Czechoslovak Mathematical Journal

Ana M. Breda; Altino F. Santos
On deformations of spherical isometric foldings

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 1, 149-159

Persistent URL: http://dml.cz/dmlcz/140558

Terms of use:

© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON DEFORMATIONS OF SPHERICAL ISOMETRIC FOLDINGS

Ana M. Breda, Aveiro, Altino F. Santos, Vila Real

(Received September 5, 2008)

Abstract

The behavior of special classes of isometric foldings of the Riemannian sphere S^{2} under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the standard spherical isometric folding f_{s} defined by $f_{s}(x, y, z)=(x, y,|z|)$.

Keywords: isometric foldings, edge-to-edge spherical tilings, homotopy
MSC 2010: 52C20, 57Q55, 55P10, 52B05

1. Introduction

Suppose that a plane sheet of paper is crumpled gently in the hands, and then crushed flat against a desk top. The effect is to criss-cross the sheet with a pattern of creases.

It was S. A. Robertson [7], who in 1977 first observed that the patterns of creases so formed obey certain simples rules, namely:
(i) all the creases are composed of straight line segments;
(ii) if p is the end-point of such a segment then the total number of crease-segments that end at p is even. Moreover, the sum of alternated angles between creases at p is equal to π.

Replacing both the sheet of paper and the desk-top by the Euclidean plane \mathbb{R}^{2} equipped with its standard Riemannian structure, the physical crumpling-crushing process can then be modelled mathematically by a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that sends each piecewise-straight path in \mathbb{R}^{2} to a piecewise-straight path in \mathbb{R}^{2} of the same length.

The research supported partially by the Research Units Mathematics and Applications of University of Aveiro and $C M-U T A D$ of University of Trás-os-Montes e Alto Douro, through the Foundation for Science and Technology (FCT).

More generally, we can think about maps, called isometric foldings of Riemannian manifolds, that send finite piecewise geodesics to finite piecewise geodesics of the same length.

For any two smooth Riemannian manifolds, M and N, we denote by $\mathcal{F}(M, N)$ the set of all isometrics foldings from M into N. We may conclude that:
(i) $\mathcal{F}(M)=\mathcal{F}(M, M)$ is a semigroup with identity element id_{M} and contains the isometry group $\mathcal{I}(M)$ as a subsemigroup;
(ii) for all $x, y \in M, d_{N}(f(x), f(y)) \leqslant d_{M}(x, y)$, where d_{M} and d_{N} are, respectively, the metrics on M and N induced by their Riemannian structure. Consequently, any isometric folding is a continuous map;
(iii) any differentiable isometric folding is an isometry.

The map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(x,|y|)$ is an isometric folding of the real plane equipped with its standard structure, which is not differentiable at any point of the straight line $y=0$.

A point $x \in M$ where an isometric folding $f: M \rightarrow N$ fails to be differentiable is called a singularity of f. The set of all singularities of f is denoted by Σf. An isometric folding f is called nontrivial if $\Sigma f \neq \emptyset$.

A general description of Σf for any $f \in \mathcal{F}(M, N)$ was given by Robertson in [7]. When M and N are complete Riemannian 2-manifolds this description can be stated as follows: for each $x \in \Sigma f$ the singularities of f near x form the image of an even number of geodesic rays emanating from x and making alternated angles $\alpha_{1}, \beta_{1}, \alpha_{2}$, $\beta_{2}, \ldots, \alpha_{n}, \beta_{n}$, where

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j}=\sum_{j=1}^{n} \beta_{j}=\pi . \tag{1.1}
\end{equation*}
$$

In other words, the singularity set of an isometric folding on surfaces can be seen as an embedded graph of even valency satisfying the angle folding relation (1.1). Figure 1 shows a singularity set near a vertex of valency six.

Fig. 1. The angle folding relation (with $n=3$).

Our interest is focused on the set of isometric foldings of the Riemannian sphere $\mathcal{F}\left(S^{2}\right)$. The compactness of the sphere ensures that the singularity set of any spherical isometric folding (as an embedded graph of S^{2}) is connected with finitely many regions.

The compactness of S^{2} allows us to conclude that any $f \in \mathcal{F}\left(S^{2}\right)$ is a proper map, [6]. S. Robertson established that the Hopf degree of any nontrivial spherical isometric folding is 0 .

2. The compact-open topology on $\mathcal{F}\left(S^{2}\right)$

By a spherical folding tiling we mean an edge-to-edge finite polygonal-tiling τ of S^{2} whose underlying graph is of the type described in (1.1). We shall denote by $\mathcal{T}\left(S^{2}\right)$ the set of all folding tilings of S^{2}, identifying the singularity sets of nontrivial foldings with spherical folding tilings.

Classification of spherical folding tilings with a specified fixed type of prototiles was obtained in [2], [3], [4] and [5].

Definition 2.1. Two folding tilings, τ_{1} and τ_{2}, of S^{2}, are said to be congruent if there exists an isometry k of S^{2} such that $k\left(\tau_{1}\right)=\tau_{2}$.

Proposition 2.1. Let f and g be isometric foldings of S^{2}. Then
(i) $\Sigma f=\Sigma g$ iff there exists $a \in \operatorname{Iso}\left(S^{2}\right)$ such that $g=a \circ f$;
(ii) Σf and Σg are congruent iff there exist $a, b \in \operatorname{Iso}\left(S^{2}\right)$ such that $g=a \circ f \circ b$.

Proof. (i) If $g=a \circ f$ for some $a \in \mathcal{I}\left(S^{2}\right)$, then $\Sigma g=\Sigma f \cup f^{-1}(\Sigma a)=\Sigma f$, since $\Sigma a=\emptyset$.

Conversely, suppose that $\Sigma f=\Sigma g=\tau$. If F is a face of τ, there are $i, j \in \mathcal{I}\left(S^{2}\right)$ such that $\left.(i \circ f)\right|_{F}=\left.(j \circ g)\right|_{F}=\operatorname{id}_{F}$. In [1] it was shown that necessarily $i \circ f=j \circ g$, and so $g=a \circ f$, where $a=j^{-1} \circ i$.
(ii) Suppose that $g=a \circ f \circ b$ for some $a, b \in \mathcal{I}\left(S^{2}\right)$. Then $\Sigma g=\Sigma(a \circ(f \circ b))=$ $\Sigma(f \circ b)=b^{-1}(\Sigma f)$, and so Σf and Σg are congruent.

On the other hand, if Σf and Σg are congruent, then $\Sigma g=k(\Sigma f)$ for some $k \in \operatorname{Iso}\left(S^{2}\right)$, and so $\Sigma g=\Sigma\left(f \circ k^{-1}\right)$, since $k(\Sigma f)=\Sigma\left(f \circ k^{-1}\right)$. Now, using the case (i) one gets $g=a \circ f \circ k^{-1}$ for some $a \in \operatorname{Iso}\left(S^{2}\right)$.

Let us consider the compact-open topology on $\mathcal{F}\left(S^{2}\right)$, i.e., the topology generated by sets of the form

$$
B(K, U)=\left\{f \in \mathcal{F}\left(S^{2}\right): f(K) \subset U\right\},
$$

where K is compact in S^{2} and U is open in S^{2}.

Definition 2.2. Let $f, g \in \mathcal{F}\left(S^{2}\right)$. We say that f is deformable into g iff there exists a map, (homotopy) $H:[0,1] \times S^{2} \rightarrow S^{2}$ such that
(i) H is continuous;
(ii) for each $t \in[0,1], H_{t}$ defined by $H_{t}(x)=H(t, x), x \in S^{2}$ is an isometric folding;
(iii) $H(0, x)=f(x)$ and $H(1, x)=g(x), \forall x \in S^{2}$.

As we are considering the compact open topology, f is deformable into g iff they belong to the same path connected component, i.e., there is a continuous map γ : $[0,1] \rightarrow \mathcal{F}\left(S^{2}\right)$ such that $\gamma(0)=f$ and $\gamma(1)=g$.

The relation of deformation is obviously an equivalence relation on $\mathcal{F}\left(S^{2}\right)$.
Definition 2.3. An isometric folding $f \in \mathcal{F}\left(S^{2}\right)$ is simple if Σf is a great circle of S^{2}. The (simple) standard folding, denoted by f_{s}, is defined by

$$
f_{s}(x, y, z)=(x, y,|z|), \forall(x, y, z) \in S^{2}
$$

In [1] it was established that any nontrivial isometric folding with Hopf degree zero in the Euclidean plane is deformable into the standard planar folding $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, defined by $f(x, y)=(x,|y|)$ and was conjectured that (Breda-Roberton conjecture) any nontrivial spherical isometric folding is deformable into f_{s}.

In other words, all spherical isometric foldings with zero Hopf degree belong to the same path connected component of $\mathcal{F}\left(S^{2}\right)$. It should be pointed out that a proof given for the sphere cannot be a simple adaptation of the one used for the plane, since here the dilatations played a crucial role. However, some contributions to the above conjecture will be given.

3. Deformation of simple foldings

Here we show that the sub-semigroup of $\mathcal{F}\left(S^{2}\right)$ generated by spherical simple foldings verifies the Breda-Roberton conjecture.

Theorem 3.1. Let $f, g \in \mathcal{F}\left(S^{2}\right)$. If f is deformable into f_{0} and g is deformable into g_{0} for some f_{0} and $g_{0} \in \mathcal{F}\left(S^{2}\right)$, then $f \circ g$ is deformable into $f_{0} \circ g_{0}$.

Proof. Suppose that $H:[0,1] \times S^{2} \rightarrow S^{2}$ is a deformation of f into f_{0}. The map $\mathscr{H}=H \circ g:[0,1] \times S^{2} \rightarrow S^{2}$ defined by $\mathscr{H}(t, x)=H(t, g(x))$ is a deformation of $f \circ g$ into $f_{0} \circ g$. In fact, \mathscr{H} is continuous; for each $t \in[0,1], \mathscr{H}_{t}$ defined by $\mathscr{H}_{t}(x)=\mathscr{H}(t, x)=\left(H_{t} \circ g\right)(x)$ is a spherical isometric folding; and $\mathscr{H}(0, x)=H(0, g(x))=f(g(x))$ and $\mathscr{H}(1, x)=H(1, g(x))=f_{0}(g(x))$.

Let now $H^{\prime}:[0,1] \times S^{2} \rightarrow S^{2}$ be a deformation of g into g_{0}. Then $\mathscr{H}^{\prime}=f_{0} \circ H^{\prime}$: $[0,1] \times S^{2} \rightarrow S^{2}$ defined by $\mathscr{H}^{\prime}(t, x)=f_{0}\left(H^{\prime}(t, x)\right)$ is a deformation of $f_{0} \circ g$ into $f_{0} \circ g_{0}$. In fact, \mathscr{H}^{\prime} is continuous; for each $t \in[0,1], \mathscr{H}_{t}^{\prime}$ defined by $\mathscr{H}_{t}^{\prime}(x)=\mathscr{H}^{\prime}(t, x)=$ $\left(f_{0} \circ H_{t}^{\prime}\right)(x)$ is a spherical isometric folding; and $\mathscr{H}^{\prime}(0, x)=f_{0}\left(H^{\prime}(0, x)\right)=f_{0}(g(x))$ and $\mathscr{H}^{\prime}(1, x)=f_{0}\left(H^{\prime}(1, x)\right)=f_{0}\left(g_{0}(x)\right)$. It follows that $f \circ g$ is deformable into $f_{0} \circ g_{0}$.

Since $f_{s} \circ f_{s}=f_{s}$, immediately
Corollary 3.1. If f_{1}, \ldots, f_{n} are isometric foldings of S^{2} deformable into f_{s}, then $f=f_{1} \circ \ldots \circ f_{n}$ is deformable into f_{s}.

Next, we exhibit a homotopy joining f_{s} to $\bar{f}_{s}=\varrho^{x y} \circ f_{s}$, where $\varrho^{x y}$ is the reflection on the coordinate plane $x O y$. Observe that $\bar{f}_{s}(x, y, z)=(x, y,-|z|)$ for all $(x, y, z) \in$ S^{2}.

Lemma 3.1. Let $\Pi_{t}, t \in[0,1]$ be the plane containing the yy axis and making an angle $\frac{1}{2} \pi t$ with the plane $x O y$ (as being Π_{0}). Further, let ϱ_{t} be the spherical reflection on Π_{t}. Then the map $H:[0,1] \times S^{2} \rightarrow S^{2}$ such that

$$
H(t, x)=\left(\varrho_{t} \circ f_{s} \circ \varrho_{t}\right)(x)
$$

is a deformation of \bar{f}_{s} into f_{s}.
Proof. Clearly H is continuous; for each $t \in[0,1], H_{t}$ defined by $H_{t}(x)=$ $H(t, x), x \in S^{2}$, is a spherical isometric folding joining $H_{0}=\bar{f}_{s}$ and $H_{1}=f_{s}$.

Lemma 3.2. Let i be an orientation preserving (reversing) isometry of S^{2}. Then there exists a continuous map $\Gamma:[0,1] \times S^{2} \rightarrow S^{2}$ such that for each $t \in[0,1]$, $\Gamma_{t}=\Gamma(t, *)$ is an orientation preserving (reversing) isometry, $\Gamma_{0}=i$ and $\Gamma_{1}=\mathrm{id}_{S^{2}}$ $\left(\Gamma_{1}=-\mathrm{id}_{S^{2}}\right)$.

Proof. We shall show that any rotation can be joined to $\mathrm{id}_{S^{2}}$ and any reflection can be joined to $-\mathrm{id}_{S^{2}}$. In fact, if R_{θ}^{L} is the rotation of S^{2} through an angle θ around a line L, then the map $H(t, x)=R_{(1-t) \theta}^{L}(x), t \in[0,1], x \in S^{2}$, is a deformation of R_{θ}^{L} into id $S_{S^{2}}$.

Let now ϱ denote a reflection of S^{2}. The axial symmetry - $\mathrm{id}_{S^{2}}$ can be written as $-\mathrm{id}_{S^{2}}=R_{\pi}^{z} \circ \varrho^{x y}=\varrho^{x y} \circ R_{\pi}^{z}$, where $\varrho^{x y}$ is the reflection on the plane $x O y$ and R_{π}^{z} is the rotation of S^{2} through the angle π around the $z z$ axis. On the other hand, the map $\varrho \circ R_{\pi}^{z} \circ \varrho^{x y}$ is a rotation of S^{2}, say $R_{\theta^{\prime}}^{\prime}$, through an angle θ^{\prime} around a line L^{\prime}, for some θ^{\prime} and L^{\prime}. It follows that $H^{\prime}(t, x)=\left(\varrho \circ R_{t \theta^{\prime}}^{\prime}\right)(x), t \in[0,1], x \in S^{2}$, is a deformation of $H^{\prime}(0, x)=\varrho(x)$ into $H^{\prime}(1, x)=\left(\varrho \circ R_{\theta^{\prime}}^{\prime}\right)(x)=\left(\varrho \circ \varrho \circ R_{\pi}^{z} \circ \varrho^{x y}\right)(x)=\left(R_{\pi}^{z} \circ \varrho \varrho^{x y}\right)(x)=-x$.

Since any spherical isometry is either a rotation, a reflection or a glide-reflection (the product of a reflection in a line L with a rotation which maps L onto itself) the result follows.

Lemma 3.3. The isometric foldings

$$
f_{s}(-x), \quad-f_{s}(x) \quad \text { and } \quad-f_{s}(-x)
$$

are all deformable into f_{s}.
Proof. Let R_{α}^{z} be the rotation of S^{2} through an angle α around the $z z$ axis. Then $f_{s}(-x)=R_{\pi}^{z} \circ f_{s}$ and so $H_{t}=R_{t \pi}^{z} \circ f_{s}, t \in[0,1]$ joins $f_{s}(-x)$ and f_{s}.

On the other hand, $-f_{s}(x)=R_{\pi}^{z} \circ \varrho^{x y} \circ f_{s}$, where $R_{\pi}^{z} \circ \varrho^{x y}$ is the axial symmetry. It follows that $L_{t}=R_{t \pi}^{z} \circ \varrho^{x y} \circ f_{s}, t \in[0,1]$ joins $-f_{s}(x)$ and $-f_{s}(-x)$.

By Lemma 3.1, the folding $\bar{f}_{s}=-f_{s}(-x)$ is deformable into f_{s}. The result follows.

Theorem 3.2. Let f be a simple isometric folding of S^{2}. Then f is deformable into f_{s}.

Proof. By Proposition 2.1, $f=a \circ f_{s} \circ b$ for some $a, b \in \operatorname{Iso}\left(S^{2}\right)$. By Lemma 3.2 and Theorem $3.1 f$ is deformable into $\pm f_{s}(\pm x)$. Using Lemma 3.3 we can join any one of these foldings to f_{s}.

Corollary 3.2. If $f \in \mathscr{F}\left(S^{2}\right)$ is of the form $f=f_{1} \circ \ldots \circ f_{n}$, where $f_{i}(i=1, \ldots, n)$ is a simple isometric folding, then f is deformable into f_{s}.

Proof. Use Theorem 3.1 and Theorem 3.2.

Theorem 3.3. Let $f, g \in \mathscr{F}\left(S^{2}\right)$ be such that f is deformable into f_{s}. If Σf and Σg are congruent then g is deformable into f_{s}.

Proof. Let $a, b \in \operatorname{Iso}\left(S^{2}\right)$ be such that $g=a \circ f \circ b$. By Theorem 3.1 and Lemma 3.2, g is deformable into $\pm f_{s}(\pm x)$. By Lemma 3.3 the result follows.

The problem stated in (2.1) is now partially solved, since it is verified in the interesting class of all isometric foldings that are compositions (of a finite number) of simple foldings or any isometric folding whose singularity set is congruent to such a folding.

Figure 2 shows a dihedral f-tiling τ (obtained in [4]) with prototiles a spherical rhombus with distinct pairs of opposite angles $\frac{2}{3} \pi$ and $\frac{2}{5} \pi$, and a scalene spherical triangle of angles $\frac{1}{2} \pi, \frac{1}{3} \pi$ and $\frac{1}{5} \pi$. We observe that τ is identified with the set
of singularities of a spherical isometric folding obtained by composition of simple foldings.

Fig. 2. A spherical isometric folding composition of simple foldings.

4. Perfect foldings and their deformations

Now we focus our attention on isometric foldings $f: S^{2} \rightarrow S^{2}$ such that f has no singularities in the interior of its image.

Definition 4.1. A nontrivial isometric folding $f: S^{2} \rightarrow S^{2}$ is said to be perfect if $\Sigma f=f^{-1}(\partial \operatorname{Im} f)\left(\right.$ or $\left.\Sigma f \cap f^{-1}(\stackrel{\circ}{\operatorname{Im} f})=\emptyset\right)$.

Here we describe, up to an isomorphism, the class of all perfect foldings $f: S^{2} \rightarrow$ S^{2}. General properties of $\tau=\Sigma f$ are also given.

A tiling τ will be called monohedral if every tile of τ is congruent to one fixed set T called the prototile of τ.

Lemma 4.1. If τ is a monohedral polygonal spherical tiling with even vertex valency then the prototile of τ must be a triangle (or a spherical moon).

Proof. Let P be the prototile of τ. We may suppose that P is an n-sided spherical polygon, where $n \geqslant 3$. We shall denote by V, E, F and $V_{r}(r \geqslant 2)$, respectively, the number of vertices, edges, faces and vertices of valency $2 r$ of τ. Then

$$
\left\{\begin{array}{l}
n F=2 E \\
\sum_{r=2}^{L} 2 r V_{r}=2 E \quad \text { for some } L \geqslant 2 \\
V=\sum_{r=2}^{L} V_{r}
\end{array}\right.
$$

Taking into account the Euler's relation $F-E+V=2$, one gets

$$
\sum_{r=2}^{L}\left(\frac{2 r}{n}-r+1\right) V_{r}=2
$$

As $f(r)=2 r / n-r+1 \leqslant 0$ for $r \geqslant 3$, hence necessarily $f(2)>0$ and consequently $n=3$.

Theorem 4.1. Let f be a perfect folding of $S^{2}, \tau=\Sigma f$ and $F=\operatorname{Im} f$. Then:
(i) τ is a monohedral f-tiling with prototile F;
(ii) if e is an edge of τ, then the great circle containing e is contained in τ;
(iii) F is either a spherical moon with internal angle $\pi / k, k \geqslant 1$, or a spherical triangle with internal angles (up to an order) $\left(\frac{1}{2} \pi, \frac{1}{2} \pi, \pi / k\right), k \geqslant 2$ or $\left(\frac{1}{2} \pi, \frac{1}{3} \pi, \pi / k\right)$, $k \in\{3,4,5\} ;$
(iv) f is a composition of simple foldings.

Proof. The description of the singularity set of f implies that each face of $\tau=\Sigma f$ is an n-sided convex polygon.
(i) Without loss of generality we may suppose that $\left.f\right|_{F}=\operatorname{id}_{F}(F=\operatorname{Im} f)$ and so F is a face of τ. Let e and s be, respectively, an edge of F and a spherical segment contained in F. If s^{\prime} is the reflection of s on the great circle containing e then $s^{\prime} \in f^{-1}(s)$, and as $\Sigma f=f^{-1}(\partial \operatorname{Im} f)$, if s is an edge of F then s^{\prime} is an edge of τ. Consequently, each face of τ adjacent to F is congruent to F (by reflection on an edge of F). Repeating this argument for any other face, we conclude that all faces of τ are congruent to F. And so τ is a monohedral f-tiling with prototile F. In fact, any face of τ is obtained from F by successive reflections on its edges.
(ii) Let v be a vertex of τ. Then v is of even valency and by the previous case all the angles surrounding v are congruent. Now, if e is an edge of τ incident to v, then the great circle containing e is contained in τ. In particular, the antipode $-v$ is also a vertex of τ congruent to v.
(iii) By Lemma 4.1, F must be a spherical triangle or a spherical moon. If F is a triangle with angles, say, α, β and $\gamma(\alpha \geqslant \beta \geqslant \gamma)$, then $\alpha=\pi / k, \beta=\pi / l$ and $\alpha=\pi / m$ for some $k, l, m \geqslant 2$. Taking in account that $\pi<\alpha+\beta+\gamma<\frac{3}{2} \pi$, the unique possible combinations are those refereed above.
(iv) If f is a perfect isometric folding of S^{2}, then $\tau=\Sigma f$ is illustrated, up to an isomorphism, in Figure 3.

In the first case the prototile is a spherical moon of angle π / k for some $k \geqslant 1$, and f can be seen as a composition of k simple foldings. In the other cases the prototile is a triangle, and each tiling is obtained by reflecting a tiled spherical moon on its edges. Choosing now a triangle sharing a vertex with a spherical moon, then it can be reflected successively on its edges forming the whole spherical moon.

Fig. 3. Perfect spherical foldings.
Corollary 4.1. Any perfect folding of the sphere is deformable into f_{s}.
This result can be generalized to other Riemannian 2-manifolds.
4.1. Spherical foldings over perfect foldings. We extend the family of isometric foldings deformable into the standard folding, proceeding as follows:

Definition 4.2. Let F be a convex spherical polygon and let $g: F \rightarrow S^{2}$ be a continuous map such that $\left.g\right|_{F}$ is an isometric folding. We say that g is deformable into id_{F} if there exists a continuous map $H:[0,1] \times F \rightarrow S^{2}$ such that for each $t \in[0,1]$, H_{t} is an isometric folding of $\stackrel{\circ}{F}$ into S^{2} and $H(0, x)=g(x)$ and $H(1, x)=x, \forall x \in F$.

Theorem 4.2. Let f be a perfect isometric folding of S^{2}. If $g: F=\operatorname{Im} f \rightarrow S^{2}$ is a continuous map such that $\left.g\right|_{F}$ is an isometric folding deformable into id_{F}, then $g \circ f$ is an isometric folding of S^{2} deformable into f_{s}.

Proof. Suppose that $H:[0,1] \times F \rightarrow S^{2}$ is a deformation of g into id_{F}. Then the map $\mathscr{H}=H \circ f:[0,1] \times S^{2} \rightarrow S^{2}$ defined by $\mathscr{H}(t, x)=H(t, f(x))$ is a deformation of $g \circ f$ into f. In fact,

$$
\mathscr{H}(0, x)=H(0, f(x))=g(f(x)) \text { and } \mathscr{H}(1, x)=H(1, f(x))=f(x) \in F, x \in S^{2}
$$

By Corollary 4.1, f is a composition of simple foldings, therefore f is deformable into f_{s}. And so, $g \circ f$ is deformable into f_{s}.

Remark. Let f and g be isometric foldings satisfying the conditions of Theorem 4.2, and let \mathscr{H} be the deformation of $g \circ f$ into f described before. By Theorem 4.1 any face F^{\prime} of $\tau=\Sigma f$ is obtained from $F=\operatorname{Im} f$ by successive reflections on its edges. In other words, there are spherical reflections $\varrho_{1}, \ldots, \varrho_{k}$ such that

$$
F^{\prime}=\overbrace{\varrho_{k} \circ \ldots \circ \varrho_{1}}^{\varrho_{F^{\prime}}}(F),
$$

where ϱ_{1} is a spherical reflection in an edge of F and $\varrho_{i}(i=2, \ldots, k)$ is a reflection in an edge of $\left(\varrho_{i-1} \circ \ldots \circ \varrho_{1}\right)(F)$. In Figure 4, we have taken $k=5$. One has $\Sigma(g \circ f)=\Sigma f \cup f^{-1}(\Sigma g)$. Now, if $\alpha:[0,1] \rightarrow \mathcal{T}\left(S^{2}\right)$ is defined by $\alpha(t)=\Sigma \mathscr{H}_{t}$, then

$$
f^{-1}(\Sigma g)=\bigcup_{F^{\prime} \text { face of } \Sigma f} \varrho_{F^{\prime}}(\alpha(t) \cap F) \quad \text { and } \quad \varrho_{F^{\prime}}(\alpha(t) \cap F)=\alpha(t) \cap F^{\prime}
$$

where $\varrho_{F^{\prime}}=\varrho_{k} \circ \ldots \circ \varrho_{1}$. In particular, for $t=0$ one has

$$
\varrho_{F^{\prime}}(\alpha(0) \cap F)=\varrho_{F^{\prime}}((\Sigma(g \circ f)) \cap F)=(\Sigma(g \circ f)) \cap F^{\prime}
$$

and, for $t=1$, one has

$$
\varrho_{F^{\prime}}(\alpha(1) \cap F)=\varrho_{F^{\prime}}(\Sigma f \cap F)=\varrho_{F^{\prime}}(\partial F)=\partial F^{\prime}=\Sigma f \cap F^{\prime} .
$$

Fig. 4. F-tilings Σf and $\Sigma(g \circ f)$.

It is not difficult to find isometric foldings which are not over perfect ones deformable in the standard folding. In Figure 5 we provide one such example. A very interesting question, for future work, is to find how far from the set of non trivial spherical foldings the set of spherical foldings over prefect ones is.

Fig. 5. The singular set of a spherical folding not over a perfect one.

References

[1] A. M. d'Azevedo Breda: Isometric Foldings. PhD Thesis, University of Southampton, U.K., 1989.
[2] A. M. d'Azevedo Breda: A class of tilings of S^{2}. Geometriae Dedicata 44 (1992), 241-253.
[3] A. M. d'Azevedo Breda and A.F. Santos: Dihedral f-tilings of the sphere by spherical triangles and equiangular well centered quadrangles. Beiträge Algebra Geometrie 45 (2004), 447-461.
[4] A. M. d'Azevedo Breda and A.F. Santos: Dihedral f-tilings of the sphere by rhombi and triangles. Discrete Math. Theoretical Computer Sci. 7 (2005), 123-140.
[5] A. M. d'Azevedo Breda and A.F. Santos: Dihedral f-tilings of the sphere by triangles and well centered quadrangles. Hiroshima Math. J. 36 (2006), 235-288.
[6] M. Hirsch: Differential Topology. Graduate Texts in Math, 33 Springer-Verlag, New York, 1976.
[7] S. A. Robertson: Isometric folding of riemannian manifolds. Proc. Royal Soc. Edinb. Sect. A 79 (1977), 275-284.

Authors' addresses: Ana M. Breda, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, e-mail: ambreda@ua.pt; Altino F. Santos, Department of Mathematics, U.T.A.D., 5001-801 Vila Real, Portugal, e-mail: afolgado@utad.pt.

