

)
− 2

m∑

j=1

dj + 2m − (n − 1)

m∑

j=1

dj +

( m∑

j=1

dj

)2

−

m∑

j=1

dj

6

m∑

j=1

dj

m∑

j=1

(n−1∑

i=1

dj
i

)
− 3

m∑

j=1

dj + 2m − (n − 1)

m∑

i=j

dj +

( m∑

j=1

dj

)2

6 d2 − 3d + 2m− (n − 1)

m∑

j=1

dj + d2

= 2d2 − 3d + 2m − (n − 1)d

and this concludes the proof. �

Let X be a projective complete intersection curve given by an ideal (F1, . . . ,

Fn−1) ⊂ C[X0, . . . , Xn] where each Fi is homogeneous. We assume that X is ICIS

with multidegree (d1, . . . , dn−1), that is, the degree of Fi is di and X has degree

d =
n−1∏
i=1

di.

Definition 4.2. Let X ⊂ P
n be an ICIS reducible projective curve with degree d.

If OX,x is the local ring of X at x ∈ X and OX,x is the normalization of OX,x,

then we define the δx-invariant of X at x by

δx(X) = dimC

OX,x

OX,x

.

If we assume that X =
r⋃

i=1

Xi is such that Xi ∩ Xj = {x} for i 6= j then we have

(2) δx(X) =

r∑

i=1

δx(Xi) +
∑

16i<j6r

(Xi, Xj)x

(see [7]) and

µx(X) − 1 =
r∑

i=1

(µx(Xi) − 1) + 2
∑

16i<j6r

(Xi, Xj)x

(see [2]).

With this notation we have the following irreducibility criteria.
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Proposition 4.3. Let X ⊂ P
n be an ICIS projective curve given by the ideal

(F1, . . . , Fn−1), where each Fi is a homogeneous polynomial of degree di and d =
n−1∏
i=1

di.

1. If
∑

x∈X

δx < d − 1, then X is an irreducible curve.

2. If X has no linear factor and
∑

x∈X

δx < 2d − 4, then X is an irreducible curve.

P r o o f. 1. Suppose that X has two components X1 and X2 such that X =

X1 ∪ X2. If deg(X1) = e, then deg(X2) = d − e (see [3]). By Bézout’s theorem we

have
∑

x∈X

(X1, X2)x = (d − e)e and using Hironaka’s formula 2, we have
∑

x∈X

δx >

∑
x∈X

(X1, X2)x = (d − e)e > d − 1, which contradits
∑

x∈X

δx < d − 1.

2. We have, as in the previous item,
∑

x∈X

(X1, X2)x = (d − e)e. But if X has no

linear factor, then e > 1 and we have (d − e)e > 2(d − 2). This is a contradiction

with our assumption. �

In particular, with the previous notation, we have the following corollary.

Corollary 4.4. If µ(X) < 2(d − 1) − ♯Sing(X), then X is an irreducible curve.

P r o o f. In fact, denoting X = X1 ∪ X2 as in the proof of the previous proposi-

tion, we have, using the Hironaka’s Theorem (see [2]),

µx(X) + 1 =

2∑

i=1

µx(Xi) + 2(X1, X2)x,

hence

∑

x∈Sing(X)

(µx(X) + 1) =
∑

x∈Sing(X)

2∑

i=1

µx(Xi) + 2
∑

x∈Sing(X)

(X1, X2)x.

However, we have µ(X) =
∑

x∈Sing(X)

µx(X), therefore

µ(X) + ♯Sing(X) =
∑

x∈Sing(X)

2∑

i=1

µx(Xi) + 2
∑

x∈Sing(X)

(X1, X2)x.

From this equality we have

µ(X) + ♯Sing(X) > 2
∑

x∈Sing(X)

(X1, X2)x = 2
∑

x∈X

(X1, X2)x = 2(d − e)e > 2(d − 1).

Therefore µ(X) > 2(d − 1) − ♯Sing(X), which is impossible by the assumption. �
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Example 4.5. a) The cuspidal curve C given by x2z + y3 = 0 has a single

singular point. We have µ(C) = 2 and the degree is d = 3. Then we have 2 =

µ(C) < 2(d− 1)− ♯Sing(X) = 3, that is, the curve C is irreducible as is well known.

b) Let C be the complete intersection curve given by V (xy−zt, x2+2z2−ty) ⊂ P
3.

Since ♯Sing(C) = 0, we have 0 = µ(C) < 2(d − 1) − ♯Sing(C) = 6, hence C is an

irreducible curve.

c) We observe that the converse of the previous results is false. For example, if we

consider the irreducible curve C ⊂ P
3 defined by the equations

xy − wz = 0, z6w9 + x15 + y10w5 = 0,

then d = 30, µ(C) = 126, ♯Sing(C) = 1 and µ(C) > 2(d − 1) − ♯Sing(C).
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