
Czechoslovak Mathematical Journal

Ana M. Breda; Altino F. Santos
On deformations of spherical isometric foldings

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 1, 149–159

Persistent URL: http://dml.cz/dmlcz/140558

Terms of use:
© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140558
http://dml.cz


Czechoslovak Mathematical Journal, 60 (135) (2010), 149–159

ON DEFORMATIONS OF SPHERICAL ISOMETRIC FOLDINGS

Ana M. Breda, Aveiro, Altino F. Santos, Vila Real

(Received September 5, 2008)

Abstract. The behavior of special classes of isometric foldings of the Riemannian sphere
S2 under the action of angular conformal deformations is considered. It is shown that within
these classes any isometric folding is continuously deformable into the standard spherical
isometric folding fs defined by fs(x, y, z) = (x, y, |z|).
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1. Introduction

Suppose that a plane sheet of paper is crumpled gently in the hands, and then

crushed flat against a desk top. The effect is to criss-cross the sheet with a pattern

of creases.

It was S.A.Robertson [7], who in 1977 first observed that the patterns of creases

so formed obey certain simples rules, namely:

(i) all the creases are composed of straight line segments;

(ii) if p is the end-point of such a segment then the total number of crease-segments

that end at p is even. Moreover, the sum of alternated angles between creases

at p is equal to π.

Replacing both the sheet of paper and the desk-top by the Euclidean plane R2

equipped with its standard Riemannian structure, the physical crumpling-crushing

process can then be modelled mathematically by a map f : R
2 → R

2 that sends each

piecewise-straight path in R
2 to a piecewise-straight path in R

2 of the same length.

The research supported partially by the Research UnitsMathematics and Applications
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More generally, we can think about maps, called isometric foldings of Riemannian

manifolds, that send finite piecewise geodesics to finite piecewise geodesics of the

same length.

For any two smooth Riemannian manifolds,M and N , we denote by F(M, N) the

set of all isometrics foldings from M into N . We may conclude that:

(i) F(M) = F(M, M) is a semigroup with identity element idM and contains the

isometry group I(M) as a subsemigroup;

(ii) for all x, y ∈ M , dN (f(x), f(y)) 6 dM (x, y), where dM and dN are, respectively,

the metrics onM and N induced by their Riemannian structure. Consequently,

any isometric folding is a continuous map;

(iii) any differentiable isometric folding is an isometry.

The map f : R
2 → R

2 given by f(x, y) = (x, |y|) is an isometric folding of the real

plane equipped with its standard structure, which is not differentiable at any point

of the straight line y = 0.

A point x ∈ M where an isometric folding f : M → N fails to be differentiable

is called a singularity of f . The set of all singularities of f is denoted by Σf . An

isometric folding f is called nontrivial if Σf 6= ∅.

A general description of Σf for any f ∈ F(M, N) was given by Robertson in [7].

WhenM and N are complete Riemannian 2-manifolds this description can be stated

as follows: for each x ∈ Σf the singularities of f near x form the image of an even

number of geodesic rays emanating from x and making alternated angles α1, β1, α2,

β2, . . ., αn, βn, where

(1.1)

n∑

j=1

αj =

n∑

j=1

βj = π.

In other words, the singularity set of an isometric folding on surfaces can be seen

as an embedded graph of even valency satisfying the angle folding relation (1.1).

Figure 1 shows a singularity set near a vertex of valency six.

α2
β1

α1

β3

α3

β2

Fig. 1. The angle folding relation (with n = 3).
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Our interest is focused on the set of isometric foldings of the Riemannian sphere

F(S2). The compactness of the sphere ensures that the singularity set of any spher-

ical isometric folding (as an embedded graph of S2) is connected with finitely many

regions.

The compactness of S2 allows us to conclude that any f ∈ F(S2) is a proper

map, [6]. S. Robertson established that the Hopf degree of any nontrivial spherical

isometric folding is 0.

2. The compact-open topology on F(S2)

By a spherical folding tiling we mean an edge-to-edge finite polygonal-tiling τ of

S2 whose underlying graph is of the type described in (1.1). We shall denote by

T (S2) the set of all folding tilings of S2, identifying the singularity sets of nontrivial

foldings with spherical folding tilings.

Classification of spherical folding tilings with a specified fixed type of prototiles

was obtained in [2], [3], [4] and [5].

Definition 2.1. Two folding tilings, τ1 and τ2, of S
2, are said to be congruent

if there exists an isometry k of S2 such that k(τ1) = τ2.

Proposition 2.1. Let f and g be isometric foldings of S2. Then

(i) Σf = Σ g iff there exists a ∈ Iso (S2) such that g = a ◦ f ;

(ii) Σf and Σ g are congruent iff there exist a, b ∈ Iso(S2) such that g = a ◦ f ◦ b.

P r o o f. (i) If g = a ◦ f for some a ∈ I(S2), then Σ g = Σf ∪ f−1(Σ a) = Σf ,

since Σ a = ∅.

Conversely, suppose that Σf = Σ g = τ . If F is a face of τ , there are i, j ∈ I(S2)

such that (i◦f)|F = (j ◦g)|F = idF . In [1] it was shown that necessarily i◦f = j ◦g,

and so g = a ◦ f , where a = j−1 ◦ i.

(ii) Suppose that g = a ◦ f ◦ b for some a, b ∈ I(S2). Then Σ g = Σ (a ◦ (f ◦ b)) =

Σ(f ◦ b) = b−1(Σf), and so Σf and Σ g are congruent.

On the other hand, if Σf and Σ g are congruent, then Σ g = k(Σf) for some

k ∈ Iso (S2), and so Σ g = Σ(f ◦ k−1), since k(Σf) = Σ(f ◦ k−1). Now, using the

case (i) one gets g = a ◦ f ◦ k−1 for some a ∈ Iso (S2). �

Let us consider the compact-open topology on F(S2), i.e., the topology generated

by sets of the form

B(K, U) =
{
f ∈ F(S2) : f(K) ⊂ U

}
,

where K is compact in S2 and U is open in S2.
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Definition 2.2. Let f , g ∈ F(S2). We say that f is deformable into g iff there

exists a map, (homotopy) H : [0, 1]× S2 → S2 such that

(i) H is continuous;

(ii) for each t ∈ [0, 1], Ht defined by Ht(x) = H(t, x), x ∈ S2 is an isometric folding;

(iii) H(0, x) = f(x) and H(1, x) = g(x), ∀x ∈ S2.

As we are considering the compact open topology, f is deformable into g iff they

belong to the same path connected component, i.e., there is a continuous map γ :

[0, 1] → F(S2) such that γ(0) = f and γ(1) = g.

The relation of deformation is obviously an equivalence relation on F(S2).

Definition 2.3. An isometric folding f ∈ F(S2) is simple if Σf is a great circle

of S2. The (simple) standard folding, denoted by fs, is defined by

fs(x, y, z) = (x, y, |z|), ∀(x, y, z) ∈ S2.

In [1] it was established that any nontrivial isometric folding with Hopf degree zero

in the Euclidean plane is deformable into the standard planar folding f : R
2 −→ R

2,

defined by f(x, y) = (x, |y|) and was conjectured that (Breda-Roberton conjecture)

(2.1) any nontrivial spherical isometric folding is deformable into fs.

In other words, all spherical isometric foldings with zero Hopf degree belong to the

same path connected component of F(S2). It should be pointed out that a proof

given for the sphere cannot be a simple adaptation of the one used for the plane,

since here the dilatations played a crucial role. However, some contributions to the

above conjecture will be given.

3. Deformation of simple foldings

Here we show that the sub-semigroup of F(S2) generated by spherical simple

foldings verifies the Breda-Roberton conjecture.

Theorem 3.1. Let f , g ∈ F(S2). If f is deformable into f0 and g is deformable

into g0 for some f0 and g0 ∈ F(S2), then f ◦ g is deformable into f0 ◦ g0.

P r o o f. Suppose that H : [0, 1] × S2 → S2 is a deformation of f into f0.

The map H = H ◦ g : [0, 1] × S2 → S2 defined by H (t, x) = H(t, g(x)) is a

deformation of f ◦ g into f0 ◦ g. In fact, H is continuous; for each t ∈ [0, 1], Ht

defined by Ht(x) = H (t, x) = (Ht ◦ g)(x) is a spherical isometric folding; and

H (0, x) = H(0, g(x)) = f(g(x)) and H (1, x) = H(1, g(x)) = f0(g(x)).
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Let now H ′ : [0, 1]× S2 → S2 be a deformation of g into g0. Then H ′ = f0 ◦ H ′ :

[0, 1]×S2 → S2 defined byH ′(t, x) = f0(H
′(t, x)) is a deformation of f0◦g into f0◦g0.

In fact, H ′ is continuous; for each t ∈ [0, 1], H ′

t defined by H ′

t (x) = H ′(t, x) =

(f0 ◦ H ′

t)(x) is a spherical isometric folding; and H ′(0, x) = f0(H
′(0, x)) = f0(g(x))

and H ′(1, x) = f0(H
′(1, x)) = f0(g0(x)). It follows that f ◦ g is deformable into

f0 ◦ g0. �

Since fs ◦ fs = fs, immediately

Corollary 3.1. If f1, . . . , fn are isometric foldings of S
2 deformable into fs, then

f = f1 ◦ . . . ◦ fn is deformable into fs.

Next, we exhibit a homotopy joining fs to fs = ̺xy ◦fs, where ̺xy is the reflection

on the coordinate plane xOy. Observe that fs(x, y, z) = (x, y,−|z|) for all (x, y, z) ∈

S2.

Lemma 3.1. Let Πt, t ∈ [0, 1] be the plane containing the yy axis and making

an angle 1
2 π t with the plane xOy (as being Π0). Further, let ̺t be the spherical

reflection on Πt. Then the map H : [0, 1]× S2 → S2 such that

H(t, x) = (̺t ◦ fs ◦ ̺t) (x)

is a deformation of fs into fs.

P r o o f. Clearly H is continuous; for each t ∈ [0, 1], Ht defined by Ht(x) =

H(t, x), x ∈ S2, is a spherical isometric folding joining H0 = fs and H1 = fs. �

Lemma 3.2. Let i be an orientation preserving (reversing) isometry of S2. Then

there exists a continuous map Γ: [0, 1] × S2 → S2 such that for each t ∈ [0, 1],

Γt = Γ(t, ∗) is an orientation preserving (reversing) isometry, Γ0 = i and Γ1 = idS2

(Γ1 = − idS2).

P r o o f. We shall show that any rotation can be joined to idS2 and any reflection

can be joined to − idS2 . In fact, if RL
θ is the rotation of S

2 through an angle θ around

a line L, then the map H(t, x) = RL
(1−t)θ(x), t ∈ [0, 1], x ∈ S2, is a deformation of

RL
θ into idS2 .

Let now ̺ denote a reflection of S2. The axial symmetry − idS2 can be written as

− idS2 = Rz
π
◦ ̺xy = ̺xy ◦Rz

π
, where ̺xy is the reflection on the plane xOy and Rz

π
is

the rotation of S2 through the angle π around the zz axis. On the other hand, the map

̺◦Rz
π
◦̺xy is a rotation of S2, say R′

θ′ , through an angle θ′ around a line L′, for some

θ′ and L′. It follows thatH ′(t, x) = (̺◦R′

tθ′)(x), t ∈ [0, 1], x ∈ S2, is a deformation of

H ′(0, x) = ̺(x) intoH ′(1, x) = (̺◦R′

θ′)(x) = (̺◦̺◦Rz
π
◦̺xy)(x) = (Rz

π
◦̺xy)(x) = −x.

153



Since any spherical isometry is either a rotation, a reflection or a glide-reflection

(the product of a reflection in a line L with a rotation which maps L onto itself) the

result follows. �

Lemma 3.3. The isometric foldings

fs(−x), −fs(x) and − fs(−x)

are all deformable into fs.

P r o o f. Let Rz
α be the rotation of S2 through an angle α around the zz axis.

Then fs(−x) = Rz
π
◦ fs and so Ht = Rz

tπ
◦ fs, t ∈ [0, 1] joins fs(−x) and fs.

On the other hand, −fs(x) = Rz
π
◦ ̺xy ◦ fs, where Rz

π
◦ ̺xy is the axial symmetry.

It follows that Lt = Rz
tπ
◦ ̺xy ◦ fs, t ∈ [0, 1] joins −fs(x) and −fs(−x).

By Lemma 3.1, the folding fs = −fs(−x) is deformable into fs. The result follows.

�

Theorem 3.2. Let f be a simple isometric folding of S2. Then f is deformable

into fs.

P r o o f. By Proposition 2.1, f = a◦fs◦b for some a, b ∈ Iso (S2). By Lemma 3.2

and Theorem 3.1 f is deformable into ±fs(±x). Using Lemma 3.3 we can join any

one of these foldings to fs. �

Corollary 3.2. If f ∈ F (S2) is of the form f = f1◦. . .◦fn, where fi (i = 1, . . . , n)

is a simple isometric folding, then f is deformable into fs.

P r o o f. Use Theorem 3.1 and Theorem 3.2. �

Theorem 3.3. Let f, g ∈ F (S2) be such that f is deformable into fs. If Σf and

Σg are congruent then g is deformable into fs.

P r o o f. Let a, b ∈ Iso (S2) be such that g = a ◦ f ◦ b. By Theorem 3.1 and

Lemma 3.2, g is deformable into ±fs(±x). By Lemma 3.3 the result follows. �

The problem stated in (2.1) is now partially solved, since it is verified in the

interesting class of all isometric foldings that are compositions (of a finite number)

of simple foldings or any isometric folding whose singularity set is congruent to such

a folding.

Figure 2 shows a dihedral f -tiling τ (obtained in [4]) with prototiles a spherical

rhombus with distinct pairs of opposite angles 2
3π and 2

5π, and a scalene spherical

triangle of angles 1
2π, 1

3π and 1
5π. We observe that τ is identified with the set
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of singularities of a spherical isometric folding obtained by composition of simple

foldings.

Fig. 2. A spherical isometric folding composition of simple foldings.

4. Perfect foldings and their deformations

Now we focus our attention on isometric foldings f : S2 → S2 such that f has no

singularities in the interior of its image.

Definition 4.1. A nontrivial isometric folding f : S2 → S2 is said to be perfect

if Σf = f−1(∂Im f) (or Σf ∩ f−1(
◦

Îm f) = ∅).

Here we describe, up to an isomorphism, the class of all perfect foldings f : S2 →

S2. General properties of τ = Σf are also given.

A tiling τ will be called monohedral if every tile of τ is congruent to one fixed set

T called the prototile of τ .

Lemma 4.1. If τ is a monohedral polygonal spherical tiling with even vertex

valency then the prototile of τ must be a triangle (or a spherical moon).

P r o o f. Let P be the prototile of τ . We may suppose that P is an n-sided

spherical polygon, where n > 3. We shall denote by V , E, F and Vr (r > 2),

respectively, the number of vertices, edges, faces and vertices of valency 2r of τ .

Then 



nF = 2E,
L∑

r=2
2rVr = 2E for some L > 2,

V =
L∑

r=2
Vr.

Taking into account the Euler’s relation F − E + V = 2, one gets

L∑

r=2

(2r

n
− r + 1

)
Vr = 2.
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As f(r) = 2r/n − r + 1 6 0 for r > 3, hence necessarily f(2) > 0 and consequently

n = 3. �

Theorem 4.1. Let f be a perfect folding of S2, τ = Σf and F = Im f . Then:

(i) τ is a monohedral f -tiling with prototile F ;

(ii) if e is an edge of τ , then the great circle containing e is contained in τ ;

(iii) F is either a spherical moon with internal angle π/k, k > 1, or a spherical tri-

angle with internal angles (up to an order) (1
2π, 1

2π, π/k), k > 2 or (1
2π, 1

3π, π/k),

k ∈ {3, 4, 5};

(iv) f is a composition of simple foldings.

P r o o f. The description of the singularity set of f implies that each face of

τ = Σf is an n-sided convex polygon.

(i) Without loss of generality we may suppose that f |F = idF (F = Im f) and

so F is a face of τ . Let e and s be, respectively, an edge of F and a spherical

segment contained in F . If s′ is the reflection of s on the great circle containing e

then s′ ∈ f−1(s), and as Σf = f−1(∂Im f), if s is an edge of F then s′ is an edge of

τ . Consequently, each face of τ adjacent to F is congruent to F (by reflection on an

edge of F ). Repeating this argument for any other face, we conclude that all faces

of τ are congruent to F . And so τ is a monohedral f -tiling with prototile F . In fact,

any face of τ is obtained from F by successive reflections on its edges.

(ii) Let v be a vertex of τ . Then v is of even valency and by the previous case all

the angles surrounding v are congruent. Now, if e is an edge of τ incident to v, then

the great circle containing e is contained in τ . In particular, the antipode −v is also

a vertex of τ congruent to v.

(iii) By Lemma 4.1, F must be a spherical triangle or a spherical moon. If F is

a triangle with angles, say, α, β and γ (α > β > γ), then α = π/k, β = π/l and

α = π/m for some k, l, m > 2. Taking in account that π < α + β + γ < 3
2π, the

unique possible combinations are those refereed above.

(iv) If f is a perfect isometric folding of S2, then τ = Σf is illustrated, up to an

isomorphism, in Figure 3.

In the first case the prototile is a spherical moon of angle π/k for some k > 1, and

f can be seen as a composition of k simple foldings. In the other cases the prototile

is a triangle, and each tiling is obtained by reflecting a tiled spherical moon on its

edges. Choosing now a triangle sharing a vertex with a spherical moon, then it can

be reflected successively on its edges forming the whole spherical moon. �
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Fig. 3. Perfect spherical foldings.

Corollary 4.1. Any perfect folding of the sphere is deformable into fs.

This result can be generalized to other Riemannian 2-manifolds.

4.1. Spherical foldings over perfect foldings. We extend the family of iso-

metric foldings deformable into the standard folding, proceeding as follows:

Definition 4.2. Let F be a convex spherical polygon and let g : F → S2 be a

continuous map such that g| ◦
F
is an isometric folding. We say that g is deformable into

idF if there exists a continuous map H : [0, 1]×F → S2 such that for each t ∈ [0, 1],

Ht is an isometric folding of
◦

F into S2 and H(0, x) = g(x) and H(1, x) = x, ∀x ∈ F .

Theorem 4.2. Let f be a perfect isometric folding of S2. If g : F = Im f → S2

is a continuous map such that g| ◦
F
is an isometric folding deformable into idF , then

g ◦ f is an isometric folding of S2 deformable into fs.

P r o o f. Suppose that H : [0, 1] × F → S2 is a deformation of g into idF .

Then the map H = H ◦ f : [0, 1] × S2 → S2 defined by H (t, x) = H(t, f(x)) is a

deformation of g ◦ f into f . In fact,

H (0, x) = H(0, f(x)) = g(f(x)) and H (1, x) = H(1, f(x)) = f(x) ∈ F, x ∈ S2.
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By Corollary 4.1, f is a composition of simple foldings, therefore f is deformable

into fs. And so, g ◦ f is deformable into fs. �

Remark. Let f and g be isometric foldings satisfying the conditions of Theo-

rem 4.2, and let H be the deformation of g ◦ f into f described before. By Theo-

rem 4.1 any face F ′ of τ = Σf is obtained from F = Im f by successive reflections

on its edges. In other words, there are spherical reflections ̺1, . . . , ̺k such that

F ′ =

̺
F ′︷ ︸︸ ︷

̺k ◦ . . . ◦ ̺1 (F ),

where ̺1 is a spherical reflection in an edge of F and ̺i (i = 2, . . . , k) is a reflection

in an edge of (̺i−1 ◦ . . . ◦ ̺1)(F ). In Figure 4, we have taken k = 5. One has

Σ (g ◦ f) = Σf ∪ f−1(Σ g). Now, if α : [0, 1] → T (S2) is defined by α(t) = Σ Ht,

then

f−1(Σ g) =
⋃

F ′ face of Σf

̺F ′(α(t) ∩ F ) and ̺F ′(α(t) ∩ F ) = α(t) ∩ F ′,

where ̺F ′ = ̺k ◦ . . . ◦ ̺1. In particular, for t = 0 one has

̺F ′(α(0) ∩ F ) = ̺F ′

(
(Σ (g ◦ f)) ∩ F

)
= (Σ (g ◦ f)) ∩ F ′

and, for t = 1, one has

̺F ′(α(1) ∩ F ) = ̺F ′(Σf ∩ F ) = ̺F ′(∂F ) = ∂F ′ = Σf ∩ F ′.

S f gS fo

F

F `

r
2

r
5

r
4

r
3

r
1

( )

Fig. 4. F-tilings Σf and Σ (g ◦ f).
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It is not difficult to find isometric foldings which are not over perfect ones de-

formable in the standard folding. In Figure 5 we provide one such example. A very

interesting question, for future work, is to find how far from the set of non trivial

spherical foldings the set of spherical foldings over prefect ones is.

Fig. 5. The singular set of a spherical folding not over a perfect one.
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