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Abstract. A ring extension R ⊆ S is said to be FO if it has only finitely many intermediate
rings. R ⊆ S is said to be FC if each chain of distinct intermediate rings in this extension is
finite. We establish several necessary and sufficient conditions for the ring extension R ⊆ S

to be FO or FC together with several other finiteness conditions on the set of intermediate
rings. As a corollary we show that each integrally closed ring extension with finite length
chains of intermediate rings is necessarily a normal pair with only finitely many intermediate
rings. We also obtain as a corollary several new and old characterizations of Prüfer and
integral domains satisfying the corresponding finiteness conditions.
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1. Introduction

Let R ⊆ S be an extension of integral domains. If T is a subring of S, we assume

that T has the same identity element of S. The set of subrings of S that contain R is

called the set of intermediate rings in the ring extension R ⊆ S. We let [R, S] denote

this set. If K is the field of fractions of R, then an intermediate ring in the extension

R ⊆ K is called an overring of R.

Recently several authors have been interested in ring extensions with only finitely

many intermediate rings or with only finite length chains of intermediate rings, and in

integral domains that have only finitely many overrings or only finite length chains of

overrings. This paper is mainly concerned with the following two finiteness conditions

on the set of intermediate rings in the ring extension R ⊆ S:
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– the ring extension R ⊆ S is said to be FO if this extension has only finitely

many intermediate rings.

– the ring extension R ⊆ S is said to be FC if each chain of distinct intermediate

rings in this extension is finite.

The two conditions have been recently introduced by Gilmer in [7] for the set of

overrings of an integral domain. An integral domain is said to be FO (or FC) if the

corresponding condition is satisfied for the extension R ⊆ K, where K is the field

of fractions of R. Several characterizations of extensions R ⊆ K satisfying these

conditions have been established by Gilmer in [7]. Several related results can be

found in [9], [11], [3] and [2]. We investigate in this paper the realization of these

two conditions in the more general setting of extensions of integral domains, where

the upper ring S is not necessarily the field of quotients of the ring R. We establish

in Theorem 2.2 and in Theorem 3.2 of this paper several characterizations of these

extensions. The characterizations obtained in Theorem 3.2 provide a generalization

of Theorem 1.5 of Gilmer in [7] where the upper ring S is supposed to be the field of

fractions of R. Theorem 3.2 is also a generalization of Theorem 2.1 and Corollary 2.1

of the author in [10] where each intermediate ring is supposed to be integrally closed

in S. In particular, we show that if R ⊆ S is an FC extension such that R is

integrally closed in S, then (R, S) is necessarily a normal pair with only finitely

many intermediate rings, see Corollary 3.3. We obtain as a by-product several new

and old characterizations of integral domains with some finiteness conditions on the

set of overrings, see Corollary 2.3 and Corollary 3.7.

In the following all rings are assumed to be commutative with identity. We

let Spec(R) denote as usual the set of proper prime ideals of the integral domain R,

and we let Max(R) denote the set of its maximal ideals. Let A be a set of prime

ideals of R. We define the Krull dimension of A to be the maximal length of chains

of prime R-ideals from A, and we will denote it by dim(A).

2. Finiteness conditions on [R, S]

In order to relate various finiteness conditions on the set [R, S] of intermediate

rings, we need to consider the set [R, S] ordered by inclusion. Let P denote a general

ordered set. A subset C of P is said to be a chain if every two distinct elements

from C are comparable. A subset A of P is said to be an antichain if no two distinct

elements from A are comparable. The size of the largest antichain in P is called the

width w(P ) of P if such an antichain exists, otherwise the width is set to be ∞,

see [12, p. 36]. A good connection between chains and antichains in ordered sets is

given by Dilworth’s Chain Decomposition Theorem: Any ordered set P of width k

is the union of k chains C1, . . . , Ck ⊆ P , see [12, p. 49].
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For each x ∈ S \R, we call the ring R[x] a simple extension of R in S. Two simple

extensions R[x] and R[y] are considered different if and only if R[x] 6= R[y]. Recall

that a ring extension R ⊆ S is called (strongly) affine if every intermediate ring is

finitely generated as a ring over R. In order to formulate our results we need to

introduce the following definition:

Definition 2.1. We say that the ring extension R ⊆ S is uniformly affine, UA,

if there is a finite subset G = {g1, g2, . . . , gu} of elements of S such that for every

T ∈ [R, S] there is a subset H of G such that T = R[H ].

Now we can give our first result on ring extensions with only finitely many inter-

mediate rings.

Theorem 2.2. Let R ⊆ S be a ring extension. Then the following statements

are equivalent.

(1) [R, S] is finite.

(2) The set {R[x] : x ∈ S \ R} of all distinct simple extensions of R in S is finite.

(3) The extension R ⊆ S is a UA extension.

(4) R ⊆ S is an FC extension and w[R, S] is finite.

P r o o f. (1) ⇒ (2) is trivial.

(2) ⇒ (3): Let F = {s1, s2, . . . , sn} be a subset of S such that {R[s1], R[s2], . . . ,

R[sn]} is the set of simple extensions of R in S, and let T ∈ [R, S]. Assume,

after a suitable reordering of the elements of F , that s1, s2, . . . , sm are the el-

ements of F which are in T . We necessarily have T = R[s1, s2, . . . , sm]. In-

deed, if u ∈ T \ R[s1, s2, . . . , sm], then R[u] /∈ {R[s1], R[s2], . . . , R[sm]}. Also

R[u] /∈ {R[sm+1], R[sm+2], . . . , R[sn]} as otherwise si ∈ T for some i ∈ {m+1, . . . , n},

which contradicts the choice of s1, s2, . . . , sm in F . Therefore R ⊆ S is a UA exten-

sion.

(3) ⇒ (4): Since every intermediate ring is generated over R by a subset of a finite

set G = {g1, g2, . . . , gu} of S, it is easy to see that the set of intermediate rings is

finite and therefore every chain and every antichain of [R, S] is finite. That is, R ⊆ S

is a FC extension and w[R, S] is finite.

(4) ⇒ (1): Let w = w[R, S] be the width of the set of intermediate rings [R, S]

ordered by inclusion and let C1, C1, . . . , Cw be the chains from [R, S] into which

[R, S] is decomposed. Then R ⊆ S is a FO extension as |[R, S]| 6
w∑

i=1

|Ci|. �

In the case of the ring extension R ⊆ K, where K is the field of quotients of R,

we obtain the following result.
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Corollary 2.3. Let R be an integral domain, and let K be the field of quotients

of R. Then the following statements are equivalent.

(1) [R, K] is finite.

(2) The set {R[x] : x ∈ K \ R} of all distinct simple extensions of R in K is finite.

(3) The extension R ⊆ K is a UA extension.

(4) R is an FC domain and w[R, K] is finite.

We recall that an ordered set P is said to satisfy the ascending (descending)

chain condition, a.c.c. (d.c.c.), if and only if each ascending (descending) chain of

elements of P is stationary. An ordered set P is said to satisfy the maximal (minimal)

condition if and only if each nonempty subset of P has a maximal (minimal) element.

It is well known that P satisfies the a.c.c. condition if and only if it satisfies the

maximal condition; and that P satisfies the d.c.c. condition if and only if it satisfies

the minimal condition.

Remark 2.4. It is easy to see that a ring extension R ⊆ S is an FC extension

if and only if a.c.c. and d.c.c. with respect to the usual set inclusion are satisfied

in [R, S], if and only if every nonempty collection of intermediate rings in [R, S] has

both a maximal element and a minimal element.

3. The integrally closed case

In this section we assume that R is integrally closed in S, and we are going to

use residually algebraic pairs in our characterizations. Recall that a ring extension

R ⊆ T is called a residually algebraic extension, [5], if for each prime ideal Q of T ,

T/Q is algebraic over R/(Q ∩ R). We say that (R, S) is a residually algebraic pair,

Definition 2.1 of [1], if for each T ∈ [R, S], R ⊆ T is a residually algebraic extension.

We say that (R, S) is a normal pair, [4], if for each T ∈ [R, S], T is integrally closed

in S. The extension R ⊆ S is called a primitive extension (or P-extension, see [8])

if each element u of S is a root of a polynomial f(X) ∈ R[X ] with unit content;

i.e., the coefficients of f(X) generate the unit ideal of R.

Residually algebraic pairs (R, S) with R integrally closed in S are necessarily

normal pairs by Theorem 2.5 (vi) of [1], therefore they enjoy several nice properties.

The following properties of normal pairs are going to be used in this paper.

Remark 3.1. Let (R, S) be a normal pair, let T ∈ [R, S] be any intermediate

ring, and let Max(R) = {Mi : i ∈ I} be the set of maximal ideals of R. Then the

following properties hold true.

(1) (Proposition 4 of [4], and Lemma 3.1 of [1]). The intermediate ring T is the inter-

section of some localizations of R, more precisely, for each maximal R-ideal Mi
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there is a prime R-ideal Qi such that TR\Mi
= RQi

and T =
⋂

i∈I

TR\Mi
=

⋂

i∈I

RQi
.

(2) (Lemma 3.1 of [1]). Spec(T ) = {PT : P ∈ Spec(R) and P ⊆ Qi for some i ∈ I}.

(3) (Lemma 3.1 of [1]) Max(T ) is the subset of maximal elements in the set {QiT :

i ∈ I}.

(4) Each prime ideal of T is an extension PT of a prime ideal P of R. Furthermore,

for each prime Q of R such that QT 6= T , QT is a prime ideal of T satisfying

QT ∩ R = Q and TQT = RQT∩R = RQ.

For a ring extension R ⊆ S, we denote by Φ: Spec(S) → Spec(R) the canonical

contraction map, i.e. Φ(P ) = P ∩ R for every P in Spec(S).

It is easy to see that FO extensions are necessarily FC extensions. The following

result shows that in the case of integrally closed extensions of integral domains these

notions are equivalent to each other and also to several other characterizations.

Theorem 3.2. Let R ⊆ S be an extension of integral domains, and let A =

A(R, S) := {P ∈ Spec(R) : P 6⊂ N ∩ R, ∀N ∈ Max(S)}. If R is integrally closed

in S, then the following statements are equivalent.

(1) [R, S] is finite.

(2) The set {R[x] : x ∈ S \ R} of all simple extensions of R in S is finite.

(3) The extension R ⊆ S is a UA extension.

(4) R ⊆ S is an FC extension and w[R, S] is finite.

(5) R ⊆ S is an FC extension.

(6) (R, S) is a residually algebraic pair such that A \ Φ(Max(S)) is finite.

(7) (R, S) is a residually algebraic pair such thatMax(R)\Φ(Max(S)) and dimA are

finite.

(8) a.c.c. and d.c.c. are satisfied in [R, S].

(9) Every non-empty collection of intermediate rings in [R, S] has both a maximal

element and a minimal element.

P r o o f. (1) ⇔ (2) ⇔ (3) ⇔ (4) is satisfied by Theorem 2.2. Also (4) ⇒ (5) and

(5) ⇔ (8) ⇔ (9) are trivial. It is enough to show that (5) ⇒ (7) ⇔ (6) ⇒ (1).

(5) ⇒ (7): Let Max(R) = {Mi : i ∈ I} be the set of maximal ideals of R. We first

note that if (R, S) is a normal pair, then

A(R, S) = {P ∈ Spec(R) : P 6⊂ Qi, ∀ i ∈ I},

where Qi is the prime ideal of R defined in Remark 3.1 for which SR\Mi
= RQi

.

Indeed, by Remark 3.1, Max(S) is the subset of maximal elements in the set

{QiS : i ∈ I}, hence let J be the subset of I such that Max(S) = {QiS : i ∈ J}. For
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P ∈ Spec(R) we have

P 6⊂ Qi, ∀ i ∈ I

⇔ P 6⊂ Qi, ∀ i ∈ J

⇔ P 6⊂ QiS ∩ R, ∀ i ∈ J

⇔ P 6⊂ N ∩ R, ∀N ∈ Max(S)

⇔ P ∈ A(R, S).

Therefore {P ∈ Spec(R) : P 6⊂ Qi, ∀ i ∈ I} = A(R, S).

Now if R ⊆ S is an FC extension, then [R, S] satisfies d.c.c. and R ⊆ S is a

primitive extension by [7, Proposition 1.1]. Thus (R, S) is a residually algebraic pair

by [6, Theorem 6.5.7]; that is, (R, S) is a normal pair as R is integrally closed in S

by [1, Theorem 2.5]. Finally, (R, S) is a normal pair such that Max(R) \Φ(Max(S))

and dim A are finite by [10, Theorem 2.1].

(7) ⇔ (6) ⇒ (1) by Theorem 2.1 of [10] as in this case (R, S) is a normal pair and

A = {P ∈ Spec(R) : P 6⊂ Qi, ∀ i ∈ I} as in the proof of (5) ⇒ (7). �

From the equivalence of (5), (6) and (1) in Theorem 3.2, we obtain

Corollary 3.3. Let R ⊆ S be an FC ring extension such that R is integrally

closed in S. Then (R, S) is a normal pair with only finitely many intermediate rings.

From the equivalence of (4) and (5) in Theorem 3.2, we obtain

Corollary 3.4. Let R ⊆ S be a ring extension such that R is integrally closed

in S. If every chain of intermediate rings is finite, then also every antichain of

intermediate rings is finite.

Remark 3.5. The converse of Corollary 3.4 is not true in general as it is enough to

consider the extension R ⊆ K, where R is a valuation domain of infinite dimension.

This extension has w[R, S] = 1, but is not FC.

Remark 3.6. If (R, S) is assumed to be a normal pair, then A = {P ∈ Spec(R) :

P 6⊂ Qi, ∀ i ∈ I} as in the proof of Theorem 3.2. The statements (1), (5), (6), and

(7) of Theorem 3.2 are the same as Theorem 2.1 of [10].

In the case of the ring extension R ⊆ K, where K is the field of quotients of R,

we have SR\Mi
= KR\Mi

= R{0} and the ideals Qi defined by Remark 3.1 (1) are all

equal to the {0}-ideal. Hence A = {P ∈ Spec(R) : P 6⊂ {0}, ∀ i ∈ I} = Spec(R)\{0}.

Thus we obtain the following result.
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Corollary 3.7. Let R be an integrally closed domain, and let K be the field of

quotients of R. Then the following statements are equivalent:

(1) R is an FO domain.

(2) The set {R[s] : s ∈ K} of all distinct simple extensions of R in its quotient field

is finite.

(3) The extension R ⊆ K is a UA extension.

(4) R is an FC domain and w[R, K] is finite.

(5) R is an FC domain.

(6) R is a Prüfer domain with finite spectrum.

(7) R is a Prüfer domain such that Max(R) and dim R are finite.

(8) a.c.c. and d.c.c. are satisfied in [R, K].

(9) Every non-empty collection of overrings of R has both a maximal element and

a minimal element.

Remark 3.8. The statements (1), (5), (6), and (7) of Corollary 3.7 are the same

as Theorem 1.5 of [7], which in turn is a generalization of Corollary 2.1 of [10].

Theorem 3.9. Let R ⊆ S be an extension of integral domains, and let R′ be the

integral closure of R in S. If R ⊆ S is an FC extension then the following statements

hold true.

(1) (R, S) is a residually algebraic pair.

(2) (R′, S) is a normal pair.

(3) [R′, S] is finite; i.e. R′ ⊆ S is an FO extension.

P r o o f. (1) Let R′ be the integral closure of R in the ring S. Then each chain

of intermediate rings in [R′, S] is also finite, hence (R′, S) is a residually algebraic

pair by Theorem 3.2. This is equivalent to (R, S) being a residually algebraic pair

by Remark 2.2 of [1].

(2) (R′, S) is a residually algebraic pair and also a normal pair as each residually

algebraic pair (R, S) with R integrally closed in S is also a normal pair.

(3) (R′, S) is also an FO extension by Theorem 3.2 as it is already an FC extension.
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