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Abstract. Some results about the continuity of special linear maps between F -spaces
recently obtained by Drewnowski have motivated us to revise a closed graph theorem for
quasi-Suslin spaces due to Valdivia. We extend Valdivia’s theorem by showing that a linear
map with closed graph from a Baire tvs into a tvs admitting a relatively countably compact
resolution is continuous. This also applies to extend a result of De Wilde and Sunyach. A
topological space X is said to have a (relatively countably) compact resolution if X admits a

covering {Aα : α ∈ NN} consisting of (relatively countably) compact sets such thatAα ⊆ Aβ

for α 6 β. Some applications and two open questions are provided.
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1. Introduction

A set X is said to have a resolution if X is covered by a family {Aα : α ∈ N
N}

of subsets such that Aα ⊆ Aβ for α 6 β. A (topological) space X has a (closed,

relatively countably) compact resolution if X has a resolution consisting of (respec-

tively closed, relatively countably) compact sets. Each quasi-Suslin space admits

a countably compact resolution [1, Theorem 2] and any K-analytic space has a

compact resolution [16]. Hence metrizable complete separable topological vector
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spaces (tvs) and their countable inductive limits admit compact resolutions [17,

Theorem 2.1]. Very recently Drewnowski [6] has used the notion of resolution to

prove some nice results about certain continuous maps between Fréchet and Banach

spaces. Drewnowski’s paper [6] motivated us to look again at Valdivia’s classic closed

graph theorem for quasi-Suslin spaces [18, I.4.2 (11)], which states that a linear map-

ping with closed graph from a metrizable Baire locally convex space (lcs) E into a

quasi-Suslin lcs F is continuous. So we use some techniques of [18] and of our own

to get a closed graph theorem (Theorem 1) which extends Valdivia’s [18, I.4.2 (11)]

as well as Drewnowski’s [6, Corollary 4.10, Corollary 4.11]. In doing so we work with

topological vector spaces rather than locally convex spaces since we think this is the

natural setting for this kind of closed graph theorems (this has been done before,

see for instance [12], [13]). We need only F to be a tvs with a relatively countably

compact resolution (RCC resolution shortly), whereas E is assumed (only) to be

a Baire tvs. Theorem 1 applies to get an analytic graph type result stating that

a linear map from a Baire tvs into a tvs whose graph admits a RCC resolution is

continuous, and will be used to extend and provide another (and shorter) proofs of

some recent results obtained by Drewnowski [6] about the continuity of special linear

maps between F -spaces.

For a resolution {Aα : α ∈ N
N} set

Dn1,n2,...,np
:=

⋃

{Aα : α ∈ N
N, α(i) = ni, 1 6 i 6 p}

for (ni)i in N. If (kp)p is contained in N and xp ∈ Dk1k2,...,kp
, then:

(A) There exists α ∈ N
N such that xp ∈ Aα for each p ∈ N, see [9].

For a tvs X with a resolution {Aα : α ∈ N
N} of bounded sets (the notion of

bounded resolution was first used in [1, Theorem 5]) the following holds:

(B) For (ni)i contained in N, the filter base {p−1Dn1,n2,...,np
: p ∈ N} converges

to zero in X .

For a subset B of a space X let D(B) be the set of points x of X such that

every neighborhood of x intersects B in a set of second category. If O(B) is the

interior of D(B), then B has the Baire property iff O(B) \ B is of first category

in X , [18, I.1.1 (9)]. If (Bn) is a sequence of subsets of X whose union is B, then

D(B) \
⋃

n∈N

O(Bn) is rare [18, I.1.1 (7)].

(C) If B is covered by a web {Bn1,n2,...,np
: p, n1, n2, . . . , np ∈ N}, in the sense

that B =
∞
⋃

m=1

Bm and Bn1,n2,...,np
=

∞
⋃

m=1

Bn1,n2,...,np,m for every p ∈ N, and if

∞
⋂

p=1

O(Bn1,n2,...,np
) ⊆ B for each sequence (np)p in N then B has the Baire property.
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In fact, C := O(B) \
⋃

m∈N

O(Bm) and

Cn1,n2,...,np
:= O(Bn1,n2,...,np

) \
⋃

m∈N

O(Bn1,n2,...,np,m),

where p, n1, n2, . . . , np ∈ N, are rare sets. By the hypothesis the first category set

C ∪
{

⋃

{Cn1,n2,...,np
: p, n1, n2, . . . , np ∈ N}

}

contains O(B) \ B. Therefore B has the Baire property.

(D) Let X be a space admitting a weaker first countable topology τ . If B is a

subset of X with a τ -closed resolution {Aα : α ∈ N
N}, then B has the Baire property.

Indeed, choose (np)p in N and x ∈ O(Dn1,n2,...,np
), p ∈ N. Let (Up)p be a τ -

neighborhood basis of x and select xp ∈ Up ∩ Dn1,n2,...,np
. By (A) there exists

α ∈ N
N such that xp ∈ Aα for p ∈ N. From the τ -closedness condition it follows that

x ∈ Aα ⊆ B and (C) applies.

2. A closed graph theorem

The following theorem extends Valdivia’s [18, I.4.2 (11)] and its special case (when

E = F ) extends a result of De Wilde and Sunyach [18, I.4.3 (21)]. For a tvs E we

denote by F(E) the set of all balanced neighborhoods of zero in E.

Theorem 1. Let E and F be tvs such that E is Baire and F admits a RCC res-

olution {Aα : α ∈ N
N}. If f : E → F is a linear map with closed graph, then f is

continuous and there exist α = (nk) ∈ N
N such that Int f−1(Dn1,...,nk

) is non-empty

for each k ∈ N and a sequence (Un)n in F(E) such that for every V ∈ F(F ) there

exists m ∈ N with m−1Um ⊆ f−1(V ). If E = F , then E is a separable F -space.

P r o o f. Since E is a Baire space and {f−1(Dn1,n2,...,np
) : p, n1, n2, . . . , np ∈

N} is a web of subsets of E covering E, there is a sequence (rp)p in N such that

Int f−1(Dr1,r2,...,rp
) 6= ∅ for every p ∈ N. Hence f−1(Hp)−f−1(Hp) is a neighborhood

of the origin for each p ∈ N, where Hp := Dr1,r2,...,rp
. Let (Up)p be a sequence

of balanced neighborhoods of the origin in E such that Up+1 + Up+1 ⊆ Up and

Up ⊆ f−1(Hp)− f−1(Hp), p ∈ N. Let τ be the semi-metrizable translation invariant

vector topology on E defined by the basis (p−1Up)p of neighborhoods of zero. Since

the graph of f is closed, there is a coarser linear topology ̺ on F such that the map

f : E → (F, ̺) is continuous [11, Lemma 3.1]. We claim that f : (E, τ) → (F, ̺)

is continuous as well. In fact, if V is a closed neighborhood of zero in (F, ̺) then,
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by (B), there exists q ∈ N such that q−1(Hq −Hq) ⊆ V . As f−1(V ) is a closed subset

of E then q−1Uq ⊆ q−1(f−1(Hq) − f−1(Hq)) ⊆ f−1(V ). This proves the claim. If

W ∈ F(F ) is closed and Bα := f−1(Aα ∩W ), then (using the previous claim and the

fact that {Aα : α ∈ N
N} is RCC) one gets Bα

τ
⊆ f−1(W ). Thus {Bα

τ
: α ∈ N

N} is

a τ -closed resolution for f−1(W ) and f−1(W ) has the Baire property by (D). Since

f−1(W ) is of second category, Banach’s difference theorem [10, Chapter 3, Sec. 10,

Theorem 10.4] ensures that f−1(W )−f−1(W ) is a neighborhood of zero in E. Hence

f : E → F is continuous.

If V ∈ F(F ) is closed there is (by (B))m ∈ N such thatm−1Hm−m−1Hm ⊆ V , so

m−1Um ⊆ f−1(V ). If E = F , then E is metrizable with a compact resolution and [2,

Theorem 15] applies to get that E is analytic. But according to [3, Theorem 5.4]

any two-sidely invariant metric generating the topology of E is a complete metric,

hence E is a separable F -space. �

Theorem 1 applies to get the Grothendieck-Floret factorization theorem: let E be

a Baire tvs and F the inductive limit of a sequence (Fn)n of tvs such that the

inclusion Fn →֒ Fn+1 is compact for each n ∈ N, i.e. there is Un ∈ F(Fn) whose

closure Un
n+1
is compact in Fn+1. If f : E → F is a linear map with closed graph,

then f is continuous and there is n ∈ N such that f(E) ⊆ Fn. Indeed, we may choose

(Un)n increasing. For α = (nk) ∈ N
N set Aα = n1Un1

n1+1
. Then {Aα : α ∈ N

N} is a

compact resolution in F and Dn1,...,nk
= n1Un1

n1+1
is compact in F for each k ∈ N.

Apply Theorem 1.

Theorem 1 fails for topological groups in general: if a compact group of Ulam-

measurable cardinality is either Abelian or connected, then it admits a strictly finer

countably compact group topology [4]. Corollary 2 below provides an analytic graph

type result which extends the second part of [3, Theorem 5.2] for the case of tvs and

[6, Corollary 4.11], see also [15, Theorem 2.10.1].

Corollary 2. Every linear map f from a Baire tvs E into a tvs F whose graph G

admits a RCC resolution is continuous. Hence every linear map from an F -space into

a separable metrizable tvs whose graph admits a complete resolution is continuous.

P r o o f. The projection P (x, f(x)) = x of G onto E is continuous, so P−1 is

continuous by Theorem 1. But f = Q ◦ P−1, where Q : G → F is the projection.

To complete the proof we show that f is continuous on every closed separable vector

subspace E0 of E. Let {Aα : α ∈ N
N} be a complete resolution in G. The sets

Aα ∩ (E0 × F ) form a complete resolution on G ∩ (E0 × F ). But every metrizable

and separable tvs with a complete resolution is analytic [6, Corollary 3.2] and the

first part applies. �
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We conjecture that the last part of Corollary 2 fails for non separable metrizable

tvs F .

Problem 3. Find a Fréchet space E which admits a strictly finer metrizable

vector topology ξ such that E is covered by a sequence of ξ-complete sets. Since

every metrizable tvs admits a bounded resolution we may assume that (E, ξ) admits

a ξ-bounded and complete resolution. Note that ξ cannot be separable, otherwise

(E, ξ) would be analytic, being covered by a sequence of analytic subsets, and then

Theorem 1 would apply. Nevertheless, using Valdivia’s closed graph theorem [19]

one gets:

Proposition 4.

(a) A linear map between a metrizable Baire lcs and a metrizable lcs whose graph G

admits a complete resolution of absolutely convex sets is continuous.

(b) A linear map with closed graph from a Baire lcs into a metrizable lcs with a

complete resolution of absolutely convex sets is continuous.

P r o o f. (a) Let (Un)n be a decreasing basis of absolutely convex closed neigh-

borhoods of zero in G. Set Aα :=
∞
⋂

k=1

nkUk for α = (nk) ∈ N
N and let {Gα : α ∈ N

N}

be a complete absolutely convex resolution in G. Then the sets Kα := Aα ∩ Gα

compose a complete and bounded absolutely convex resolution in G. Therefore the

sets Kα are Banach discs, so G is a quasi-(LB)-space (in the sense of Valdivia [19]).

Since every linear map from a Baire lcs into a quasi-(LB)-space with closed graph is

continuous [19, Corollary 1.5], the map P−1 (from proof of Corollary 2) is continu-

ous. Part (b) follows similarly. �

The next example (motivated by Problem 3 and Proposition 4) also shows that Val-

divia’s result stating that a barrelled space covered by an increasing sequence (An)n

of complete absolutely convex sets is complete, see [14, Proposition 8.2.28], fails if

the above sets are not absolutely convex.

Example 5. There exist separable metrizable non-complete unordered Baire-like

lcs covered by a sequence (resolution) of complete (complete and bounded) sets.

P r o o f. Drewnowski and Labuda [8] constructed an F -space λ0 with a ba-

sis (Un)n of balanced neighborhoods of zero closed in R
N for which the weak topol-

ogy σ(λ0, λ
′
0) is inherited from the topology of R

N: λ0 is the space of all sequences

x = (̺n) of real numbers such that ‖tx‖ → 0 as t → 0, where ‖x‖ := sup ‖x‖n,

‖x‖n := n−1
n
∑

j=1

min(1, |̺j |). Set

Un := {x ∈ λ0 : ‖x‖ 6 n−1}
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for n ∈ N. Then λ0 with the F -norm ‖ · ‖ is metrizable, complete and the sets Un

are closed in R
N, see [8]. For fixed m ∈ N one has λ0 =

∞
⋃

n=1

nUm and each nUm

is σ(λ0, λ
′
0)-complete but σ(λ0, λ

′
0) is metrizable non-complete. Since σ(λ0, λ

′
0) is

metrizable, it is the finest locally convex topology on λ0 weaker than the original

topology ξ of λ0, so σ(λ0, λ
′
0) is the Mackey envelope of ξ (in the sense of [5]). This

yields that σ(λ0, λ
′
0) is unordered Baire-like, i.e. σ(λ0, λ

′
0) cannot be written as a

sequence of nowhere dense absolutely convex sets, see [5, Theorem 1]. The other

case goes similarly: For α = (nk) ∈ N
N set Aα :=

∞
⋂

k=1

nkUk. Then {Aα : α ∈ N
N} is

as required. �

Corollary 6. Let f be a linear functional on an F -space E. The following

conditions are equivalent:

(i) E admits a resolution {Aα : α ∈ N
N} such that f is continuous on each Aα.

(ii) f is continuous on E.

(iii) The kernel N := {x ∈ E : f(x) = 0} has a complete resolution.

P r o o f. (i) ⇒ (ii): By [6, Proposition 4.1] the map f is continuous on the closure

of each Aα, so we may assume that Aα are closed. We may also assume that E is

separable. Let {Kα : α ∈ N
N} be a compact resolution of E. Then Dα := Aα ∩ Kα

form a compact resolution in E and f is continuous on each Dα. Suppose that

f is discontinuous and let H be its (dense) kernel. Clearly {H ∩ Dα : α ∈ N
N} is a

compact resolution on H . Also H admits a strictly weaker metrizable and complete

vector topology. Indeed, if D is an algebraic complement to H in E, the restriction

of the quotient map q|H : H → E/D generates on H such a topology. Theorem 1

applies to reach a contradiction. A similar argument as in (i) ⇒ (ii) applies to get

(iii) ⇒ (i). �

Corollary 6 has been proved in [6, Corollary 4.5, Corollary 4.6] in a different

way. Note also that the assumption on E to be metrizable and complete cannot be

dropped even if Aα are compact, see [6, Remark 4.4 (ii)]. R. Pol proved, see [7], using

Mycielski’s theorem about independent functions, that an analytic vector subspace

of a separable F -space has codimension either finite or 2ℵ0 . Theorem 1 yields easily

the same fact but under (CH).

Corollary 7. An algebraic direct sum of vector subspaces F and G of a separable

F -space (E, ξ) is topological iff F and G admit a complete resolution. Consequently,

if F is analytic then (under (CH)) the codimension of F is either finite or 2ℵ0 .

P r o o f. We may assume that F and G have a compact resolution. Therefore

F and G are analytic and E endowed with the direct sum topology τ := ξ|F ⊕ ξ|G
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(stronger than ξ) is analytic. But Theorem 1 applies to get ξ = τ , which proves

the first part. Assume that F is analytic and that the dimension of G is countable.

Since G is a countable union of finite dimensional subspaces Gn and each Gn (as

metrizable complete and separable) is analytic, so G is analytic. The previous part

applies and hence F is closed in E and the Baire category theorem yields that the

codimension of F is finite. �

This shows that any algebraic complement of a closed non topologically comple-

mented subspace in a separable F -space is “highly” non-closed, i.e. does not admit

a complete resolution.

Problem 8. Does there exist an F -space which is an algebraic direct sum of two

non-closed subspaces admitting a complete resolution? See also [6, Problem 4.21].

Acknowledgement. The authors are grateful to the referee for valuable com-

ments and suggestions.

References

[1] B. Cascales: On K-analytic locally convex spaces. Arch. Math. 49 (1987), 232–244.
[2] B. Cascales, J. Orihuela: On compactness in locally convex spaces. Math. Z. 195 (1987),
365–381.

[3] J.P. R. Christensen: Topology and Borel Structure. Descriptive Topology and Set The-
ory with Applications to Functional Analysis and Measure Theory, Vol. 10. North Hol-
land, Amsterdam, 1974.

[4] W.W. Comfort, D. Remus: Compact groups of Ulam-measurable cardinality: Partial
converse theorems of Arkhangel’skii and Varopoulos. Math. Jap. 39 (1994), 203–210.

[5] P. Dierolf, S. Dierolf, L. Drewnowski: Remarks and examples concerning unordered
Baire-like and ultrabarrelled spaces. Colloq. Math. 39 (1978), 109–116.

[6] L. Drewnowski: Resolutions of topological linear spaces and continuity of linear maps.
J. Math. Anal. Appl. 335 (2007), 1177–1194.

[7] L. Drewnowski: The dimension and codimension of analytic subspaces in topological
vector spaces, with applications to the constructions of some pathological topological
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J . K ą k o l, Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614
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