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Abstract. We prove a theorem on the growth of nonconstant solutions of a linear differen-
tial equation. From this we obtain some uniqueness theorems concerning that a nonconstant
entire function and its linear differential polynomial share a small entire function. The re-
sults in this paper improve many known results. Some examples are provided to show that
the results in this paper are the best possible.

Keywords: entire functions, order of growth, shared values, uniqueness theorems

MSC 2010 : 30D30, 30D35

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic func-

tions in the complex plane. We adopt the standard notation in the Nevanlinna theory

of meromorphic functions as explained in [6], [9] and [14]. It will be convenient to

let E denote any set of positive real numbers of finite linear measure, not necessarily

the same at each occurrence. For a nonconstant meromorphic function h, we denote

by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r → ∞, r 6∈ E). Let f and g be two nonconstant meromorphic

functions and let a be a complex number. We say that f and g share a CM provided

f − a and g − a have the same zeros with the same multiplicities. Similarly, we say

that f and g share the value a IM provided f − a and g − a have the same zeros

ignoring multiplicities. In addition, we say that f and g share∞ CM if 1/f and 1/g
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share 0 CM, and we say that f and g share ∞ IM if 1/f and 1/g share 0 IM (see

[15]). A nonconstant meromorphic function b is called a small function related to f

if T (r, b) = S(r, f). If f − b and g − b share 0 CM, we say that f and g share b CM,

and we say that f and g share b IM, if f − b and g − b share 0 IM. In this paper, we

also need the following definition.

Definition 1.1. For a nonconstant entire function f, the order σ(f), lower order

µ(f), hyper order σ2(f) and lower hyper order µ2(f) are defined by

σ(f) = lim sup
r→∞

logT (r, f)

logr
= lim sup

r→∞

loglogM(r, f)

logr
,

µ(f) = lim inf
r→∞

logT (r, f)

logr
= lim inf

r→∞

loglogM(r, f)

logr
,

σ2(f) = lim sup
r→∞

loglogT (r, f)

logr
= lim sup

r→∞

log log log M(r, f)

logr

and

µ2(f) = lim inf
r→∞

log log T (r, f)

log r
= lim inf

r→∞

log log log M(r, f)

logr

respectively, where and in what follows, M(r, f) = max
|z|=r

|f(z)|.

In 1977, L.A.Rubel and C.C.Yang [11] proved that if an entire function f shares

two distinct complex numbers CM with its derivative f ′, then f = f ′. What is the

relation between f and f ′, if an entire function f shares one complex number a

CM with its derivative f ′? In 1996, R.Brück [1] made a conjecture that if f is

a nonconstant entire function satisfying σ2(f) < ∞, where σ2(f) is not a positive

integer, and if f and f ′ share one complex number a CM, then f − a = c(f ′ − a)

for some constant c 6= 0. For the case a = 0, the above conjecture was proved

by R.Brück [1]. In the same paper, R.Brück proved the above conjecture is true

provided a 6= 0 and N(r, 1/f ′) = S(r, f). In 1998, G.G.Gundersen and L. Z.Yang

proved that the conjecture is true for a 6= 0 provided f satisfies the additional

assumption σ(f) < ∞ (see [5]). In 1999, L. Z.Yang proved that if a nonconstant

entire function f and one of its derivatives f (k) (k > 1) share one complex number

a(6= 0) CM, where f satisfies σ(f) < ∞, then f − a = c(f (k) − a) for some complex

number c 6= 0 (see [16]). In 2004, J.P.Wang proved the following theorem.

Theorem A (see [13, Theorem 1]). Let f be a nonconstant entire function of

finite order, let P be a polynomial with degree p > 1, and let k be a positive integer.

If f−P and f (k)−P share 0 CM, then f (k)−P = c(f −P ) for some complex number

c 6= 0.
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Consider the following linear differential polynomial related to f :

(1.1) L[f ] = f (k) + bk−1f
(k−1) + . . . + b1f

′ + b0f,

where k is a positive integer and b0, b1, . . . , bk−1 are complex numbers.

Regarding Theorem A, it is natural to ask the following question.

Question 1.1. What can be said if a nonconstant entire function f and L[f ]

share a small entire function a related to f ?

In this paper, we will prove the following result, which improves Theorem A and

deals with Question 1.1.

Theorem 1.1. If f is a transcendental entire solution of the differential equation

(1.2) L[f ] − a1(z) = (f − a2(z)) · eQ(z),

where L[f ] is defined by (1.1), a1 and a2 are two entire functions such that σ(aj) < 1

(j = 1, 2), and Q is a nonconstant polynomial, then one of the following two cases

occurs.

(i) If µ(f) > 1, then µ(f) = ∞ and µ2(f) = σ2(f) = γQ, where and in what

follows, γQ is the degree of Q;

(ii) If µ(f) 6 1, then µ(f) = 1 and Q(z) = p1z + p0, where p1 (6= 0) and p0 are two

complex numbers and b0, b1, . . . , bk−1 are not all equal to zero.

From Theorem 1.1 we get the following three corollaries, of which Corollary 1.1

improves Theorem 1 in [16]and Corollaries 1.2–1.3 improve Theorem 2 in [16].

Corollary 1.1. Let f be a nonconstant solution of the differential equation (1.2),

where L[f ] is defined by (1.1), a1 and a2 are entire functions such that σ(aj) < 1

(j = 1, 2), and Q is a nonconstant polynomial. If µ(f) 6= 1, then µ2(f) = σ2(f) =

γQ > 1.

Corollary 1.2. Let f be a nonconstant solution of the differential equation

(1.3) L[f ] − a = (f − a) · eQ(z),

where L[f ] is defined by (1.1), Q is a polynomial, and a (6≡ 0) is an entire function

such that σ(a) < 1. If µ2(f) is not a positive integer and µ(f) 6= 1, then L[f ] − a =

c(f − a) for some complex number c 6= 0.
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Corollary 1.3. Let f be a nonconstant entire function such that µ(f) < ∞, let

L[f ] be defined by (1.1), and let a (6≡ 0) be an entire function such that σ(a) < µ(f).

If f − a and L[f ] − a share 0 CM, then one of the following two cases occurs.

(i) L[f ]− a = c(f − a), where c(6= 0) is a complex number;

(ii) f is a solution of (1.3) such that µ(f) = 1 and Q(z) = p1z + p0, where p1 (6= 0)

and p0 are two complex numbers and b0, b1, . . . , bk−1 are not all equal to zero.

P r o o f. From the assumptions of Corollary 1.3 we have (1.3), where Q is an

entire function. From Definition 1.1 and the condition σ(a) < µ(f) we get µ(f) > 0,

and so f is a transcendental entire function. Combining (1.3), Definition 1.1 and

Lemma 2.5 in Section 2 of this paper, we get

(1.4) T (r, eQ) 6 3T (r, f) + O(log T (r, f) + log r) (r 6∈ E, r → ∞).

From (1.4) and Lemma 2.6 in Section 2 of this paper we see that there exists a

sufficiently large positive number r0 such that

T (r, eQ) 6 3T (2r, f) + O(log T (2r, f) + log r + log 2) (r > r0),

which together with µ(f) < ∞, implies

(1.5) σ(eQ) = µ(eQ) 6 µ(f) < ∞.

From (1.5) we see that Q is a polynomial. If Q is a constant, from (1.3) we get

(i) of Corollary 1.3. Next we suppose that Q is a nonconstant polynomial. By

Theorem 1.1, we discuss the following two cases.

Case 1. Suppose that µ(f) > 1. Then from (i) of Theorem 1.1 we get µ(f) = ∞,

which is impossible.

Case 2. Suppose that µ(f) 6 1. Then from (ii) of Theorem 1.1 we get (ii) of

Corollary 1.3.

From Corollary 1.3 we get the following result improving Theorem 2 in [16].

Corollary 1.4. Let f be a nonconstant entire function such that µ(f) < ∞ and

µ(f) 6= 1, let L[f ] be defined by (1.1), and let a 6≡ 0 be an entire function such that

σ(a) < µ(f). If f − a and L[f ] − a share 0 CM, then L[f ] − a = c(f − a) for some

complex number c 6= 0.

Now we give the following examples.

Example 1.1 (see [4]). Let f(z) = eez

+ez. Then it is easy to see that f ′(z)−ez =

ez(f(z) − ez) and µ2(f) = σ2(f) = 1. This example shows that the conclusion (i) of

Theorem 1.1 can occur.
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Example 1.2. Let f(z) = (ez−1)2 and L[f ](z) = f (3)(z)−3f ′′(z)+ 5
2f ′(z)−f(z).

Then it is easy to see that L[f ](z)− 1 = (f(z)− 1) · e−z and µ(f) = 1. This example

shows that the conclusion (ii) of Theorem 1.1 can occur.

In 1995, H. X.Yi and C.C.Yang posed the following question.

Question 1.2 (see [15, pp. 398]). Let f be a nonconstant meromorphic function,

and let a be a nonzero complex number. If f, f (n) and f (m) share the value a CM,

where n and m (n < m) are distinct positive integers not both even or odd, can we

get the result f = f (n)?

Regarding Question 1.2, G.G.Gundersen and L.Z.Yang proved the following re-

sult in 1998.

Theorem B (see [5, Theorem 2]). Let f be a nonconstant entire function of

finite order, let a(6= 0) be a complex number, and let n be a positive integer. If the

value a is shared by f, f (n) and f (n+1) IM, and shared by f (n) and f (n+1) CM, then

f = f ′.

In this paper, we will prove the following theorem corresponding to Theorem B.

Theorem 1.2. Let f be a nonconstant solution of the differential equation

(1.6) f (n+1) + anf (n) − z = (f (n) − z) · eQ(z),

such that σ2(f) is not a positive integer, where n (> 1) is a positive integer, an is a

complex number, and Q is a polynomial. If f − z and f (n) − z share 0 CM, then eQ

is a constant, and one of the following two cases occurs.

(i) If f is a transcendental entire function, then

f(z) =
c

(1 − an)n
· e(1−an)z +

(1 − an)n − 1

(1 − an)n
· z,

where c (6= 0) is a complex number and an 6= 1.

(ii) If f is a polynomial, then f(z) = cz + c(1 − c), where c 6= 0, 1 is a complex

number.

From Theorem 1.2 we get the following corollary.
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Corollary 1.5. Let f be a nonconstant entire function such that µ(f) < ∞, and

let n be a positive integer. If f − z, f (n) − z and f (n+1) + anf (n) − z share 0 CM,

where an is a complex number, then (i) or (ii) of Theorem 1.2 holds.

2. Some lemmas

Let f(z) =
∞
∑

n=0
anzn be an entire function. We define by µ(r) = max{|an|r

n : n =

0, 1, 2, . . .} the maximum term of f, and by ν(r, f) = max{m : µ(r) = |am|rm} the

central index of f (see [7, Definition 1.5] or [9, pp. 50]).

Lemma 2.1 (see [9, Proposition 8.1]). Suppose that all the coefficients a0 (6≡ 0),

a1, a2, . . . , an−1 and g (6≡ 0) of the non-homogeneous linear differential equation

(2.1) f (n) + an−1(z)f (n−1) + . . . + a1(z)f ′ + a0(z)f = g(z)

are entire functions. Then all solutions of (2.1) are entire functions.

Lemma 2.2. Let f be an entire function of infinite order, with the lower order

µ(f) and the lower hyper order µ2(f). Then

(i) µ(f) = lim inf
r→∞

log ν(r, f)/ log r;

(ii) µ2(f) = lim inf
r→∞

log log ν(r, f)/ log r.

P r o o f. Let f(z) =
∞
∑

n=0
anzn. Without loss of generality, we may assume |a0| 6=

0. By [7, Theorem 1.9], the maximum term µ(r) of f satisfies

(2.2) log µ(2r) = log |a0| +

∫ 2r

0

ν(t, f)

t
dt > log |a0| + ν(r, f) log 2.

On the other hand, by Cauchy’s inequality, we get |an|r
n 6 M(r, f) (r > 0, n =

0, 1, 2, 3, . . .). This together with the definition of the maximum term of f implies

(2.3) µ(2r) 6 M(2r, f).

Therefore, from (2.2) and (2.3) we get

(2.4) ν(r, f) log 2 6 log M(2r, f) + C,

where C (> 0) is a suitable constant. By the definition of µ2(f), we have

(2.5) µ2(f) = lim inf
r→∞

log log log M(r, f)

logr
= lim inf

r→∞

log log T (r, f)

log r
.
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From (2.4) and (2.5) we get

(2.6) lim inf
r→∞

log log ν(r, f)

logr
6 lim inf

r→∞

log log log M(r, f)

logr
= µ2(f).

On the other hand, by [7, Theorem 1.10] we have

(2.7) M(r, f) < µ(r){ν(2r, f) + 2} = |aν(r,f)|r
ν(r,f) · {ν(2r, f) + 2}.

Since |an| < M1 for all nonnegative integers n and some constant M1 > 0, we get

from (2.7) that

log log M(r, f) 6 log ν(r, f) + log log ν(2r, f) + log log r + C1(2.8)

6 log ν(2r, f) ·
(

1 +
log log ν(2r, f)

log ν(2r, f)

)

+ log log r + C2,

where Cj (> 0) (j = 1, 2) are suitable constants. By (2.5) and (2.8) we get

µ2(f) = lim inf
r→∞

log log log M(r, f)

logr
6 lim inf

r→∞

log log ν(2r, f)

log 2r
(2.9)

= lim inf
r→∞

log log ν(r, f)

log r
.

By (2.6) and (2.9), we get (ii). Proceeding as above we get (i).

Lemma 2.2 is thus completely proved.

Lemma 2.3 (see [9, Lemma 1.1.2]). Let g, h : (0, +∞) → R be monotonically

increasing functions such that g(r) 6 h(r) outside of an exceptional set F of finite

logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that g(r) 6 h(rα)

for all r > r0.

Lemma 2.4 (see [2, Lemma 2] or [3, Lemma 4]). If f is a transcendental entire

function of hyper order σ2(f), then σ2(f) = lim sup
r→∞

(loglogν(r, f))/logr.

Lemma 2.5 (see [9, Corollary 2.3.4]). Let f be a transcendental meromorphic

function and k > 1 an integer. Then m(r, f (k)/f) = O(log(rT (r, f))), possibly

outside an exceptional set E of finite linear measure, and if f is of finite order of

growth, then m(r, f (k)/f) = O(log r).
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Lemma 2.6 (see [9, Lemma 1.1.1]). Let g, h : (0, +∞) → R be monotonically

increasing functions such that g(r) 6 h(r) outside of an exceptional set E of finite

linear measure. Then, for any α > 1, there exists r0 > 0 such that g(r) 6 h(αr) for

all r > r0.

Lemma 2.7 (see [15, Corollary of Theorem 1.20] or [17]). Suppose that f is a

meromorphic function. Then T (r, f) 6 O(T (2r, f ′) + log r) as r → ∞.

Lemma 2.8 (see [12]). Let f be a meromorphic function and k a positive integer.

If f is a solution of the differential equation a0f
(k) + a1f

(k−1) + . . .+ akf = 0, where

a0, a1, . . . , ak are complex numbers with a0 6= 0, then T (r, f) = O(r). Moreover, if f

is transcendental, then r = O(T (r, f)).

Lemma 2.9 (see [10]). Let f be a nonconstant meromorphic function such that

σ(f) = σ < ∞. Then

lim sup
r→∞

m(r, f ′/f)

log r
6 max{0, σ − 1}.

Lemma 2.10 (see [15, Theorem 1.57]). Suppose that f1, f2, f3 are meromorphic

functions satisfying f1 + f2 + f3 = 1. If f1 is not a constant and

3
∑

i=1

N
(

r,
1

fi

)

+ 2
3

∑

i=1

N(r, fi) < λT (r, f1) + S(r, f1),

where λ < 1, then f2 = 1 or f3 = 1.

Lemma 2.11. Suppose that α and β are nonconstant entire functions, and that

a1, a2, b1 and b2 are meromorphic functions satisfying T (r, a1) + T (r, a2) = S(r, eα),

T (r, b1) + T (r, b2) = S(r, eβ) and a1a2b1b2 6≡ 0. If a1e
α − a2 and b1e

β − b2 share 0

IM, then one of the following relations holds:

(i) a1b2e
α = a2b1e

β ;

(ii) a1b1e
α+β = a2b2.

P r o o f. By the second fundamental theorem, we have

(2.10) T (r, eα) = N
(

r,
1

a1eα − a2

)

+ S(r, eα) = N1)

(

r,
1

a1eα − a2

)

+ S(r, eα)

and

(2.11) T (r, eβ) = N
(

r,
1

b1eβ − b2

)

+ S(r, eβ) = N1)

(

r,
1

b1eβ − b2

)

+ S(r, eβ),
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where N1)(r, 1/f) denotes the counting function of simple zeros of a meromorphic

function f in |z| < r. Let

(2.12) H =
a1e

α − a2

b1eβ − b2
.

Noting that a1e
α − a2 and b1e

β − b2 share 0 IM, from (2.10)–(2.12) we obtain

(2.13) N(r, H) = S(r, eα) and N
(

r,
1

H

)

= S(r, eα).

Since (2.12) can be rewritten as

(2.14)
a1

a2
eα −

b1

a2
Heβ +

b2

a2
H = 1,

we obtain from (2.13), (2.14) and Lemma 2.10 that b2a
−1
2 H = 1 or −b2a

−1
2 Heβ = 1.

If b2a
−1
2 H = 1, from (2.14) we have a1a

−1
2 eα = b1a

−1
2 Heβ. Hence we have the relation

(i) of Lemma 2.11. If −b1a
−1
2 Heβ = 1, from (2.14) we have a1a

−1
2 eα = −b2a

−1
2 H .

Hence we have the relation (ii) of Lemma 2.11.

3. Proof of theorems

P r o o f o f T h e o r e m 1 . 1. By (1.1) we see that (1.2) can be rewritten as

(3.1) f (k) + bk−1f
(k−1) + . . . + b1f

′ + (b0 − eQ(z)) · f = a1(z) − a2(z)eQ(z).

From (3.1) and Lemma 2.1 we see that all solutions of (3.1) are entire functions. We

discuss the following two cases.

Case 1. Suppose that

(3.2) lim inf
r→∞

logν(r, f)

logr
> 1.

Then (3.2) and (i) of Lemma 2.2 yield

(3.3) µ(f) = lim inf
r→∞

log ν(r, f)

log r
> 1.

From the condition that f is a nonconstant entire function we have

(3.4) M(r, f) → ∞
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as r → ∞. Let

(3.5) M(r, f) = |f(zr)|,

where zr = reiθ(r) and θ(r) ∈ [0, 2π). From (3.5) and the Wiman-Valiron theory

(see [9, Theorem 3.2]) we see that there exist subsets Fj ⊂ (1,∞) (1 6 j 6 n) with

finite logarithmic measure, i.e.,
∫

Fj
dt/t < ∞, such that for some point zr = reiθ(r)

(θ(r) ∈ [0, 2π)) satisfying |zr| = r 6∈ Fj and M(r, f) = |f(zr)| we have

(3.6)
f (j)(zr)

f(zr)
=

(ν(r, f)

zr

)j

(1 + o(1)) (1 6 j 6 n, r 6∈ Fj , r → ∞).

Since σ(aj) < 1 (j = 1, 2), from (3.3)–(3.5) and Definition 1.1 we get

(3.7) aj(zr)/f(zr) → 0,

as r → ∞. Since

(3.8)
L[f ](z)− a1(z)

f(z) − a2(z)
=

L[f ](z)/f(z)− a1(z)/f(z)

1 − a2(z)/f(z)
,

from (1.1), (3.2) and (3.6)–(3.8) we get

(3.9)
L[f ](zr) − a1(zr)

f(zr) − a2(zr)
=

(ν(r, f)

zr

)k

(1 + o(1))
(

r 6∈

n
⋃

j=1

Fj , r → ∞
)

.

From (3.2) and (3.9) we have

(3.10) log
∣

∣

∣

L[f ](zr) − a1(zr)

f(zr) − a2(zr)

∣

∣

∣
= k(log ν(r, f) − log r) + o(1)

(

r 6∈

n
⋃

j=1

Fj , r → ∞
)

.

Let

(3.11) Q(z) = pnzn + pn−1z
n−1 + . . . + p1z + p0,

where p0, p1, . . . , pn−1, pn are complex numbers with pn 6= 0. It follows from (3.11)

that lim
|z|→∞

|Q(z)|/|pnzn| = 1 and |Q(z)|/|pnzn| > 1/e (|z| > r0). Using this and (1.2)

we get

n log |z| + log |pn| − 1 6 log |Q(z)| = log|log eQ(z)| 6 |log log eQ(z)|(3.12)

=
∣

∣

∣
log log

L[f ]− a1

f − a2

∣

∣

∣
(|z| > r0).
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From (3.2), (3.10) and (3.12) we get

n log |zr| + log |pn| − 1(3.13)

6

∣

∣

∣
log log

L[f ](zr) − a1(zr)

f(zr) − a2(zr)

∣

∣

∣

=
∣

∣

∣
log

∣

∣

∣
log

L[f ](zr) − a1(zr)

f(zr) − a2(zr)

∣

∣

∣
+ i arg

(

log
L[f ](zr) − a1(zr)

f(zr) − a2(zr)

)∣

∣

∣

6

∣

∣

∣
log

∣

∣

∣
log

L[f ](zr) − a1(zr)

f(zr) − a2(zr)

∣

∣

∣

∣

∣

∣
+ 2π

6 log log ν(r, f) + log log r + O(1)
(

r 6∈
n
⋃

j=1

Fj , r → ∞
)

.

From (3.13), Lemma 2.3 and |zr| = r we see that for any β > 1, there exists a

sufficiently large positive number r0 such that

(3.14) n log r + log |pn| − 1 6 log log ν(rβ , f) + log log rβ + O(1) (r > r0).

From (3.14) and Lemma 2.4 we deduce

(3.15) n/β 6 lim sup
rβ→∞

log log ν(rβ , f)

log rβ
= lim sup

r→∞

log log ν(r, f)

log r
= σ2(f).

By letting β → 1+, we have

(3.16) n 6 σ2(f).

In the same manner as above and by (ii) of Lemma 2.2 we get

(3.17) n 6 µ2(f).

From (3.11) we obtain

(3.18) σ(eQ) = γQ = n.

From (3.16) and (3.18) we get

(3.19) σ(eQ) 6 σ2(f).

Again from (1.2) and (3.9) we have

(3.20)
(ν(r, f)

zr

)k

(1 + o(1)) = eQ(zr)
(

r 6∈

n
⋃

j=1

Fj , r → ∞
)

.
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From (3.20) we get

(3.21) (ν(r, f))k
6 2rkM(r, eQ)

(

r 6∈

n
⋃

j=1

Fj , r → ∞
)

,

From (3.21) and Lemma 2.3 we see that for any β > 1 there exists a sufficiently large

positive number r0 such that

(3.22) (ν(r, f))k
6 2rβkM(rβ , eQ) (r > r0).

From (3.22), Lemma 2.4 and Definition 1.1 we get

σ2(f) = lim sup
r→∞

log log ν(r, f)

log r
= lim sup

r→∞

log log(ν(r, f))k

log r
(3.23)

6 lim sup
r→∞

log log(2rβkM(rβ , eQ))

log r
= β lim sup

r→∞

log log M(r, eQ)

log r

= βσ(eQ).

By letting β → 1+ on both sides of (3.23) we get

(3.24) σ2(f) 6 σ(eQ).

From (3.18), (3.19) and (3.24) we deduce

(3.25) σ2(f) = σ(eQ) = n.

From (3.17), (3.18), (3.25) and µ2(f) 6 σ2(f) we get

(3.26) µ2(f) = σ2(f) = γQ.

If µ(f) < ∞, then it follows from (3.26) that µ2(f) = γQ = 0, and so Q is a complex

number, which is impossible. Thus µ(f) = ∞. Using this and (3.26) we get (i) of

Theorem 1.1.

Case 2. Suppose that

(3.27) lim inf
r→∞

log ν(r, f)

log r
6 1.

From (3.27) and (i) of Lemma 2.2 we have

(3.28) µ(f) = lim inf
r→∞

log ν(r, f)

log r
6 1.
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From (1.1), (1.2), Lemma 2.5 and σ(aj) < 1 (j = 1, 2) we get

(3.29) T (r, eQ) 6 2T (r, f) + O(log T (r, f) + log r) (r 6∈ E, r → ∞).

From (3.29) and Lemma 2.6 we see that for sufficiently large positive number r0 we

have

(3.30) T (r, eQ) 6 2T (2r, f) + O(log T (2r, f) + log r) (r > r0).

If Q is a nonconstant polynomial such that Q is given by (3.11), then (3.11) and

(3.30) imply 1 6 n = γQ = σ(eQ) = µ(eQ) 6 µ(f). From this and (3.28) we get

n = µ(f) = 1, and so Q(z) = p1z + p0. If bj = 0 (0 6 j 6 k − 1), then (1.2) can be

rewritten as

(3.31) f (k) − a1(z) = (f − a2(z)) · eQ(z).

Hence in the same manner as in Case 1 we get (3.17), and so µ2(f) > 1, which

contradicts µ(f) = 1. Thus b0, b1, . . . bk−2 and bk−1 are not all equal to zero. The

conclusion (ii) of Theorem 1.1 is thus completely proved.

Theorem 1.1 is thus completely proved.

P r o o f of Theorem 1.2. First, by virtue of (1.6), Lemma 2.1 and the assumptions

of Theorem 1.2 we see that f is a nonconstant entire function. Next we will prove

(3.32) f (n+1) + anf (n) − z = c(f (n) − z),

where and in what follows, c (6= 0) is a complex number. If f is a polynomial, or Q is

a constant, then from (1.6) we get (3.32). Next we suppose that Q is a nonconstant

polynomial, and suppose that f, and so f (k), is a transcendental entire function,

where k is an arbitrary positive integer. We prove

(3.33) µ(f) = µ(f (n)), σ(f) = σ(f (n)), µ2(f) = µ2(f
(n)), σ2(f) = σ2(f

(n)).

In fact, from Lemma 2.7 we have

(3.34) T (r, f) 6 O(T (2r, f ′) + log r)

as r → ∞. From (3.34) and Definition 1.1 we get

(3.35) µ2(f) 6 µ2(f
′).
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Lemma 2.5 yields

(3.36) T (r, f ′) 6 2T (r, f) + O(log T (r, f) + log r) (r 6∈ E, r → ∞).

From (3.36) and Lemma 2.6 we see that for a sufficiently large positive number r0

we have

(3.37) T (r, f ′) 6 2T (2r, f) + O(log T (2r, f) + log r + log 2) (r > r0).

From (3.37) and Definition 1.1 we get

(3.38) µ2(f
′) 6 µ2(f).

From (3.35) and (3.38) we get

(3.39) µ2(f) = µ2(f
′).

Similarly,

(3.40) µ2(f
(j)) = µ2(f

(j+1)) 1 6 j 6 n − 1).

From (3.39) and (3.40) we get µ2(f) = µ2(f
(n)) in (3.33). Proceeding as above we

get µ(f) = µ(f (n)), σ(f) = σ(f (n)) and σ2(f) = σ2(f
(n)) in (3.33).

If µ(f (n)) > 1, then (3.33) and (i) of Theorem 1.1 imply σ2(f) = σ2(f
(n)) = γQ >

1, which contradicts the condition that σ2(f) is not a positive integer. If µ(f (n)) 6 1,

then from (1.6) and (ii) of Theorem 1.1 we have µ(f (n)) = 1 and Q(z) = p1z + p0,

where p0, p1 are two complex numbers with p1 6= 0. Thus (1.6) can be rewritten as

(3.41) f (n+1) + anf (n) − z = (f (n) − z) · ep1z+p0 .

The condition that f − z and f (n) − z share 0 CM implies

(3.42) f (n) − z = eQ0(z)(f − z),

where Q0 is an entire function. From (3.42) and Lemma 2.5 we get

(3.43) T (r, eQ0) 6 2T (r, f) + O(log T (r, f) + log r) (r 6∈ E, r → ∞).

From (3.43) and Lemma 2.6 we see that for a sufficiently large positive number r0

we have

(3.44) T (r, eQ0) 6 2T (2r, f) + O(log T (2r, f) + log r + log 2) (r > r0).
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From (3.33), (3.44), Definition 1.1 and µ(f (n)) = 1, we get

(3.45) σ(eQ0) = µ(eQ0) 6 µ(f) = µ(f (n)) = 1.

From (3.45) we see that Q0 is a polynomial. If Q0 is a nonconstant polynomial, then

(3.45) yields

(3.46) Q0(z) = q1z + q0,

where q1(6= 0) and q0 are two complex numbers. Proceeding as in the proof of (3.26),

we get µ2(f) = σ2(f) = γQ0
= 1, which contradicts the condition that σ2(f) is not

a positive integer. Thus Q0 is a constant, and so (3.42) can be rewritten as

(3.47) f (n) − z = c0(f − z),

where c0 is a nonzero complex number. From (3.47) we get f (n+2) − c0f
′′ = 0. Com-

bining Lemma 2.8 and the above supposition that f, and so f (k), is a transcendental

entire function, where k (> 1) is an arbitrary positive integer, we get σ(f ′′) = 1.

Proceeding as in the proof of (3.33) we get σ(f) = σ(f ′′), and so

(3.48) σ(f − z) = σ(f (k)) = 1.

From (3.41), (3.42) and (3.47) we have

(3.49)
f (n+1) + (an − 1)f (n)

f − z
= c0(e

p1z+p0 − 1).

If n > 2, then (3.48) and Lemma 2.9 imply

m
(

r,
f (n+1)

f − z

)

(3.50)

6 m
(

r,
f (n+1)

f (n)

)

+ m
(

r,
f (n)

f (n−1)

)

+ . . . + m
(

r,
f ′′

f ′ − 1

)

+ m
(

r,
f ′ − 1

f − z

)

= o(log r)

and

m
(

r,
f (n)

f − z

)

(3.51)

6 m
(

r,
f (n)

f (n−1)

)

+ m
(

r,
f (n−1)

f (n−2)

)

+ . . . + m
(

r,
f ′′

f ′ − 1

)

+ m
(

r,
f ′ − 1

f − z

)

= o(log r).
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From (3.49)–(3.51) we get

m(r, ep1z+p0) = m(r, c0(e
p1z+p0 − 1)) + O(1) 6 m

(

r,
f (n+1)

f − z

)

+ m
(

r,
fn

f − z

)

+ O(1)

= o(log r),

which is impossible.

Next we suppose that n = 1. Then (3.41) and (3.47) can be rewritten as

(3.52) f ′′ + a1f
′ − z = (f ′ − z) · ep1z+p0

and

(3.53) f ′ − z = c0(f − z),

respectively. From (3.53) we get

(3.54) f(z) = λec0z +
c0(c0 − 1)z + c0 − 1

c2
0

,

where λ(6= 0) is a complex number. From (3.54) we get

(3.55) f ′(z) = λc0e
c0z +

c0 − 1

c0
and f ′′(z) = λc2

0e
c0z.

Substituting (3.55) into (3.52) we get

(3.56)
(λc2

0 + λa1c0) · e
c0z + a1(c0 − 1)/c0 − z

λc0ec0z + (c0 − 1)/c0 − z
= ep1z+p0 .

From (3.56) we see that λc2
0 + a1λc0 6= 0. Combining (3.56) and Lemma 2.11 we get

(3.57) {λc2
0 + λa1c0} ·

{c0 − 1

c0
− z

}

= λc0

{a1(c0 − 1)

c0
− z

}

.

From (3.56) and (3.57) we get ep1z+p0 = c0 + a1, which is impossible. This gives

(3.32).

Considering (3.32) we discuss the following two cases.

Case 1. Suppose that f is a transcendental entire function. If c = 1, then (3.32)

can be rewritten as

(3.58) f (n+1) = (1 − an)f (n).
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From (3.58) and the supposition that f, and so f (n+1) are transcendental entire

functions, we get an 6= 1, and so it follows from (3.58) that

(3.59) f (n)(z) − z = A0e
(1−an)z − z,

where A0 (6= 0) is a complex number. From (3.59) we get

(3.60) f(z) − z =
A0

(1 − an)n
· e(1−an)z + Pn−1(z) − z,

where and in what follows, Pn−1 denotes a polynomial with degree γPn−1
6 n − 1,

not necessarily the same at each occurrence. From (3.59), (3.60), Lemma 2.11 and

the condition that f − z and f (n) − z share 0 CM, we get

(3.61) Pn−1(z) =
(1 − an)nz − z

(1 − an)n
.

From (3.60) and (3.61) we get (i) of Theorem 1.2. If c 6= 1, then (3.32) can be

rewritten as

(3.62) f (n+1) + (an − c)f (n) = (1 − c)z.

From (3.62) and the condition that f, and so f (n), is a transcendental entire function,

we have an 6= c. This together with (3.62) yields

(3.63) f (n)(z) = A1 · e
(c−an)z +

z − cz

an − c
+

c − 1

(an − c)2
,

where A1 (6= 0) is a complex number. From (3.63) we get

(3.64)

f(z) =
A1

(c − an)n
· e(c−an)z +

1

(n + 1)!
·

1 − c

an − c
· zn+1 +

1

n!
·

c − 1

(an − c)2
· zn + Pn−1(z).

From (3.63), (3.64), Lemma 2.11 and the condition that f − z and f (n) − z share 0

CM we get

1

(n + 1)!
·

1 − c

an − c
· zn+1 +

1

n!
·

c − 1

(an − c)2
· zn + Pn−1(z) − z(3.65)

=
1

(c − an)n
·
{ z − cz

an − c
+

c − 1

(an − c)2
− z

}

.

From (3.65) we have a contradiction.

Case 2. Suppose that f is a nonconstant polynomial. We discuss the following

four subcases.
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Subcase 2.1. Suppose that an = c = 1. Then from (3.32) we have f (n+1) ≡ 0,

which implies that f is a polynomial with degree 1 6 γf 6 n. If n = 1, then γf = 1,

and so f ′ = c1, where c1 6= 0 is a complex number. Let f = c1z + c0, where c0 is

a complex number. Then from the condition that f − z and f ′ − z share 0 CM,

we deduce c0 = c1(1 − c1) and c1 6= 0, 1. Hence we get (ii) of Theorem 1.2. If

2 6 γf 6 n−1, then f (n) = 0, and so f (n)(z)− z = −z. Using this and the condition

that f − z and f (n) − z share 0 CM we get a contradiction. If γf = n > 2, then

f = dnzn + dn−1z
n−1 + . . . + d1z + d0, where d0, d1, . . . , dn are complex numbers

with dn 6= 0. Using this and the condition that f − z and f (n) − z share 0 CM we

get a contradiction.

Subcase 2.2. Suppose that c = 1 and c 6= an. Then (3.32) can be rewritten as

f (n+1) + (an − c)f (n) = 0. From this we deduce that f is a nonconstant polynomial

such that its degree γf satisfies 2 6 γf 6 n − 1. Hence we get f (n)(z) − z = −z.

Combining the condition that f −z and f (n)−z share 0 CM, we get a contradiction.

Subcase 2.3. Suppose that c 6= 1 and an 6= c. Then (3.32) can be rewritten as

f (n+1) + (an − c)f (n) = (1 − c)z. This leads to

f (n)(z) =
(1 − c)z

an − c
+

c − 1

(an − c)2
,(3.66)

f =
(1 − c)zn+1

(n + 1)!(an − c)
+

(c − 1)zn

n!(an − c)2
+ Pn−1(z).

From (3.66) and the condition that f − z and f (n) − z share 0 CM we get a contra-

diction.

Subcase 2.4. Suppose that c 6= 1 and an = c. Then (3.32) can be rewritten as

f (n+1) = (1 − an)z. Consequently,

(3.67) f (n)(z) =
1 − an

2
· z2 + c0, f =

1 − an

(n + 2)!
· zn+2 + Pn(z),

where Pn is a polynomial with degree γPn
6 n. From (3.67) and the condition that

f − z and f (n) − z share 0 CM we get a contradiction.

Theorem 1.2 is thus completely proved.

P r o o f of Corollary 1.5. First, from the assumptions of Corollary 1.5 we have

(1.6), where Q is an entire function. From (1.6), Lemma 2.5 and the assumptions of

Corollary 1.5 we have

(3.68) T (r, eQ) 6 2T (r, f) + O(log T (r, f) + log r) (r 6∈ E, r → ∞).

From (3.68) and Lemma 2.6 we have

(3.69) T (r, eQ) 6 2T (2r, f) + O(log T (2r, f) + log r + log 2) (r > r0),
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where r0 is a sufficiently large positive number. From (3.69), Definition 1.1 and the

condition µ(f) < ∞ we get

(3.70) σ(eQ) = µ(eQ) 6 µ(f) < ∞.

From (3.70) we see that Q is a polynomial. If f is a polynomial or Q is a constant,

then (1.6) can be rewritten as (3.32). Next we suppose that Q is a nonconstant

polynomial, and suppose that f, and so f (k), is a transcendental entire function,

where k (> 1) is an arbitrary positive integer. Proceeding as in Theorem 1.2 we get

(3.33). From (3.33) and µ(f) < ∞ we get µ(f (n)) < ∞. If µ(f (n)) > 1, from (1.6)

and (i) of Theorem 1.1 we get µ(f (n)) = ∞. From this and µ(f) = µ(f (n)) we get

µ(f) = ∞, which is impossible. If µ(f (n)) 6 1, then from (1.6) and (ii) of Theorem

1.1 and in the same manner as in the proof of Theorem 1.2 we get (3.41)–(3.57), and

so we get a contradiction. Finally, from (3.32) and in the same manner as in the

proof of Theorem 1.2 we get (i) and (ii) of Theorem 1.2, and Corollary 1.5 is thus

completely proved.

Acknowledgement. The authors wish to express their thanks to the referee for

his valuable suggestions and comments.

References

[1] R.Brück: On entire functions which share one value CM with their first derivative.
Results in Math. 30 (1996), 21–24.

[2] Z.X. Chen and C.C.Yang: Some further results on the zeros and growths of entire
solutions of second order linear differential equation. Kodai Math J. 22 (1999), 273–285.

[3] Z.X. Chen: The growth of solutions of f ′′ + e−zf ′ + Q(z)f = 0. Science in China (A)
31 (2001), 775–784.

[4] J.M. Chang and M. L. Fang: Entire functions that share a small function with their
derivatives. Complex Variables Theory Appl. 49 (2004), 871–895.

[5] G.G.Gundersen and L. Z. Yang: Entire functions that share one value with one or two
of their derivatives. J. Math. Anal. Appl. 223 (1998), 88–95.

[6] W.K.Hayman: Meromorphic Functions. The Clarendon Press, Oxford, 1964.
[7] Y.Z.He and X. Z. Xiao: Algebroid Functions and Ordinary Differential Equations. Sci-
ence Press, Beijing, 1988. (In Chinese.)

[8] G. Jank and L.Volkmann: Einführung in die Theorie der ganzen und meromorphen
Funktionen mit Anwendungen auf Differentialgleichungen. Birkhäuser, Basel-Boston,
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