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Abstract. In this paper we introduce a new type of orthogonality for real normed planes
which coincides with usual orthogonality in the Euclidean situation. With the help of this
type of orthogonality we derive several characterizations of the Euclidean plane among all
normed planes, all of them yielding also characteristic properties of inner product spaces
among real normed linear spaces of dimensions d > 3.
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1. Introduction

Let (M, ‖ · ‖) be a two-dimensional normed vector space, usually also called a

(normed or) Minkowski plane. Let C = {x ∈ M : ‖x‖ = 1} be the unit circle of

(M, ‖ · ‖), i.e., a closed convex curve centered at the origin 0. If C does not contain a

non-degenerate line segment, then the normed plane (M, ‖·‖) is called strictly convex,

and if C is a smooth curve, then the plane is said to be smooth. Any homothetical

copy of C is called a circle of (M, ‖ · ‖) and denoted by C. Denote the line segment

between two different points x, y ∈ (M, ‖ · ‖) by [x, y], the line through them by

〈x, y〉, and the triangle with (non-collinear) vertices x, y, z ∈ (M, ‖ ·‖) by △xyz. Any

triangle in a strictly convex Minkowski plane possesses at most one circumcircle; see

[12, Proposition 14]. In a smooth Minkowski plane every triangle has at least one

circumcircle; see again [12, Proposition 41].

As one can see in the paper [1], the orthogonality of segments that are, in addi-

tion, circle chords has been an interesting subject of recent research in Minkowski

geometry, in view of extending problems from classical convexity to normed linear
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spaces. Having this in mind, we will introduce a new type of orthogonality defined

with help of circle chords in normed planes. This is also inspired by the fact that, for

any non-Euclidean norm, chords in the usual orthogonal position are in general not

orthogonal with respect to all known orthogonality types defined for normed planes.

(For various orthogonality types in Minkowski spaces we refer to [2, § 3–4 and § 7–8],

[4], and [13, § 3.5].) This new type of orthogonality is called chordal orthogonality,

and it coincides with usual orthogonality in the Euclidean subcase. Based on several

properties of chordal orthogonality, which are derived in this paper, we prove some

characterizations of the Euclidean plane among all Minkowski planes. E.g., if this

type of orthogonality is always symmetric, then the corresponding normed plane

is Euclidean. These characteristic properties of the Euclidean plane yield also new

characterizations of inner product spaces among all d-dimensional Minkowski spaces,

d > 3.

2. Definition and basic properties of chordal orthogonality

Let a circle C in a Minkowski plane (M, ‖ · ‖) be given, and let [p1, q1] and [p2, q2]

be two chords of C. We say that [p1, q1] is chordal-orthogonal to [p2, q2] if the line

through q2 and through the point p∗
2
, which is opposite to p2 in C, is parallel to

〈p1, q1〉. In case that p∗
2
≡ q2, we say that [p1, q1] is chordal-orthogonal to [p2, q2]

if there exists a supporting line of C at q2 which is parallel to 〈p1, q1〉. If q∗
2
is the

opposite point of q2 in C, then p∗
2
q2p2q

∗
2
is a parallelogram; see Figure 1.
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This implies that

〈p∗
2
, q2〉 ‖ 〈p1, q1〉 ⇐⇒ 〈p2, q

∗
2
〉 ‖ 〈p1, q1〉,

showing the correctness of the definition of chordal orthogonality.
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We will use the notion of chordal orthogonality to describe relations between

geometric objects related to triangles (including their circumcircles), and from now

on we consider chordal orthogonality in a natural way only with respect to the unit

circle C, using the symbol ⊥C for it. In other words, when writing [p1, q1] ⊥C [p2, q2],

we automatically mean that [p1, q1] and [p2, q2] are chords of the unit circle. It is easy

to check that in the Euclidean case the relation [p1, q1] ⊥C [p2, q2] yields orthogonality

in the usual Euclidean sense.

Directly from the definitions of chordal orthogonality one gets the following prop-

erties of the notion introduced above.

Proposition 2.1. Let two parallel chords [p1, q1] and [p′
1
, q′

1
] of the unit circle C

be given. Then

[p1, q1] ⊥C [p2, q2] ⇐⇒ [p′1, q
′
1] ⊥C [p2, q2].

Proposition 2.2. Let three chords [p1, q1], [p
′
1
, q′

1
], and [p2, q2] of the unit circle

C be given such that p2 and q2 are not opposite in C. If [p1, q1] ⊥C [p2, q2] and

[p′
1
, q′

1
] ⊥C [p2, q2], then [p1, q1] ‖ [p′

1
, q′

1
].

Remark 2.1. The above proposition means that for any chord [p2, q2] of the unit

circle C and for any point p1 of C different from p2 and q2 there exists at most one

chord through p1 which is chordal-orthogonal to [p2, q2].

Note that by a diameter chord of the unit circle we mean a chord passing through

the center of C.

Proposition 2.3. Let a chord [p, q] of the unit circle C be given. Every diameter

chord of C which is chordal-orthogonal to [p, q] bisects [p, q], i.e., intersects [p, q] at

its midpoint.

We note that any interior point of the unit circle is the midpoint of some chord;

see [12, Lemma 13].

Proposition 2.4. For any interior point p 6= 0 of the unit circle C the diameter

chord through this point is chordal-orthogonal to the chord with midpoint p.

Proposition 2.5. For any chord [p1, q1] of the unit circle C, where C is strictly

convex, and for any point p2 on C, there exists a unique point q2 on C such that

[p1, q1] ⊥C [p2, q2].

P r o o f. Let p∗2 be the point opposite to p2 in C, and let G be the line through

p∗
2
parallel to [p1, q1]. A line and a circle in a strictly convex Minkowski plane have
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at most two common points (cf. [12, Proposition 11]). If G and C intersect only at

p∗2, then G is a supporting line of C, and therefore [p1, q1] ⊥C [p2, p
∗
2]. In case that

G ∩ C = {p∗
2
, q2}, then [p1, q1] ⊥C [p2, q2]. �

Remark 2.2. In Figure 2 one can see a counterexample to Proposition 2.5 for

the case that the normed plane (M, ‖ · ‖) is not strictly convex.

Note that, in general, the notion of chordal orthogonality is not symmetric. Never-

theless, the next proposition shows that symmetry can be achieved for some special

position of the chords. This proposition also shows that any angle 6 xzy inscribed in

C with x, y as opposite points of C is “right” in the sense of chordal orthogonality,

reminding the reader of the famous Theorem of Thales. (It should be noticed that

such an angle is “right” also in the sense of James orthogonality, i.e., the vector

x− z is James orthogonal to the vector z − y. Remember that x is said to be James

orthogonal to y, denoted by x#y, if ‖x − y‖ = ‖x + y‖; see [7].)

Proposition 2.6. For pairwise different points x, y, z ∈ C with z 6= −x and

z 6= −y the relations

(1) [x, z] ⊥C [z, y] and [z, y] ⊥C [x, z]

hold if and only if x and y are opposite points of C.

P r o o f. ⇐=: This implication follows immediately from the definition of chordal

orthogonality.

=⇒: The first relation of (1) implies

(2) [−y, z] ‖ [x, z] ⇐⇒ z ∈ 〈x,−y〉 or x ≡ −y.

By the second relation in (1) we get

[−x, z] ‖ [z, y] ⇐⇒ z ∈ 〈−x, y〉 or − x ≡ y.

Assume that z ∈ 〈x,−y〉 and z ∈ 〈−x, y〉. Therefore the lines 〈x,−y〉 and 〈−x, y〉

coincide. Since a line through the center of the unit circle C intersects C at exactly

two points, our assumption is impossible. �

It turns out that if in a strictly convex Minkowski plane at least one of the relations

of (1) holds, then the “=⇒” part of Proposition 2.6 is also true; see Proposition 2.7.

Figure 3 shows a counterexample in a Minkowski plane that is not strictly convex.
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Proposition 2.7. In a strictly convex Minkowski plane, let three pairwise distinct

points x, y, z ∈ C with z 6= −x and z 6= −y be given. If [x, z] ⊥C [z, y] or [z, y] ⊥C

[x, z], then x and y are opposite with respect to the unit circle.

P r o o f. If [x, z] ⊥C [z, y], then (2) holds. Since a line and a circle in a strictly

convex Minkowski plane have at most two common points (see again [12, Proposi-

tion 11]), it follows that x ≡ −y. �

Let △p1p2p3 be an arbitrary triangle in a strictly convex Minkowski plane with

circumcenter p and circumradius λ. In [3], Asplund and Grünbaum introduced the

so-called C-orthocenter of △p1p2p3 if, in addition, the plane is smooth. Namely,

they proved that if Ci are circles with radius λ passing through pj and pk, with

{i, j, k} = {1, 2, 3} and different from the circumcircle of △p1p2p3, then
3
⋂

i=1

Ci is not

empty and consists of precisely one point h. They called it the C-orthocenter of

△p1p2p3, for which the equality

(3) h = p1 + p2 + p3 − 2p

holds. We note that this is also true when the plane is not necessarily smooth; see [10].

Also it should be noticed that in the Euclidean case this C-orthocenter coincides with

the classical orthocenter, i.e., with the intersection point of the triangle altitudes. A

survey on extensions of the related three-circles theorem is [9], and we refer also to

[14], where orthocentricity concepts in normed planes are studied.

y z

−y

x

Figure 3
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p2 p3

m2m3

m1

v2

v3
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h

Figure 4

Remark 2.3. In [10] relations between the C-orthocenter and James orthogonality

for triangles with circumcircle in strictly convex normed planes are derived. For

example, one has p1 − h#p2 − p3, p2 − h#p3 − p1, and p3 − h#p1 − p2.

The notion of the nine-point circle1 of a triangle in the Euclidean plane (i.e., the

circle through the foot points of the three altitudes of any triangle, the midpoints

1 This circle is also known as the Feuerbach circle.

343



of their three sides, and the midpoints of the segments from the vertices to the

triangle orthocenter) was also generalized by Asplund and Grünbaum in [3]. They

proved that for any triangle △p1p2p3 in a strictly convex, smooth Minkowski plane

with circumcenter p and C-orthocenter h, the midpoints of the triangle sides and the

midpoints of the segments [pi, h] (i = 1, 2, 3) lie on the same circle whose center is the

midpoint of [h, p], and they called this Minkowskian generalization of the classical

Feuerbach circle also the six-point circle of △p1p2p3. We note again that this is

also true without demanding the smoothness of the plane (M, ‖ · ‖), if △p1p2p3 can

be inscribed in a circle; see [10]. Figure 4 shows the six-point circle of a triangle

in a strictly convex Minkowski plane which is not smooth. In addition, the six-

point circle contains the three intersection points of 〈h, pi〉 and 〈pj , pk〉, {i, j, k} =

{1, 2, 3}, only in the Euclidean case. For more properties of six-point circles in strictly

convex Minkowski planes we refer to [10] and [11]. Now, using the notion of chordal

orthogonality, we will prove that the second intersection point of any triangle side

and the six-point circle (the first is the midpoint of the side) can, somehow, also be

interpreted as the foot point of a “triangle altitude”.

Theorem 2.1. In a strictly convex Minkowski plane (M, ‖ · ‖), let a triangle

△p1p2p3 with circumcenter p and C-orthocenter h be given. Let m1, m2, m3 be the

midpoints of [p2, p3], [p3, p1], and [p1, p2], respectively, and let the unit circle C be

the six-point circle of △p1p2p3. If C ∩ 〈pi, pj〉 = {mk, vk}, where {i, j, k} = {1, 2, 3},

and C ∩ [pk, h] = {uk}, k = 1, 2, 3, then

[mk, vk] ⊥C [vk, uk].

P r o o f. Since the six-point circle of △p1p2p3 coincides with the unit circle C,

we have p = −h. Thus, by (3) we get

p1 + p2 + p3 + h = 0.

Therefore the midpoint u3 of [p3, h] is − 1

2
(p1 + p2). This means that u3 and m3 are

opposite points of C. Hence

[m3, v3] ⊥C [v3, u3]

by Proposition 2.6. �
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3. Characterizations of the Euclidean plane via

chordal orthogonality

In this section we will use chordal orthogonality to present four new characteriza-

tions of the Euclidean plane among arbitrary normed planes and, in addition, two

characterizations of the Euclidean plane among all strictly convex normed planes.

Theorem 3.1. Let (M, ‖ · ‖) be an arbitrary Minkowski plane. If for any chords

[p1, q1], [p2, q2], [p
′
1
, q′

1
], and [p′

2
, q′

2
] of the unit circle of (M, ‖ · ‖), satisfying

[p1, q1] ⊥C [p2, q2] and [p′
1
, q′

1
] ⊥C [p′

2
, q′

2
],

the implication [p1, q1] ‖ [p′
1
, q′

1
] =⇒ [p2, q2] ‖ [p′

2
, q′

2
] holds, then the plane is Eu-

clidean.

P r o o f. Let [x1, y1] and [x2, y2] be two parallel chords of the unit circle with

midpoints z1 and z2, respectively. Proposition 2.6 implies that [x1, y1] ⊥C [y1,−x1]

and [x2, y2] ⊥C [y2,−x2]. Therefore [y1,−x1] ‖ [y2,−x2]. Thus we get [0, z1] ‖ [0, z2],

which means that the plane is Euclidean; see [2, p. 28, (3.5′)]. �

Theorem 3.2. If in an arbitrary normed plane the relation of chordal orthogo-

nality is always symmetric, then this plane is Euclidean.

P r o o f. Let [p1, q1], [p2, q2], [p
′
1
, q′

1
], and [p′

2
, q′

2
] be chords of the unit circle such

that [p1, q1] ⊥C [p2, q2], [p′1, q
′
1] ⊥C [p′2, q

′
2], and [p1, q1] ‖ [p′1, q

′
1]. By the assumed

symmetry of chordal orthogonality we get

(4) [p2, q2] ⊥C [p1, q1].

Besides, Proposition 2.1 yields [p1, q1] ⊥C [p′
2
, q′

2
]. Therefore

(5) [p′
2
, q′

2
] ⊥C [p1, q1].

If p1 and q1 are not opposite in the unit circle C, then by (4), (5), and Proposition 2.2

we obtain

(6) [p2, q2] ‖ [p′2, q
′
2].

In case that p1 and q1 are opposite, the points p′1 and q′1 cannot be opposite. By

similar arguments we get
[p2, q2] ⊥C [p′

1
, q′

1
],

[p′2, q
′
2] ⊥C [p′1, q

′
1],

implying also (6). According to Theorem 3.1 this means that the plane is Euclidean.

�

345



Lemma 3.1. In an arbitrary normed plane we have

[p1, q1] ⊥C [p2, q2] ⇐⇒ x =
1

2
(p1 + q1 + p2 + q2) ∈ 〈p1, q1〉.

P r o o f. If [p1, q1] ⊥C [p2, q2], then [p2,−q2] ‖ [p1, q1]. Therefore p2 + q2 =

λ(p1 − q1), where λ ∈ R. Thus the point x satisfies

x =
(1

2
+

λ

2

)

p1 +
(1

2
−

λ

2

)

q1 ⇐⇒ x ∈ 〈p1, q1〉.

Conversely, if x ∈ 〈p1, q1〉, then for some µ ∈ R we have

x = µp1 + (1 − µ)q1 ⇐⇒
1

2
(p1 + q1 + p2 + q2) = µp1 + (1 − µ)q1 ⇐⇒

1

2
(p2 + q2) =

(

µ −
1

2

)

p1 +
(1

2
− µ

)

q1 =
(

µ −
1

2

)

(p1 − q1) ⇐⇒ [p1, q1] ⊥C [p2, q2].

�

The next theorem is an immediate consequence of Lemma 3.1 and Theorem 3.2.

Theorem 3.3. If for any two chords [p1, q1] and [p2, q2] of the unit circle of an

arbitrary normed plane, satisfying [p1, q1] ⊥C [p2, q2], the intersection point of the

corresponding lines 〈p1, q1〉 and 〈p2, q2〉 is

(7) x =
1

2
(p1 + q1 + p2 + q2),

then the plane is Euclidean.

Remark 3.1. We note that if two chords [p1, q1] and [p2, q2] of any circle in

the Euclidean plane are orthogonal (in the usual Euclidean sense), then for {x} =

〈p1, q1〉 ∩ 〈p1, q1〉 relation (7) also holds; see [6]. This means that Theorem 3.3 is a

characterization of the Euclidean plane among all Minkowski planes. (Note that also

the two theorems before Theorem 3.3 are characterizations of the Euclidean plane

among all Minkowski planes.)

Our next theorem gives another characterization of the Euclidean plane by using

the so-called Wallace line of a given triangle.
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Theorem 3.4. In an arbitrary Minkowski plane (M, ‖ ·‖), let a triangle △x1x2x3

inscribed in the unit circle C of (M, ‖ ·‖) be given. Let points y, y1, y2, y3 lie on C and

satisfy [y, y1] ⊥C [x2, x3], [y, y2] ⊥C [x3, x1], and [y, y3] ⊥C [x1, x2]. Then the points

u =
1

2
(x1 + x2 + y + y3), v =

1

2
(x2 + x3 + y + y1), w =

1

2
(x3 + x1 + y + y2)

are collinear if and only if the plane (M, ‖ · ‖) is Euclidean.

P r o o f. =⇒: Let [p1, q1] and [p2, q2] be two chords of the unit circle C of (M, ‖·‖)

such that [p1, q1] ⊥C [p2, q2]. Lemma 3.1 implies that the point

x =
1

2
(p1 + q1 + p2 + q2)

lies on the line 〈p1, q1〉. If we prove that x ∈ 〈p2, q2〉, then Theorem 3.3 will imply that

the plane (M, ‖ · ‖) is Euclidean. Consider the triangle △(−p1)p2q2; see Figure 5.

It is inscribed in C, and [p1, q1] ⊥C [p2, q2]. Moreover, by Proposition 2.6 we get

[p1, p2] ⊥C [p2,−p1] and [p1, q2] ⊥C [−p1, q2].

p1

−p1

q2

p2

q1

Figure 5

Therefore the points

u =
1

2
(p2 + q2 + p1 + q1) = x,

v =
1

2
(p2 − p1 + p1 + p2) = p2,

w =
1

2
(−p1 + q2 + p1 + q2) = q2

are collinear.

⇐=: If the plane (M, ‖ · ‖) is Euclidean, then the chords [y, yi] and [xj , xk] with

{i, j, k} = {1, 2, 3} are orthogonal in the usual Euclidean sense. But then the

collinearity of the points u, v, and w follows from statement (3, 1) in [6]. �
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Remark 3.2. In the Euclidean case, the line determined by u, v, and w is known

as the Wallace (or Simson) line of the triangle △x1x2x3; see again [6, §3].

Theorem 3.5. In a strictly convex Minkowski plane, let a triangle inscribed in

its unit circle be given. If any side of this triangle is chordal-orthogonal to the chord

through its opposite vertex and its C-orthocenter (if such a chord exists), then the

plane is Euclidean.

P r o o f. Let [p1, p2] and [p3, p4] be two parallel chords of the unit circle. If h is

the C-orthocenter of △p1p2p3 and 〈p3, h〉 ∩ C = {p∗
3
}, then

[p1, p2] ⊥C [p3, p
∗
3
] ⇐⇒ [p3, p4] ⊥C [p3, p

∗
3
].

This means that p∗3 = −p4; see Proposition 2.7. Therefore p3, h, and −p4 are

collinear. Hence by (3) we have

h = (1−λ)p3+λ(−p4) ⇐⇒ p1 +p2+p3 = (1−λ)p3−λp4 ⇐⇒ p1+p2 = −λ(p3 +p4),

where λ ∈ R. Thus it is proved that the midpoints of [p1, p2], [p3, p4], and the origin

0 are collinear, which means that the plane is Euclidean; see [2, p. 28, (3.5′)]. �

The above theorem shows the following: If we say that a side of any triangle and

the line through the opposite vertex and its C-orthocenter are Asplund-Grünbaum

orthogonal (see once more [3]), then this type of orthogonality and chordal orthogo-

nality coincide only in the Euclidean plane. The next theorem shows that, in some

sense, also the James orthogonality and the chordal orthogonality coincide only in

the Euclidean plane.

Theorem 3.6. Let four points p1, q1, p2, q2 in a strictly convex Minkowski plane

be given such that p1−q1#p2−q2. Let {u1, v1} = 〈p1q1〉∩C, {u2, v2} = 〈p2q2〉∩C, and

[u1, v1] ⊥C [u2, v2] (if all the points u1, v1, u2, v2 exist). Then the plane is Euclidean.

P r o o f. This theorem follows immediately from Theorem 3.5 and Remark 2.3.

�

Remark 3.3. Let K ⊂ R
d, d > 3, be a convex body (i.e., a compact convex

set with interior points in R
d). Since every convex body K with center 0, all whose

intersections with 2-subspaces are ellipses, is itself a d-ellipsoid (see, e.g., [5] and

[8]), it is clear that the theorems given in this section yield characterizations of inner

product spaces among all d-dimensional Minkowski spaces or, in the last two cases,

among all d-dimensional strictly convex Minkowski spaces.
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