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Abstract. On every subspace of l∞(N) which contains an uncountable ω-independent set,
we construct equivalent norms whose Banach-Mazur distance is as large as required. Under
Martin’s Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of
equivalent norms on every infinite-dimensional subspace of l∞(N) is infinite. This provides
a partial answer to a question asked by Johnson and Odell.
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1. Introduction

It has been shown in [10] that if X is a separable infinite-dimensional Banach

space and A is any positive real number, there exist two norms ‖ · ‖1 and ‖ · ‖2 such

that the Banach-Mazur distance between the Banach spaces (X, ‖ ·‖1) and (X, ‖ ·‖2)

is greater than A. It turns out that separability plays a role in the proof, and it is

asked in [10] whether the result actually holds for every infinite-dimensional Banach

space. The purpose of this note is to provide a partial affirmative answer to this

question, which remains open in full generality.

We refer to [8] for the notation and terminology. In particular, we denote by ω1

the first uncountable ordinal. We recall that a subset S of a Banach space X is said

to be ω-independent if the equation

∞
∑

n=0

αnxn = 0

where the αn’s are scalars and (xn) is an arbitrary sequence in S, implies that

αn = 0 for all n. Every minimal system is clearly ω-independent, where we recall
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that minimal systems are the “X parts” of biorthogonal systems (see [8], Def. 1.1).

It has been shown in [4] that if X is separable, then ω-independent subsets of X

are at most countable (see also [11] for a more precise result). It follows from a

recent work by S. Todorcevic and others that whether every non-separable Banach

space contains an uncountable ω-independent subset is undecidable in (ZFC) (see [8],

Theorem 8.24).

The purpose of this note is to use ω-independent subsets for constructing equiv-

alent norms which are far from each other in the Banach-Mazur distance. We refer

to [1] for a recent work along similar lines, where it is shown that the existence of

an equivalent norm with the Mazur intersection property on every Asplund space of

density character ω1 is undecidable in (ZFC).

2. Results

The following lemma is the main technical result of this note. The proof relies on

some techniques from ([8], Section 8.2).

Lemma 2.1. Let X be a Banach space which contains an uncountable ω-

independent family. Then for any A > 0 there is an equivalent norm on X whose

dual norm satisfies: for any countable subset (x∗

k)k∈N of the dual unit ball BX∗ there

are x ∈ X and x∗ ∈ BX∗ such that |x∗

k(x)| 6 1 for all k and x∗(x) > A.

P r o o f. Clearly we can assume without loss of generality that the uncountable

ω-independent family is bounded. It is shown in [7] that given any ε > 0, every

uncountable ω-independent family contains an uncountable subset (ei)i∈I such that

there exists a bounded subset (e∗i )i∈I of X∗ which satisfies e∗i (ei) = 1 for all i and

|e∗i (ej)| < ε for all i 6= j.

We pick n ∈ N and apply the above to ε = n−2. We define a closed bounded

balanced subset C of X as follows:

C = conv

{

n−1
∑

i∈J

ηiei; |J | 6 n, |ηi| = 1

}

.

Let (x∗

k)k∈N be a sequence in X∗ such that sup
C

(x∗

k) 6 1 for all k. Let

Ek = {i ∈ I; |x∗

k(ei)| > 1}.

It is clear that |Ek| 6 2n for all k, and thus there exists i ∈ I \
⋃

k∈N

Ek. We pick

this index i, and we note that

(1)

∣

∣

∣

∣

e∗i

(

n−1
∑

j∈J

ηjej

)
∣

∣

∣

∣

6 n−1 + n−2
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for any set J with |J | 6 n. We let now

x∗ =
ne∗i

1 + n−1
.

It follows from (1) that sup
C

(x∗) 6 1. On the other hand,

x∗(ei) =
n

1 + n−1

while |x∗

k(ei)| 6 1 for all k ∈ N. If n is chosen in such a way that

n

1 + n−1
> A

we reach our conclusion, except that the convex set C is not necessarily the unit ball

of an equivalent norm. For completing the proof, we therefore consider the equivalent

norm ‖ · ‖ whose unit ball is

B = C + αBX

where BX is the original unit ball and α > 0 is properly chosen. Any sequence (x∗

k)

such that ‖x∗

k‖ 6 1 satisfies in particular sup
C

(x∗

k) 6 1 for all k and we can apply the

above argument. The linear form x∗ is such that

‖x∗‖ 6 1 +
nLα

1 + n−1

with L = sup{N(e∗i ) ; i ∈ I}, where N is the original norm. The lemma easily

follows through renormalization by choosing α > 0 small enough. �

Our main result is now easy to show.

Theorem 2.2. Let X be a closed subspace of l∞(N) which contains an uncount-

able ω-independent family. Then the diameter of the set of equivalent norms on X

with respect to the Banach-Mazur distance is infinite.

P r o o f. Let N be the norm on X which is induced by the canonical norm

of l∞(N). We denote by (p∗k) the restrictions to X of the coordinate functionals

on l∞(N). Let T be any isomorphism between X equipped with the norm provided

by Lemma 2.1 and X equipped with N . We may and do assume that T has norm 1

and then ‖T ∗(x∗)‖ 6 N(x∗) for all x∗ ∈ X∗. Applying Lemma 2.1 to x∗

k = T ∗(p∗k)

provides x ∈ X such that N(T (x)) 6 1 but ‖x‖ > A. Therefore T−1 has norm

greater than A. This concludes the proof since A is arbitrary. �
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Let us recall that according to [10], a Banach space X is elastic if there exists

K ∈ R such that when X is equipped with an arbitrary equivalent norm, then X

with this new norm K-embeds into X . Isometrically universal spaces for a given

density character are clearly elastic (with K = 1). Our proof shows that when X is

renormed via Lemma 2.1 all its embeddings into l∞(N) have large norms, and thus

it yields:

Corollary 2.3. Let X be a closed subspace of l∞(N) which contains an uncount-

able ω-independent family. Then X is not elastic.

Before stating the next corollary, which is the main motivation for this work, we

recall that Martin’s Maximum Axiom (MM) states that the intersection of ω1 dense

open subsets of any Čech-complete space P in the classM is dense in P , whereM is

the largest possible class of Čech-complete spaces for which this transfinite version of

Baire’s lemma can hold. The classM , which is identified in [3], contains in particular

all Čech-complete spaces with the countable chain condition. Martin’s Maximum is

thus provably the strongest version of Martin’s axiom consistent with ZFC. With

this notation, we now have:

Corollary 2.4 (MM). Let X be an infinite dimensional closed subspace of l∞(N).

Then the diameter of the set of equivalent norms on X with respect to the Banach-

Mazur distance is infinite.

P r o o f. IfX is separable, this corollary is Johnson-Odell’s theorem [10], which is

of course a result from ZFC. IfX is not separable, it is shown in [13] that under (MM)

the space X contains an uncountable minimal system, and thus in particular an

uncountable ω-independent family. It suffices now to apply Theorem 2.2 to reach

the conclusion. �

We note that the argument also shows that under (MM), no non separable sub-

space of l∞(N) is elastic.

Corollary 2.4 is clearly not the final satisfactory result one could expect. Let us

therefore conclude this work with some questions.

Question 1. Is Corollary 2.4 a result from ZFC? It is certainly so for “decent”

subspaces of l∞(N). Indeed, it is shown in [2] (and in ZFC) that if a subspace X

of l∞(N) contains a weak* analytic subset which is not norm-separable then it has

a quotient space which does not linearly embed into l∞(N), and this implies the

existence of renormings for which the space is far from subspaces of l∞(N) (see

Corollary III.3 in [2]). A similarity with Lemma 2.1 is that a topological assumption

replaces the geometric information on linear independence. This applies in partic-

ular to weak* analytic subspaces of l∞(N) (i.e. representable spaces, in the sense
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of [6]). This applies more generally to subspaces of l∞(N) which belong to the pro-

jective hierarchy in the weak* topology, provided a suitable determinacy axiom is

assumed ([5]).

Although an affirmative answer to Question 1 looks plausible, it should be noticed

that one would need anyway to follow different lines. Indeed, what the above actually

shows is, under (MM), that for every non separable subspace X of l∞(N) and every

A > 0 there is an equivalent norm onX such that the Banach-Mazur distance fromX

equipped with that norm to every isometric subspace of l∞(N) is greater than A.

This stronger statement fails if the Continuum Hypothesis (CH) is assumed, since

Kunen’s C(K) space (see [12]) constructed under (CH) is isometric to a subspace

of l∞(N) when equipped with any equivalent norm, as shown in [9].

Question 2. The above comment motivates the following: is the Banach-Mazur

diameter of the set of equivalent norms on Kunen’s space infinite? Is Kunen’s space

elastic? We refer to [13] for more references and information on similar spaces, which

the above questions concern as well.

Question 3. If there is an equivalent norm ‖·‖ on X such that (X, ‖·‖) is not iso-

metric to a subspace of l∞(N), does it follow that there exist equivalent norms on X

whose Banach-Mazur distance to isometric subspaces of l∞(N) is arbitrarily large?

The above proof shows that the answer to this question is affirmative under (MM),

since then both the statements amount to saying that X is not separable (see The-

orem 8.24 in [8]). However, it is natural to wonder if it can be decided in ZFC.

An affirmative answer would probably request a geometric argument, comparable

to Lemma 2.1, which would use ω1-polyhedra instead of ω-independent families (see

Theorem 8.19 in [8]).
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