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Abstract. Applying a simple integration by parts formula for the Henstock-Kurzweil
integral, we obtain a simple proof of the Riesz representation theorem for the space of
Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the
existence and equality of two iterated Henstock-Kurzweil integrals.
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1. Introduction

It is well known that if f is Henstock-Kurzweil integrable on a compact interval

[a, b] of R and g is of bounded variation on [a, b], then fg is Henstock-Kurzweil

integrable on [a, b] and the integration by parts formula holds; see, for example,

[2, Chapter 11]. Denoting the space of Henstock-Kurzweil integrable functions by

HK[a, b], it is not difficult to see that every function g of bounded variation on [a, b]

induces a bounded linear functional on the space HK[a, b]. On the other hand, it

is also known that if T is a bounded linear functional on HK[a, b], then there exist

functions g : [a, b] −→ R and g0 ∈ BV [a, b] such that g = g0 almost everywhere on

[a, b] and

T (f) = (HK)

∫ b

a

f(t)g(t) dt

for every f ∈ HK[a, b]; see, for example, [6] for details.

In 1973, Kurzweil [5] proved an integration by parts formula for higher-dimensional

Henstock-Kurzweil integral. More precisely, he proved that if f is Henstock-Kurzweil

integrable on a compact interval E of a multidimensional Euclidean space and g is
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of bounded variation (in the sense of Hardy-Krause) on E, then fg is Henstock-

Kurzweil integrable on E and the integration by parts formula holds. Furthermore,

the function

Tg : HK(E) −→ R : f 7→ (HK)

∫

E

f(t)g(t) dt

is a bounded linear functional on HK(E). More recently, various authors [8], [12],

[14], [17] have shown that the converse is also true; that is, if T is a bounded linear

functional on HK(E), then there exist a function g : E −→ R and a function g0 of

bounded variation (in the sense of Hardy-Krause) on E with the following properties:

g = g0 almost everywhere on E and

(1) T (f) = (HK)

∫

E

f(t)g(t) dt

for every f ∈ HK(E). Nevertheless, the above proofs of (1) are non-elementary:

either Kurzweil’s multidimensional integration by parts formula or the measure the-

ory is involved. One of the aims of this paper is to give a simpler proof of this

representation theorem.

The paper is organised as follows. In Section 2 we state a number of useful results

concerning functions of bounded variation (in the sense of Vitali), with proofs where

necessary. In Section 3 we give a simple proof of the Riesz representation theorem for

the space of Henstock-Kurzweil integrable functions; see Theorem 3.7 for details. In

Section 4 we prove the corresponding Riesz representation theorem for the space of

Cauchy-Lebesgue integrable functions. In Section 5 we employ our results to obtain

a “Tonelli’s theorem” for Henstock-Kurzweil integrals; see Theorem 5.10 for details.

2. Functions of bounded variation

Let m > 1 be an integer and let Rm denote the m-dimensional Euclidean space

equipped with the maximum norm ||| · |||. For x ∈ R
m and r > 0, set B(x, r) := {y ∈

R
m : |||y −x||| < r}. An interval in Rm is a set of the form [u, v] :=

m∏
i=1

[ui, vi], where

u = (u1, . . . , um), v = (v1, . . . , vm) with ui, vi ∈ R and ui < vi for i = 1, . . . , m.

Throughout this paper [a, b] :=
m∏

i=1

[ai, bi] denotes a fixed interval and Im([a, b]) the

family of all subintervals of [a, b].

A division of [a, b] is a finite collection {I1, . . . , Ip} of non-overlapping intervals

such that
p⋃

i=1

Ii = [a, b]. For any given real-valued function g defined on [a, b], the
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total variation of g over [a, b] is defined by

Var(g, [a, b]) := sup

{ ∑

[u,v]∈P

|∆g([u, v])| : P is a division of [a, b]

}
,

where

∆g([u, v]) :=
∑

t∈[u,v]

ti∈{ui,vi} ∀ i∈{1,...,m}

g(t)

m∏

i=1

sgn
(
ti −

ui + vi

2

)

for each [u, v] ∈ Im([a, b]).

Definition 2.1. A function g : [a, b] −→ R is said to be of bounded variation

(in the sense of Vitali) on [a, b] if Var(g, [a, b]) is finite.

The space of functions of bounded variation (in the sense of Vitali) on [a, b] is

denoted by BV [a, b]. Set

BV0[a, b] := {g ∈ BV [a, b] : g(x) = 0 whenever x ∈ [a, b] \ (a, b]},

where (a, b] :=
m∏

i=1

(ai, bi].

Let µm denote Lebesgue measure in R
m. The following theorem, which asserts that

every bounded linear functional on C[a, b] can be represented by Riemann-Stieltjes

integration, is an m-dimensional analogue of [3, Theorem 2].

Theorem 2.2 (Riesz Representation Theorem). Let T : C[a, b] −→ R be a

bounded linear functional. Then there exists g ∈ BV0[a, b] such that

T (F ) = (RS)

∫

[a,b]

F (x) dg(x)

for every F ∈ C[a, b]. Moreover, ‖T ‖ = Var(g, [a, b]).

P r o o f. Let B[a, b] denote the space of bounded functions on [a, b] and assume

that B[a, b] is equipped with the L∞-norm ‖ · ‖L∞[a,b], where

‖f‖L∞[a,b] = inf{M ∈ R : |f(x)| 6 M for µm-almost all x ∈ [a, b]}.

Let B[a, b]∗ denote the dual space of B[a, b]. By the Hahn-Banach Theorem, T has

an extension T̃ ∈ B[a, b]∗ with ‖T ‖ = ‖T̃‖.

Let g(x) := T̃ (χ(a,x]). Then we can follow the proof of Riesz’s theorem (cf. [4])

to get

Var(g, [a, b]) 6 ‖T ‖ < ∞
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and

T (F ) = (RS)

∫

[a,b]

F (x) dg(x)

for every F ∈ C[a, b]. It is now easy to check that Var(g, [a, b]) = ‖T ‖. The proof is

complete. �

Remark 2.3. Theorem 2.2 can be proved without using the Hahn-Banach The-

orem; consult [3, Theorem 2].

3. The Henstock-Kurzweil integral

A partial partition of the interval [a, b] is a collection {(I1, t1), . . . , (Ip, tp)} [a, b],

where I1, . . . , Ip are nonoverlapping intervals and ti ∈ Ii ⊂ [a, b] for i = 1, . . . , p. If δ

is a gauge (i.e. a positive function) on a set Z ⊆ [a, b], we say that a partial partition

{(I1, t1), . . . , (Ip, tp)} of [a, b] is δ-fine whenever ti ∈ Z and diam(Ii) < δ(ti) for

i = 1, . . . , p, where diam(A) denotes the diameter of a set A ⊂ R
m.

Lemma 3.1 (cf. [7, Lemma 6.2.6]). If δ is a gauge on [a, b], then there exists a

δ-fine partial partition {(I1, t1), . . . , (Ip, tp)} of [a, b] such that
p⋃

i=1

Ii = [a, b].

Definition 3.2. A function f : [a, b] −→ R is said to be Henstock-Kurzweil

integrable on [a, b] if there exists A ∈ R with the following property: given ε > 0

there exists a gauge δ on [a, b] such that

(2)

∣∣∣∣
p∑

i=1

f(ti)µm(Ii) − A

∣∣∣∣ < ε

for each δ-fine partial partition {(I1, t1), . . . , (Ip, tp)} of [a, b] with
p⋃

i=1

Ii = [a, b].

Here A is called the Henstock-Kurzweil integral of f over [a, b], and we write A as

(HK)
∫
[a,b]

f(x) dx.

The collection of all functions that are Henstock-Kurzweil integrable on [a, b]

will be denoted by HK[a, b]. The following properties are known for the Henstock-

Kurzweil integral; see [7] for the proofs, where the term “Kurzweil-Henstock integral”

is used to describe this integral.
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Theorem 3.3.

(a) HK[a, b] is a linear space.

(b) If f ∈ HK[a, b], then f ∈ HK(J) for each J ∈ Im([a, b]).

(c) If f ∈ HK[a, b], then the interval function J 7→ (HK)
∫

J
f(x) dx is additive on

Im([a, b]). This interval function is known as the indefinite Henstock-Kurzweil

integral, or in short the indefinite HK-integral, of f .

(d) If f ∈ HK[a, b], then for each ε > 0 there exists η > 0 such that∣∣(HK)
∫

J
f(x) dx

∣∣ < ε whenever J ∈ Im([a, b]) and µm(J) < η.

(e) If f ∈ L1[a, b] and f is real-valued, then f ∈ HK[a, b] and
∫
[a,b] f(x) dµm(x) =

(HK)
∫
[a,b]

f(x) dx.

(f) If {f, |f |} ⊂ HK[a, b], then f ∈ L1[a, b].

For the rest of this paper, the space HK[a, b] will be equipped with the semi-norm

‖ · ‖
HK[a,b]

, where

‖f‖
HK[a,b]

:= sup

{ ∣∣∣∣(HK)

∫

I

f(x) dx

∣∣∣∣ : I ∈ Im([a, b])

}
.

The following theorem, which is an improvement of Theorem 3.3(e), is also im-

portant.

Theorem 3.4 ([9, Theorem 6]). L1[a, b] is dense in HK[a, b].

For further properties of the space HK[a, b], consult, for example, [11], [14], [18],

[19].

As a consequence of Theorem 3.4 and the absolute continuity of the indefinite

Lebesgue integrals we obtain the following result of Kurzweil [5].

Corollary 3.5. If f ∈ HK[a, b], then the map

x 7→ (HK)

∫

[x,b]

f(t) dt

is continuous on [a, b].

The following theorem is a simple version of Kurzweil’s multiple integration by

parts formula (cf. [5, Theorem 2.10]).

Theorem 3.6 ([16, Theorem 4.8]). If f ∈ HK[a, b] and g ∈ BV 0[a, b], then

fg ∈ HK[a, b] and

(3) (HK)

∫

[a,b]

f(x)g(x) dx = (RS)

∫

[a,b]

{
(HK)

∫

[x,b]

f(t) dt

}
dg(x).

We observe that when m = 1, the following result of Alexiewicz [1] is known.
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Theorem. Let m = 1 and let T be a bounded linear functional on HK[a, b]. Then

there exists g ∈ BV [a, b] such that

T (f) = (HK)

∫ b

a

f(t)g(t) dt

for every f ∈ HK[a, b].

As a simple application of Theorem 3.6 we obtain the following refinement of [8,

Theorem 3.2] and the above-mentioned result of Alexiewicz.

Theorem 3.7. If T is a bounded linear functional on HK[a, b], then there exists

g ∈ BV 0[a, b] such that ‖T ‖ = Var(g, [a, b]) and

T (f) = (HK)

∫

[a,b]

f(t)g(t) dt

for every f ∈ HK[a, b].

P r o o f. Since the function x 7→ (HK)
∫
[x,b]

f(t) dt is continuous on [a, b], the

theorem follows from the Hahn-Banach Theorem, Theorems 2.2 and 3.6. The proof

is complete. �

Theorem 3.8. Let g : [a, b] −→ R. If fg ∈ HK[a, b] for every f ∈ HK[a, b], then

the linear functional

f 7→ (HK)

∫

[a,b]

f(t)g(t) dt

is ‖ · ‖HK[a,b]-bounded.

P r o o f. Since the proof is similar to that of [10, Theorem 4.4], we give only a

sketch of the proof.

Suppose that the linear functional

f 7→ (HK)

∫

[a,b]

f(t)g(t) dt

is not ‖ · ‖HK[a,b]-bounded. Following the argument of [10, Theorem 4.4], we can

construct a function f ∈ HK[a, b] such that fg 6∈ HK[a, b]. This contradiction

completes the proof. �

The following theorem is an m-dimensional analogue of a result of Sargent [20].
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Theorem 3.9 (cf. [8, Theorem 5.1]). Let g : [a, b] −→ R. If fg ∈ HK[a, b] for

every f ∈ HK[a, b], then there exists g0 ∈ BV0[a, b] such that g = g0 µm-almost

everywhere on [a, b].

P r o o f. This is a consequence of Theorems 3.8 and 3.7. �

4. The Cauchy-Lebesgue integral

The aim of this section is to study the Cauchy-Lebesgue integral, which is the

Cauchy extension of the Lebesgue integral.

Definition 4.1 (cf. [10]). An interval function F : Im[a, b] −→ R is said to be

continuous if

lim
µm(I)→0

I∈Im([a,b])

F (I) = 0.

Definition 4.2 (cf. [10]). A function f : [a, b] −→ R is said to be Cauchy-

Lebesgue integrable on [a, b] if there exist an additive continuous interval function

F and a finite set Q ⊂ [a, b] such that f ∈ L1(I) and F (I) =
∫

I
f for every

interval I ∈ Im([a, b]) satisfying I ∩ Q = ∅. In this case, we write F ([a, b]) as

(CL)
∫
[a,b] f(x) dx.

It is easy to prove the following theorem.

Theorem 4.3. If f ∈ CL[a, b], then f ∈ HK[a, b] and

(CL)

∫

[a,b]

f(x) dx = (HK)

∫

[a,b]

f(x) dx.

In view of Theorem 4.3 we can equip the space CL[a, b] with the norm ‖ · ‖HK[a,b].

In order to prove an analogous version of Theorem 3.7 for the space CL[a, b], we

need the following results.

Lemma 4.4 ([15, Lemma 2.3]). If f ∈ CL[a, b], g ∈ L∞[a, b] and fg ∈ HK[a, b],

then fg ∈ CL[a, b] and

(CL)

∫

[a,b]

f(x)g(x) dx = (HK)

∫

[a,b]

f(x)g(x) dx.

The following theorem is a consequence of Theorem 3.6 and Lemma 4.4.
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Theorem 4.5 ([16, Remark 4.11(ii)]). If f ∈ CL[a, b] and g ∈ BV 0[a, b], then

fg ∈ CL[a, b] and

(4) (CL)

∫

[a,b]

f(x)g(x) dx = (RS)

∫

[a,b]

{
(CL)

∫

[x,b]

f(t) dt

}
dg(x).

Following the proof of Theorem 3.7 we get a refinement of [10, Corollary 4.6].

Theorem 4.6. If T is a bounded linear functional on CL[a, b], then there exists

g ∈ BV 0[a, b] such that ‖T ‖ = Var(g, [a, b]) and

T (f) = (CL)

∫

[a,b]

f(t)g(t) dt

for all f ∈ CL[a, b].

Theorem 4.7. Let g : [a, b] −→ R. If fg ∈ CL[a, b] for every f ∈ CL[a, b], then

there exists g0 ∈ BV0[a, b] such that g = g0 µm-almost everywhere on [a, b].

P r o o f. The proof is similar to that of Theorem 3.9. We omit it. �

Theorem 4.8. Let g : [a, b] −→ R. The following statements are equivalent.

(i) If f ∈ HK[a, b], then fg ∈ HK[a, b].

(ii) If f ∈ CL[a, b], then fg ∈ CL[a, b].

P r o o f. The implication “(i) =⇒ (ii)” is a consequence of Theorem 3.9 and

Lemma 4.4. The converse follows from Theorems 4.7, 3.3(e) and 3.6. �

5. An application to iterated Henstock-Kurzweil integrals

For the rest of this paper we let r and s be positive integers. For q ∈ {r, s} we

let Eq be a compact interval in R
q. If f and g are functions defined on Er and Es

respectively, we let

(f ⊗ g)(x, y) = f(x)g(y).

The main result (Theorem 5.10) is motivated by the following problem in [15]:

Problem 5.1. Let f and g be Henstock-Kurzweil integrable on intervals Er ⊂ R
r

and Es ⊂ R
s respectively. Is f ⊗ g Henstock-Kurzweil integrable on the interval

Er × Es?
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For the case when r = 1 or s = 1, it is known that f ⊗ g ∈ HK(Er ×Es) whenever

f ∈ HK(Er) and g ∈ HK(Es); see [13, Theorem 4.5]. If, in addition, h belongs

to BV0(Er × Es), then it follows from Theorem 3.6 that (f ⊗ g)h ∈ HK(Er × Es);

Fubini’s theorem for the Henstock-Kurzweil integral yields

(5) (HK)

∫

Er×Es

f(x)g(y)h(x, y) d(x, y)

= (HK)

∫

Er

f(x)

{
(HK)

∫

Es

g(y) h(x, y) dy

}
dx

= (HK)

∫

Es

g(y)

{
(HK)

∫

Er

f(x) h(x, y) dx

}
dy.

While it is unclear whether (5) holds when r, s > 1 (cf. Problem 5.1), a weaker

result is known.

Theorem 5.2 ([13, Theorem 4.6]). If f ∈ CL(Er) and g ∈ HK(Es), then f ⊗ g ∈

HK(Er × Es) and

(HK)

∫

Er×Es

(f ⊗ g)(x, y) d(x, y)

=

{
(CL)

∫

Er

f(x) dx

}{
(HK)

∫

Es

g(y) dy

}
.

In this section, we shall prove that another result holds for the function (x, y) 7→

f(x)g(y)h(x, y); see Theorem 5.10 for details. We need some lemmas.

Lemma 5.3. If g ∈ HK(Es) and h ∈ BV0(Er×Es), then (HK)
∫

Es
g(y)h(x, y) dy

exists for all x ∈ Er. Moreover, the function

x 7→ (HK)

∫

Es

g(y)h(x, y) dy

belongs to L∞(Er).

P r o o f. We observe that if x ∈ Er is fixed, then the function y 7→ h(x, y)

belongs to BV0(Es). An appeal to Theorem 3.6 gives the first part of the theorem.

Next we infer from Theorems 5.2, 3.6 and Fubini’s theorem that the function

x 7→ (HK)

∫

Es

g(y)h(x, y) dy
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is Henstock-Kurzweil integrable on Er. In particular, the function

x 7→ (HK)

∫

Es

g(y)h(x, y) dy

is µr-measurable.

Finally, we let f0 ∈ L1(Er) be given. Clearly it suffices to prove that the function

x 7→ f0(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}

belongs to L1(Er). Using Theorems 5.2, 3.6 and Fubini’s theorem again, we see that

f0 ∈ L1(Er) implies

(HK)

∫

Er

f0(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}
dx

exists. Now, since the function

x 7→ (HK)

∫

Es

g(y)h(x, y) dy

is µr-measurable and |f0| ∈ L1(Er), a similar argument shows that

(HK)

∫

Er

∣∣∣∣f0(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}∣∣∣∣ dx

exists. It is now clear that the lemma holds. �

Lemma 5.4. If f ∈ CL(Er), g ∈ HK(Es) and h ∈ BV0(Er × Es), then

(6) (HK)

∫

Er×Es

f(x)g(y)h(x, y) d(x, y)

and

(7) (CL)

∫

Er

f(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}
dx

exist and coincide.

P r o o f. We infer from Theorems 5.2 and 3.6 that the Henstock-Kurzweil integral

(6) exists. Hence, by Fubini’s theorem, the iterated Henstock-Kurzweil integral

(8) (HK)

∫

Er

f(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}
dx

exists and is equal to the Henstock-Kurzweil integral (6). As a consequence of Lem-

mas 5.3 and 4.4, the Cauchy-Lebesgue integral (7) exists and is equal to the Henstock-

Kurzweil integral (8). The proof is complete. �

The following lemma is a consequence of Lemma 5.4 and Theorem 4.8.
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Lemma 5.5. If f ∈ HK(Er), g ∈ HK(Es) and h ∈ BV0(Er × Es), then the

iterated Henstock-Kurzweil integral

(HK)

∫

Er

f(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}
dx

exists.

Lemma 5.6. If g ∈ HK(Es) and h ∈ BV0(Er × Es), then the functional

Sg : HK(Er) −→ R : f 7→ (HK)

∫

Er

f(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}
dx

is linear and bounded.

P r o o f. This is a consequence of Lemma 5.5 and Theorem 3.8. �

The proof of the following lemma is similar to that of Lemma 5.5.

Lemma 5.7. If f ∈ HK(Er), g ∈ HK(Es) and h ∈ BV0(Er × Es), then the

iterated Henstock-Kurzweil integral

(HK)

∫

Es

g(y)

{
(HK)

∫

Er

f(x)h(x, y) dx

}
dy

exists.

On the other hand, the proof of the following lemma is more involved than that

of Lemma 5.6.

Lemma 5.8. If g ∈ HK(Es) and h ∈ BV0(Er × Es), then the functional

Tg : HK(Er) −→ R : f 7→ (HK)

∫

Es

g(y)

{
(HK)

∫

Er

f(x)h(x, y) dx

}
dy

is linear and bounded.

P r o o f. According to Theorem 3.4 there exists a sequence {gn}∞n=1 in L1(Es)

such that

lim
n→∞

‖gn − g‖HK(Es) = 0.

For each f ∈ HK(Er) we argue as in the proof of Lemma 5.6 to conclude that

the function y 7→ (HK)
∫

Er
f(x)h(x, y) dx induces a bounded linear functional on

1015



HK(Es). Therefore Tg is bounded on HK(Er):

|Tg(f)| = lim
n→∞

∣∣∣∣(HK)

∫

Es

gn(y)

{
(HK)

∫

Er

f(x)h(x, y) dx

}
dy

∣∣∣∣

= lim
n→∞

∣∣∣∣(HK)

∫

Er×Es

(f ⊗ gn)(x, y)h(x, y) d(x, y)

∣∣∣∣ (by Theorems 5.2 and 3.6)

6 ‖f‖HK(Er)‖g‖HK(Es)‖h‖BV0(Er×Es),

where the last inequality holds by Theorem 3.6 and our choice of {gn}∞n=1. The proof

is complete. �

Lemma 5.9. Let g ∈ HK(Es) and let h ∈ BV0(Er × Es). If Sg and Tg are given

as in Lemmas 5.6 and 5.8 respectively, then

Sg(f0) = Tg(f0)

for every f0 ∈ CL(Er).

P r o o f. This follows from Lemma 5.4 and Fubini’s theorem. The proof is

complete. �

Theorem 5.10 (Main Theorem). If f ∈ HK(Er), g ∈ HK(Es) and h ∈ BV0(Er ×

Es), then the iterated Henstock-Kurzweil integrals

(HK)

∫

Er

f(x)

{
(HK)

∫

Es

g(y)h(x, y) dy

}
dx,

(HK)

∫

Es

g(y)

{
(HK)

∫

Er

f(x)h(x, y) dx

}
dy

exist and coincide.

P r o o f. This follows from Lemmas 5.5–5.9 and Theorem 3.4. �
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