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Abstract. In this paper, we investigate a new type of generalized derivations associ-
ated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk. J. Math. 30
(2006), 403–411). We show that if U is a triangular algebra, then every generalized Jordan
derivation of above type from U into itself is a generalized derivation.

Keywords: generalized Jordan derivation, generalized derivation, Hochschild 2-cocycle,
triangular algebra

MSC 2010 : 47B47, 47L35

1. Introduction

Let A be an algebra and letM be an A-bimodule. A linear (additive) mapping δ

from A intoM is said to be a linear (additive) Jordan derivation if δ(a2) = δ(a)a +

aδ(a) for all a ∈ A. It is called a linear (additive) derivation if δ(ab) = δ(a)b + aδ(b)

for all a, b ∈ A. Each mapping of the form a → am − ma, where m ∈ M, will

be called an inner derivation. Clearly, every derivation is Jordan derivation. The

converse is false in general (see Benkovič [2]). Herstein [6] showed that each Jordan

derivation from a 2-torsion free prime ring into itself is a derivation. Brešar [3]

proved that Herstein’s result is true for 2-torsion free semiprime rings. In [9], Zhang

proved that every linear Jordan derivation on nest algebras is an inner derivation. In

[7], Lu proved that every additive Jordan derivation on CSL algebras is an additive

derivation.

Let A and B be unital algebra over a commutative ring R, and M be a unital

(A,B)-bimodule, which is faithful as a left A-module and also a right B-module. The
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R-algebra

Tri(A,M,B) =

{(

a m

0 b

)

: a ∈ A, m ∈ M, b ∈ B

}

under the usual matrix operations will be called a triangular algebra [1]. It is clear

that upper triangular matrix algebras and nontrivial nest algebras [4] are triangular

algebras. Recently, Benkovič [2] showed that every Jordan derivation on an up-

per triangular matrix algebra into its bimodule is the sum of a derivation and an

antiderivation. In [10], Zhang and Yu proved that every Jordan derivation of a

triangular algebra is a derivation.

Recently, Nakajima introduced a new type of generalized derivation. Let A be an

algebra and M be an A-bimodule. Let α : A × A → M be a bilinear (biadditive)

mapping. α is called a Hochschild 2-cocycle if

(1) xα(y, z) − α(xy, z) + α(x, yz) − α(x, y)z = 0.

A linear (additive) mapping δ : A → M is called a linear(additive) generalized deriva-

tion if there is a 2-cocycle α such that

(2) δ(xy) = δ(x)y + xδ(y) + α(x, y),

and δ is called a linear(additive) generalized Jordan derivation if

(3) δ(x2) = δ(x)x + xδ(x) + α(x, x).

We denote it by (δ, α). By the examples in [8], Nakajima showed that the usual

generalized derivations, left centralizers and (σ, τ)-derivations are also generalized

derivations in above sense.

In this paper, we generalize the result of [10] to generalized derivations of above

type. We show that if U is a triangular algebra, then every additive generalized

Jordan derivation from U into itself is an additive generalized derivation.

2. Main result

The following lemma, due to Nakajima [8], will be used repeatedly.

Lemma 2.1 [8, Lemma 2]. Let A be an algebra and M be an A-bimodule. If

(f, α) : A → M is a linear (additive) generalized Jordan derivations associated with

Hochschild 2-cocycles α, then the following relations hold:
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(i) f(xy + yx) = f(x)y + xf(y) + α(x, y) + f(y)x + yf(x) + α(y, x),

(ii) f(xyx) = f(x)yx + xf(y)x + xyf(x) + xα(y, x) + α(x, yx),

(iii) f(xyz + zyx) = f(x)yz + xf(y)z + xyf(z) + xα(y, z) + α(x, yz) + f(z)yx +

zf(y)x + zyf(x) + zα(y, x) + α(z, yx).

Theorem 2.2. Let A,B be unital algebras over a 2-torsion free commutative

ring R, and M be a unital (A,B)-bimodule that is faithful as left A-module and

also a right B-module. Let U = Tri(A,M,B) be the triangular algebra. If (δ, α) is

an additive generalized Jordan derivation from U into U , then (δ, α) is an additive

generalized derivation.

P r o o f. We write

P =

(

1 0

0 0

)

, Q =

(

0 0

0 1

)

.

Since δ(P ) = δ(P 2) = δ(P )P + Pδ(P ) + α(P, P ), we have that

Pδ(P )P = −Pα(P, P )P, Qδ(P )Q = Qα(P, P )Q.

So

δ(P ) = Pδ(P )Q + Qα(P, P )Q − Pα(P, P )P.

For any T ∈ U , by Lemma 2.1(i),

δ(PTQ) = δ(PPTQ + PTQP )

= δ(P )PTQ + Pδ(PTQ) + α(P, PTQ)

+ δ(PTQ)P + PTQδ(P ) + α(PTQ, P )

= −α(P, P )PTQ + Pδ(PTQ) + α(P, PTQ)

+ δ(PTQ)P + PTQα(P, P ) + α(PTQ, P ).

Since
PTQα(P, P ) + α(PTQ, P )− α(PTQ, P )P = 0,

Pα(P, PTQ) − α(P, PTQ) + α(P, PTQ) − α(P, P )PTQ = 0,

we have that

δ(PTQ) = Qα(P, PTQ) + Pδ(PTQ) + δ(PTQ)P + α(PTQ, P )P.

Thus

Pδ(PTQ)P = −Pα(PTQ, P )P, Qδ(PTQ)Q = Qα(P, PTQ)Q.
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So

δ(PTQ) = Pδ(PTQ)Q + Qα(P, PTQ)Q − Pα(PTQ, P )P.

By Lemma 2.1(ii),

δ(PTP ) = δ(P )TP + Pδ(T )P + PTδ(P ) + Pα(T, P ) + α(P, TP ).

So

Qδ(PTP ) = Qα(P, PTP ).

For any S, T ∈ U ,

δ(SPTQ) = δ(PSPPTQ + PTQPSP )(4)

= δ(PSP )PTQ + PSPδ(PTQ) + α(PSP, PTQ) + δ(PTQ)PSP

+ PTQδ(PSP ) + α(PTQ, PSP )

= (δ(P )SP + Pδ(S)P + PSδ(P ) + Pα(S, P ) + α(P, SP ))PTQ

+ PSPδ(PTQ) + α(PSP, PTQ) + δ(PTQ)PSP + PTQδ(PSP )

+ α(PTQ, PSP )

= δ(S)PTQ + Sδ(PTQ)

+ (−α(P, P )SPTQ + α(P, SP )PTQ)

+ (−Sα(P, P )PTQ + α(S, P )PTQ − SQα(P, PTQ)Q + α(SP, PTQ))

+ (−α(PTQ, P )PSP + PTQα(P, PTQ) + α(PTQ, PSP )).

In the following, we reduce (4).

(a) Since

(Pα(P, SP ) − α(P, SP ) + α(P, PSP ) − α(P, P )SP )PTQ = 0,

it follows that

−α(P, P )SPTQ + α(P, SP )PTQ = 0.

(b) By

(SQα(P, PTQ) + α(SQ, PTQ)− α(SQ, P )PTQ)Q = 0

and

Sα(P, PTQ)P = SPα(P, PTQ)P = 0,
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it follows that

− Sα(P, P )PTQ + α(S, P )PTQ − SQα(P, PTQ)Q + α(SP, PTQ)

= −Sα(P, P )PTQ + α(S, P )PTQ + α(SQ, PTQ)Q − α(SQ, P )PTQ

+ α(SP, PTQ)

= −(Sα(P, P ) − α(SP, P ))PTQ + α(S, PTQ)Q − α(SP, PTQ)Q

+ α(SP, PTQ)

= α(S, PTQ)Q + (Sα(P, PTQ) + α(S, PTQ) − α(S, P )PTQ)P

= α(S, PTQ) + Sα(P, PTQ)P

= α(S, PTQ).

(c) By

PTQα(P, PSP ) − α(PTQP, PSP ) + α(PTQ, PSP ) − α(PTQ, P )PSP = 0,

we have that

PTQα(P, PSP ) + α(PTQ, PSP ) − α(PTQ, P )PSP = 0.

From (a), (b), (c) and (4),

(5) δ(SPTQ) = δ(S)PTQ + Sδ(PTQ) + α(S, PTQ).

Similarly, we have that

(6) δ(PSQT ) = δ(PSQ)T + PSQδ(T ) + α(PSQ, T ).

For any A, B, T ∈ U , it follows from (5) and (6) that

δ(ABPTQ) = δ(AB)PTQ + ABδ(PTQ) + α(AB, PTQ),

δ(ABPTQ) = δ(A)BPTQ + Aδ(BPTQ) + α(A, BPTQ)

= δ(A)BPTQ + ABδ(PTQ) + Aδ(B)PTQ

+ Aα(B, PTQ) + α(A, BPTQ).

So

δ(AB)PTQ − δ(A)BPTQ − Aδ(B)PTQ

+ α(AB, PTQ) − α(A, BPTQ) − Aα(B, PTQ) = 0.
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Thus

(δ(AB) − δ(A)B − Aδ(B) − α(A, B))PTQ = 0.

Since PUQ is faithful left PUP -module, we have that

(7) (δ(AB) − δ(A)B − Aδ(B) − α(A, B))P = 0.

Similarly,

(8) Q(δ(AB) − δ(A)B − Aδ(B) − α(A, B)) = 0.

Define ∆ by ∆(T ) = δ(T ) − (Tδ(P ) − δ(P )T ), T ∈ U . Thus (∆, α) is also a

generalized Jordan derivation. Since δ(P ) = Pδ(P )Q+Qα(P, P )Q−Pα(P, P )P, we

have that

∆(P ) = δ(P ) − (Pδ(P ) − δ(P )P ) = δ(P ) − Pδ(P )Q = Qα(P, P )Q − Pα(P, P )P.

For any T ∈ U , by Lemma 2.1(ii),

∆(TP ) = ∆(PTP )

= ∆(P )TP + P∆(T )P + PT∆(P ) + Pα(T, P ) + α(P, TP )

= ∆(T )P − α(P, P )TP + PTQα(P, P )Q − Tα(P, P )P

+ Pα(T, P ) + α(P, TP ).

So

∆(TP )Q = PTQα(P, P )Q + Pα(T, P )Q + α(P, TP )Q(9)

= (α(PTQP, P ) − α(PTQ, P ) + α(PTQ, P )P )Q + α(PT, P )Q

= α(PTP, P )Q = α(TP, P )Q.

Therefore, for any A, B ∈ U ,

(∆(ABP ) − ∆(A)BP − A∆(BP ) − α(A, BP ))Q(10)

= α(ABP, P )Q − Aα(BP, P )Q − α(A, BP )Q

= −α(A, BP )PQ = 0.

By (7) and (10), we have that

(11) ∆(ABP ) = ∆(A)BP + A∆(BP ) + α(A, BP ).
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Since ∆(Q) = ∆(Q2) = ∆(Q)Q + Q∆(Q) + α(Q, Q), we have that P∆(Q)P =

Pα(Q, Q)P and Q∆(Q)Q = −Qα(Q, Q)Q. Thus

∆(Q) = P∆(Q)Q + Pα(Q, Q)P − Qα(Q, Q)Q.

By Lemma 2.1(ii),

P∆(QT ) = P∆(QTQ)(12)

= P (∆(Q)TQ + Q∆(T )Q + QT∆(Q) + Qα(T, Q) + α(Q, TQ))

= P∆(Q)TQ + Pα(Q, TQ).

Therefore, for any A, B ∈ U ,

(13)

P (∆(QAB) − ∆(QA)B − QA∆(B) − α(QA, B))

= P∆(Q)ABQ + Pα(Q, ABQ) − P∆(Q)AQB − Pα(Q, AQ)B − Pα(QA, B)

= Pα(Q, Q)APBQ + Pα(Q, ABQ) − Pα(Q, AQ)B − Pα(QA, B)

= −Pα(Q, APBQ) + Pα(Q, ABQ) − Pα(Q, AQ)B − Pα(QA, B)

= Pα(Q, AQBQ) − Pα(Q, AQB)

= −Pα(Q, AQBP ) = −Pα(Q, 0) = 0.

By (8) and (13), we have that

(14) ∆(QAB) = ∆(QA)B + QA∆(B) + α(QA, B).

Also, by (5) and (6),

∆(APBQ) = ∆(A)PBQ + A∆(PBQ) + α(A, PBQ),(15)

∆(PAQB) = ∆(PAQ)B + PAQ∆(B) + α(PAQ, B).(16)

Let h(A, B) = ∆(AB) − ∆(A)B − A∆(B) − α(A, B), A, B ∈ U . It follows from

(11), (14), (15) and (16) that

h(A, BP ) = h(QA, B) = h(A, PBQ) = h(PAQ, B) = 0.

Thus

(17) h(A, PB) = h(AQ, B) = 0.
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By (9), (12) and (17), we have that

h(A, B) = h(AP, QB) = ∆(APQB) − ∆(AP )QB − AP∆(QB) − α(AP, QB)

= −α(AP, P )QB − AP∆(Q)BQ − APα(Q, BQ) − α(AP, QB).

Since

APα(Q, BQ) + α(AP, QBQ) − α(AP, Q)BQ = 0,

we have that

− APα(Q, BQ) − α(AP, QBQ) − α(AP, P )QB

= −α(AP, Q)BQ − α(AP, P )QBQ

= −APα(P, Q)BQ.

Thus
h(A, B) = h(AP, QB) = −AP∆(Q)BQ − APα(P, Q)BQ

= −A(P∆(Q) + Pα(P, Q))BQ.

Since ∆(I) = δ(I) = −α(I, I), we have that

∆(Q) = ∆(I) − ∆(P ) = −α(I, I) − Qα(P, P )Q + Pα(P, P )P.

Thus P∆(Q) = −Pα(I, I) + Pα(P, P )P . Since Pα(I, I) = PPα(I, I) = Pα(P, I),

it follows that

P∆(Q) = −Pα(P, I) + α(P, P )P.

Thus
h(A, B) = −A(Pα(P, Q) − Pα(P, I) + α(P, P )P )BQ

= A(Pα(P, P ) − α(P, P )P )BQ = 0.

Hence, (∆, α) is a generalized derivation and (δ, α) is a generalized derivation. �

Let α = 0, we can get the main result of Zhang [10].

Corollary 2.3 ([10, Theorem 2.1]). Let A,B be unital algebras over a 2-torsion

free commutative ring R, and M be a unital (A,B)-bimodule that is faithful as

left A-module and also a right B-module. Let U = Tri(A,M,B) be the triangular

algebra. Then every Jordan derivation from U into itself is a derivation.

Remark 2.4. By Examples (1) in [8], we have that if δ is an additive generalized

derivation, that is, there is an additive derivation d : A → M such that δ(xy) =

δ(x)y + xd(y), then the mapping α : A×A ∋ (x, y) → x(d− δ)(y) ∈ M is biadditive

and satisfies the 2-cocycle condition. Since δ(xy) = δ(x)y+xδ(y)+α(x, y), it follows

that a usual generalized derivation δ is a generalized derivation (δ, α).

By Theorem 2.2 and Remark 2.4, we can get the main result of Hou [5].
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Corollary 2.5 ([5, Theorem 2.1]). Let L be a nest on a Banach space X , and

δ be an additive generalized Jordan derivation from algL into itself. If there is a

nontrivial element in L which is complemented in X , then δ is an additive generalized

derivation.
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