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Abstract. In this paper, we determine all the normal forms of Hermitian matrices over
finite group rings R = Fq2G, where q = pα, G is a commutative p-group with order pβ .
Furthermore, using the normal forms of Hermitian matrices, we study the structure of
unitary group over R through investigating its BN-pair and order. As an application, we
construct a Cartesian authentication code and compute its size parameters.
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1. Introduction

It is an important topic to investigate classical groups over finite commutative

rings. Many results on the structures of the general linear groups, symplectic groups

and orthogonal groups over finite commutative rings have been obtained [6], [8], [2].

In [2], the unitary group over a finite group ring was defined by the Hermitian matrix

of special form (I(n)
I(n)

). In the present paper, we determine all the normal forms

of Hermitian matrices over finite group rings. Moreover, we study the structures of

unitary groups over finite group rings including constructing BN-pairs and computing

orders. As an application, we construct a Cartesian authentication code and compute

the size parameters.

Let Fq2 be a finite field with q2 elements, where q = pα. Then Fq2 has an involutive

automorphism ω : x 7→ xq, and the fixed field of this automorphism is Fq. Let G be a

commutative p-group with order pβ . From the reference [3], we know that the group

ring R = Fq2G is a local ring and its maximal ideal is M = J(R) = I(G), where
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J(R) is Jacobson root of R and I(G) is augmentation ideal of R. Since I(G) is a

free Fq2 -module with a basis g − e, e 6= g ∈ G, it then follows that

Fq2 ∼= R/M ∼= R/I(G), |I(G)| = q2(p
β
−1) and |Fq2G| = q2pβ

.

Now the involutive automorphism ω can be extended to an involutive automor-

phism ω′ of R :
∑

g∈G

xgg 7→
∑

g∈G

ω(xg)g. For the convenience of notation, we write ā

for ω′(a), where a ∈ R. Let R′ = FqG. Then R
′ is a local ring. Denote by M ′ the

maximal ideal of R′.

Throughout this paper, the finite group ring we considered is R = Fq2G, where

q = pα, G is a commutative p-group with order pβ . Now let us list some definitions

that will be used in this paper.

Definition 1.1 ([1]). Let G be a group. A pair of subgroups (B,N) of the

group G is said to be a BN-pair if B and N generate G, the intersection T = B ∩N

is normal in N and the quotient W = N/T admits a set of generators S such that

the following two conditions hold:

BsB · BwB ⊂ BwB ∪BswB, where s ∈ S and w ∈W ;(BN1)

sBs−1 * B, where s ∈ S.(BN2)

The groupW is called theWeyl group associated to the BN-pair. A BN-pair is called

spherical if the group W is finite.

Definition 1.2. An m × m matrix H over a finite group ring R is said to be

Hermitian if tH = H , where tH denotes the transpose of H and H = (h̄ij).

Definition 1.3. Let H be an m×m nonsingular Hermitian matrix over a finite

group ring R. The unitary group over R with respect to H is defined to be

Um(R,H) = {T ∈ GLm(R) : tTHT = H}.

2. The normal forms of Hermitian matrices over finite group rings

Before proving the normal forms of Hermitian matrices over R, we first give the

following lemmas. Lemmas 2.1 and 2.3 are not going to be proved, see [2], [5].

Lemma 2.1 ([2]). For any λ ∈ R′, the equation x + x̄ = λ has exactly qpβ

solutions in R. And for any λ ∈ M ′, the equation x + x̄ = λ has exactly qpβ
−1

solutions in M .
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Lemma 2.2. Let R∗ and R′∗ be the sets of all invertible elements of R and R′

respectively. Then for any a ∈ R′∗, the equation xx̄ = a has exactly (q + 1)qpβ
−1

solutions in R∗.

P r o o f. First we claim that the solution of xx̄ = a exists, for any a ∈ R′∗.

By [3], g1, . . . , gk ∈ G are a basis of R with k = pβ , then we can write xx̄ = a as

follows

(x1, . . . , xk)







g1
...

gk






(g1, . . . , gk)







x̄1
...

x̄k






= (a1, . . . , ak)







g1
...

gk






.

Without loss of generality, we assume that a1 6= 0. Then we have

(x1, . . . , xk)T







g′1
...

g′k






(g′1, . . . , g

′

k)tT







x̄1
...

x̄k






= (1, . . . , 0)







g′1
...

g′k






,

where

T =











a−1
1 −a−1

1 a2 . . . −a−1
1 ak

1
. . .

1











and







g′1
...

g′k






= T−1







g1
...

gk






.

Denote

y = (y1, . . . , yk)







g′1
...

g′k






= (x1, . . . , xk)T







g′1
...

g′k






.

Then under the basis g′1, . . . , g
′

k we have yy = 1 · g′1. It is clear that this equation has

a solution. Thus the claim is proved. �

Consider the map ϕ : R∗ → R′∗ : x 7→ xx̄. Clearly it is an epimorphism of groups

by the claim above. Then we have |Kerϕ| = |R∗|/|R′∗| = (q+1)qpβ
−1. Consequently,

for any a ∈ R′∗, the equation xx̄ = a has exactly (q + 1)qpβ
−1 solutions in R∗.

Lemma 2.3 ([6]). Anym×m nonsingular Hermitian matrix over Fq2 is cogredient

to
(

I(n)

I(n)

)

or





I(n)

I(n)

1



 ,

when m = 2n or m = 2n+ 1, respectively.
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Theorem 2.4. Any m×m nonsingular Hermitian matrix over R is cogredient to

(

I(n)

I(n)

)

or





I(n)

I(n)

1



 ,

when m = 2n or m = 2n+ 1, respectively.

P r o o f. Let H be an m×m nonsingular Hermitian matrix over R. Consider the

group homomorphism ψ : GLm(R) → GLm(Fq2 ) induced by the canonical homo-

morphism π : R → Fq2 . Then ψ(H) ∈ GLm(Fq2 ) is a Hermitian matrix over Fq2 .

By Theorem 5.2 in [5], there exists Q ∈ GLm(Fq2) such that

(1) tQ̄ψ(H)Q =







h1

. . .

hm






,

where h1, . . . , hm are invertible elements of Fq2 , i.e., hi 6= 0 (1 6 i 6 m). Let

H,Q′ ∈ GLm(R) be coset representatives of ϕ(H) and Q. Then

(2) tQ̄′HQ′ =











h11 h12 . . . h1m

h̄12 h22 . . . h2m

...
...

. . .
...

h̄1m h̄2m . . . hmm











∈ GLm(R).

We claim that h11, . . . , hmm are invertible elements of R and hij ∈M , 1 6 i 6= j 6 m.

Otherwise, by (2), we have that

ψ(tQ̄′HQ′) =











π(h11) π(h12) . . . π(h1m)

π(h̄12) π(h22) . . . π(h2m)
...

...
. . .

...

π(h̄1m) π(h̄2m) . . . π(hmm)











∈ GLm(Fq2 ),

where π(hii) = 0 (1 6 i 6 m) and π(hij) 6= 0 (1 6 i 6= j 6 m). Observe that the

fact ψ(tQ̄′HQ′) = tQ̄ψ(H)Q. This is a contradiction with (1).

Denote










h11 h12 . . . h1m

h̄12 h22 . . . h2m

...
...

. . .
...

h̄1m h̄2m . . . hmm











= T

and write T in block form
(

h11 T12

tT 12 T22

)

,
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where h11 = h̄11 and T22 is an (m−1)× (m−1) Hermitian matrix. We use induction

on m to prove that T is cogredient to a diagonal matrix. When m = 1, this is

obvious. Now assume that m > 2 and the assertion holds for all r < m. Let

R =

(

h11 −h−1
11 T12

I(m−1)

)

.

Then

tRTR =

(

h11

−h−1
11 T12

tT 12 + T22

)

,

where −h−1
11 T12

tT 12 + T22 is an (m − 1) × (m − 1) nonsingular Hermitian matrix.

By induction hypothesis, −h−1
11 T12

tT 12 + T22 is cogredient to a diagonal matrix.

Consequently, H is cogredient to a diagonal matrix











h11

h′22
. . .

h′mm











.

According to Lemma 2.2, there exists λi ∈ R∗ (1 6 i 6 m) such that







λ̄−1
1

. . .

λ̄−1
m













h11

. . .

h′mm













λ−1
1

. . .

λ−1
m






= I(m).

By Lemma 2.3, I(m) is cogredient to

(

I(n)

I(n)

)

or





I(n)

I(n)

1



 ,

when m = 2n or m = 2n+ 1 respectively, so does H . �
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3. BN-pairs and orders of unitary groups over finite group rings

By Theorem 2.4, when studying the unitary groups over finite group rings R, we

only need consider the two special cases Um(R,H1) and Um(R,H2), where

H1 =

(

I(n)

I(n)

)

and H2 =





I(n)

I(n)

1



 .

For simplicity we denote them by U2n(R) and U2n+1(R) respectively.

Now we give the definitions of elementary unitary matrices of U2n(R) and

U2n+1(R), which play an important role in verifying BN-pairs.

The elementary unitary matrix of U2(R) is the unitary matrix of the following

form
(

a

ā−1

)

,

(

1

1

)

,

(

1

b 1

)

or

(

1 c

1

)

,

where a is an invertible element of R, b+ b̄ = 0 and c+ c̄ = 0.

Let R2n be a free module of rank 2n. Denote the standard basis vectors of R2n by

e1, e2, . . . , en, f1, f2, . . . , fn. When n > 2, an elementary unitary matrix of U2n(R)

is defined to be the image of a 2 × 2 elementary matrix in U2n(R) under one of the

embeddings in the following:

(1) For each i = 1, . . . , n, there is an elementary unitary matrix of U2(R) acting on

[ei, fi] in U2n(R), which fixes all the basis vectors other than ei and fi.

(2) Given 1 6 i < j 6 n, there is an elementary matrix of GL2(R) acting on [ei, ej]

in U2n(R), which stabilizes [ei, ej] and [fi, fj] and fixes all the basis vectors

other than these four.

(3) Given 1 6 i < j 6 n, there is an elementary matrix of GL2(R) acting on [ei, fj]

in U2n(R), which stabilizes [ei, fj] and [ej , fi] and fixes all the basis vectors

other than these four.

Example. We give some examples of elementary unitary matrices. Take n = 2

and i = 1 for example in the first embedding. We obtain an elementary unitary

matrix A ∈ U4(R) which has the following form









∗ ∗

1

∗ ∗

1









.

In the second embedding, for instance, we take n = 2, i = 1, j = 2 and construct

an elementary unitary matrix A ∈ U4(R) which is given by an elementary matrix
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(

1 a

0 1

)

on [e1, e2] and which stabilizes [f1, f2]. Then A must have the form









1 a

0 1

1 0

−ā 1









.

Similarly, we have the definition of elementary unitary matrix of U2n+1(R).

3.1. BN-pairs of unitary groups U2n(R)

Consider the group homomorphism θ : U2n(R) → U2n(Fq2) induced by the canon-

ical homomorphism π : R → Fq2 . Let B̂ be the subgroup of U2n(Fq2 ) consisting of

the matrices of the form
(

C1 C2

C3

)

,

where C1 is an n × n invertible lower triangular matrix, tC1C3 = I and tC̄2C3 +
tC̄3C2 = O. Let N̂ be the monomial subgroup of U2n(Fq2 ). We take B and N to

be the inverse images of B̂ and N̂ in U2n(R) respectively and prove that (B, N) is a

BN-pair of U2n(R). To show this, we first prove the following lemma.

Lemma 3.1. The unitary group U2n(R) is generated by its subgroups B and N .

P r o o f. Through the row and column operations by the elementary unitary

matrices and the definition of unitary group, any A ∈ U2n(R) is reduced to the

identity matrix. This proves the assertion. �

Note that T = B ∩N is the inverse image of the diagonal subgroup of U2n(Fq2 )

in U2n(R). Consequently, T is a normal subgroup of N . Then W = N/T has a set

of generators S = {s1, s2, . . . , sn}, where

s1 =



















0 1

1 0

I(n−2)

0 1

1 0

I(n−2)



















, . . . ,

sn−1 =



















I(n−2)

0 1

1 0

I(n−2)

0 1

1 0



















, sn =









I(n−1)

0 0 1

0 I(n−1) 0

1 0 0









.
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Theorem 3.2. The pair (B,N) is a spherical BN-pair in U2n(R).

P r o o f. To prove that the axiom (BN1) holds, it is enough to show that for

each s ∈ S, sB ⊂ BB′ ∪BsB′, where B′ = wBw−1. We verify only for s = s1, the

other elements of S are treated similarly. Any element of sB has the form































c21 a22 . . . b2n c2,n+1 c2,n+2 . . . c2,2n

a11 b12 . . . b1n c1,n+1 c1,n+2 . . . c1,2n

...
...

...
...

...
...

cn1 cn2 . . . ann cn,n+1 cn,n+2 . . . cn,2n

bn+2,1 bn+2,2 . . . bn+2,n bn+2,n+1 an+2,n+2 . . . cn+2,2n

bn+1,1 bn+1,2 . . . bn+1,n an+1,n+1 cn+1,n+2 . . . cn+1,2n

...
...

...
...

...
...

b2n,1 b2n,2 . . . b2n,n b2n,n+1 b2n,n+2 . . . a2n,2n































,

where a11, . . . , a2n,2n are invertible elements of R and bij ∈M with i 6= j. Through

left multiplication by the matrices in B and the definition of unitary group, it is

reduced to

(3)



































c21 a22 b23 . . . b2n

a11 0 b13 . . . b1n

0 0 A2
...

... A1

0 0

bn+2,1 bn+2,2 0 an+2,n+2 0 . . . 0

bn+1,1 bn+1,2 an+1,n+1 cn+1,n+2 0 . . . 0
...

... A3

...
... A4

b2n,1 b2n,2 b2n,n+1 b2n,n+2



































,

where

A1 =







a33 . . . b3n

. . .
...

ann






, A4 =







an+3,n+3

...
. . .

b2n,n+3 . . . a2n,2n






,

A2 is an n×n zero matrix and A3 is an n×(n−2)matrix with entries in the maximal

ideal M .

In case that c21 ∈ M , the matrix (3) is reduced to s through left multiplication

by the matrices in B, i.e., sB ⊂ BsB′. If c21 is an invertible element, then using

right multiplication by the matrices in B′, we reduce the matrix (3) to s or 1,

i.e., sB ⊂ BB′ ∪BsB′.
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Let

P =



















1

1 1

I(n−2)

1 −1

1

I(n−2)



















∈ B.

Then s1Ps1 * B, which shows that the axiom (BN2) holds. Therefore, (B,N) is a

BN-pair and obviously it is spherical. �

3.2. BN-pairs of unitary groups U2n+1(R)

Just as in Section 3.1, we consider the group homomorphism ϕ : U2n+1(R) →

U2n+1(Fq2 ) induced by the canonical homomorphism π : R → Fq2 . Let

B̆ =

{

P =

(

P1

a2n+1,2n+1

)

: P1 ∈ U2n(Fq2 ), P ∈ U2n+1(Fq2 )

}

and N̆ be the monomial subgroup of U2n+1(Fq2). Take B′ to be the inverse image

of B̆ and N ′ the inverse image of N̆ in U2n+1(R). Then T ′ = B′ ∩N ′ is the inverse

image of the diagonal subgroup of U2n+1(Fq2 ) in U2n+1(R), whence it is a normal

subgroup of N ′. Consequently, W ′ has a set of generators S′ = {s′1, s
′

2, . . . , s
′

n},

where

s′1 =























0 1

1 0

I(n−2)

0 1

1 0

I(n−2)

1























, . . . ,

s′n−1 =























I(n−2)

0 1

1 0

I(n−2)

0 1

1 0

1























, s′n =















I(n−1)

0 0 1

0 I(n−1) 0

1 0 0

1















.
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Theorem 3.3. The pair (B′, N ′) is a spherical BN-pair in U2n+1(R).

P r o o f. The proof is analogous to the case of U2n(R). �

3.3. Homological properties of BN-pairs in the unitary groups

over group rings

As in Section 1, G is a commutative p-group with order pβ. Suppose that Gi are

subgroups of G with order pi for all 1 6 i 6 β − 1. Then Ri = Fq2Gi are a family

of group rings. Accordingly, we obtain a family of unitary groups Um(Ri), where

1 6 i 6 β − 1.

Theorem 3.4. Let (B, N) be the BN-pairs of unitary groups Um(R) constructed

in Sections 3.1 and 3.2. Assume that Bi = B∩Um(Ri) and Ni = N ∩Um(Ri). Then

the pair (Bi, Ni) is a BN-pair of unitary group Um(Ri).

P r o o f. The proof is completely similar to the case of Um(R). �

Let (B0, N0) be the BN-pair of the unitary group Um(Fq2 ). Denote T0 = B0 ∩N0

and W0 = N0/T0. Then we have the following theorem.

Theorem 3.5. There exists a commutative diagram with the exact columns:

0

��

0

��

0

��

0

��

T0

��

i0
// T1

��

// . . . // Tβ−1

��

iβ−1
// T

��

N0

��

i′0
// N1

��

// . . . // Nβ−1

��

i′β−1
// N

��

W0

��

id
// W1

��

// . . . // Wβ−1

��

id
// W

��

0 0 0 0

where ij and i
′

j (0 6 j 6 β − 1) are embeddings of groups.

Remark. Although the groups Um(Ri) (1 6 i 6 β) and Um(Fq2 ) are not isomor-

phic, the associated Weyl groups are completely identical.

3.4. Some Anzahl theorems in unitary groups over finite group rings

Let ϕ : U2n+1(R) → U2n+1(Fq2 ) be as in Section 3.2. Denote Kerϕ = U2n+1M .

Before we prove our main result of this section, we need prove two lemmas.
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Lemma 3.6. |U3M | = (q + 1)q9(p
β
−1).

P r o o f. Assume that

P =





1 + c11 c12 c13
c21 1 + c22 c23

c31 c32 1 + c33



 ∈ U3M,

where cij ∈ M . The definition of unitary group implies that (1 + c̄11)c21 + c̄21(1 +

c11) + c̄31c31 = 1, whence c11, c21, c31 have q
5(pβ

−1) values by Lemma 2.1. If we

choose c11 = c21 = c31 = 0, then

P =





1 c12 c13

0 1 0

0 c32 1 + c33



 .

Since c̄12 + c12 + c̄32c32 = 1 by the definition of unitary group, we know c12, c32 have

q3(p
β
−1) values. Similarly, we choose c12 = c32 = 0. Then

P =





1 0 0

0 1 0

0 0 1 + c33



 ,

whence (1 + c̄33)(1 + c33) = 1 and c33 has (q + 1)qpβ
−1 values. Therefore, |U3M | =

(q + 1)q9(p
β
−1). �

Lemma 3.7. |U2n+1M | = (q + 1)q(4n2+4n+1)(pβ
−1).

P r o o f. Assume that

P =



























1 + c11 . . . c1,n+1 . . . c1,2n c1,2n+1

...
...

...
...

cn1 . . . cn,n+1 . . . cn,2n cn,2n+1

cn+1,1 . . . 1 + cn+1,n+1 . . . cn+1,2n cn+1,2n+1

...
...

...
...

c2n,1 . . . c2n,n+1 . . . 1 + c2n,2n c2n,2n+1

c2n+1,1 . . . c2n+1,n+1 . . . c2n+1,2n 1 + c2n+1,2n+1



























,

where cij ∈M . Let

P1 =





I(n)

S I(n)

1









V1

V2

1









Q1

Q2

1



P,
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where Q1 = diag[(1 + c11)
−1, 1, . . . , 1], Q2 = diag[1 + c̄11, 1, . . . , 1],

V1 =











1

−c21 1
...

...
. . .

−cn1 0 . . . 1











, V2 =











1 c̄21 . . . c̄n1

1 . . . 0
. . .

...

1











,

S =











0 c̄n+2,1 . . . c̄2n,1

−cn+2,1 0 . . . 0
...

...
. . .

...

−c2n,1 0 . . . 0











.

Then P1 has the following form































1 . . . c1,n+1 . . . c1,2n+1

...
...

...

0 . . . cn,n+1 . . . cn,2n+1

cn+1,1(1 + c̄11) +
n
∑

j=2

cn+j,1c̄j1 . . . 1 + cn+1,n+1 . . . cn+1,2n+1

...
...

...

0 . . . c2n,n+1 . . . c2n,2n+1

c2n+1,1 . . . c2n+1,n+1 . . . 1 + c2n+1,2n+1































.

Since P1 is a unitary matrix, we have that cn+1,1(1 + c̄11) + c̄n+1,1(1 + c11) +
n
∑

j=2

(cn+j,1c̄j1 + c̄n+j,1cj1) + c̄2n+1,1c2n+1,1 = 1, and hence c11, . . . , c2n+1,1 have

q(4n+1)(pβ
−1) values by Lemma 2.1. If we choose c11 = . . . = c2n+1,1 = 0, then by

the definition of unitary matrix we have

P1 =

























1 . . . c1,n+1 . . . c1,2n+1

...
...

...

0 . . . cn,n+1 . . . cn,2n+1

0 . . . 1 . . . 0
...

...
...

0 . . . c2n,n+1 . . . c2n,2n+1

0 . . . c2n+1,n+1 . . . 1 + c2n+1,2n+1

























.
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By repetition of the argument, P1 is reduced to

(4)





























1 . . . c1,n+1 +
n
∑

j=2

cj,n+1c̄n+j,n+1 . . . c1,2n+1

...
...

...

0 . . . 0 . . . cn,2n+1

0 . . . 1 . . . 0
...

...
...

0 . . . 0 . . . c2n,2n+1

0 . . . c2n+1,n+1 . . . 1 + c2n+1,2n+1





























.

Thus c1,n+1 + c̄1,n+1 +
n
∑

j=2

(cj,n+1c̄n+j,n+1 + c̄j,n+1cn+j,n+1) + c̄1,2n+1c1,2n+1 = 1

and c1,n+1, . . . , cn,n+1, cn+2,n+1, . . . , c2n+1,n+1 have q
(4n−1)(pβ

−1) values. Choose

c1,n+1 = . . . = c2n+1,n+1 = 0. Then the matrix (4) has the following form

(5)































1 0 . . . 0 . . . 0

0 1 + c22 . . . 0 . . . c2,2n+1

...
...

...
...

0 cn2 . . . 0 . . . cn,2n+1

0 0 . . . 1 . . . 0
...

...
...

...

0 c2n,2 . . . 0 . . . c2n,2n+1

0 c2n+1,2 . . . 0 . . . 1 + c2n+1,2n+1































.

Clearly, the matrix (5) is the direct sum of

(

1 0

0 1

)

and


























1 + c22 . . . c2,n+1 . . . c2,2n c2,2n+1

...
...

...
...

cn2 . . . cn,n+1 . . . cn,2n cn,2n+1

cn+1,2 . . . 1 + cn+1,n+1 . . . cn+1,2n cn+1,2n+1

...
...

...
...

c2n,2 . . . c2n,n+1 . . . 1 + c2n,2n c2n,2n+1

c2n+1,2 . . . c2n+1,n+1 . . . c2n+1,2n 1 + c2n+1,2n+1



























,

whence we have |U2n+1M | = q8n(pβ
−1)|U2n−1M |. By Lemma 3.6, we have

|U2n+1M | = (q + 1)q(4n2+4n+1)(pβ
−1).
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Theorem 3.8. Let (B,N) and (B′, N ′) be the BN-pairs of unitary groups U2n(R)

and U2n+1(R) constructed above. Then we have

(1) |U2n(R)| = q4n2pβ
−(2n2+n)

2n
∏

i=1

(qi − (−1)i),

|U2n+1(R)| = (q + 1)q(4n2+4n+1)pβ
−(2n2+3n+1)

2n+1
∏

i=1

(qi − (−1)i);

(2) |B| = (q2 − 1)nq4n2pβ
−2n2

, |N | = 2nn! (q2 − 1)nq4n2(pβ
−1);

(3) |B
′

| = (q2 − 1)n(q + 1)2q(4n2+4n+1)pβ
−(2n2+4n+1),

|N
′

| = 2nn!(q2 − 1)n(q + 1)q(4n2+4n+1)(pβ
−1).

P r o o f. The first equation is proved in [2]. Observe that |U2n+1(Fq2 )| =

qn(2n+1)
2n+1
∏

i=1

(qi − (−1)i), B̂ = (q2 − 1)nq2n2

, B̆ = (q + 1)(q2 − 1)nq2n2

, N̂ =

2nn!(q2 − 1)n and N̆ = 2nn!(q2 − 1)n(q + 1). By Lemma 3.7, we obtain the re-

sults, as required. �

4. Construction of Cartesian authentication codes

In this section, by the normal forms of Hermitian matrices over finite group rings

in Theorem 2.4, we construct a Cartesian authentication code and compute its size

parameters and the probabilities of successful impersonation and substitution attack.

For the definitions of authentication code (S,E,M ; f), Cartesian authentication code

and the size parameters of code the reader is referred to [4], [7].

Define the source state S to be the set

J =

{

(

I(r)

0

)

m×m

: r = 1, 2, . . . ,m

}

,

the message M to be the set Nm(R) = {A ∈ M∗

m(R) : tĀ = A} and the encoding

rules E to be the set GLm(R). Define

f : S × E →M

s× g → tgsg.

By Theorem 2.3, we know that every m × m matrix over R is cogredient to its

normal form, so the map f is surjective. Moreover, by the invariance of the rank un-

der cogredient transformation, we show that given any message m there is a unique

source state s such that m = f(s, e) for any encoding rule e contained in m. There-

fore, (J,Nm(R), GLm(R); f) is a Cartesian authentication code.
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Lemma 4.1. The number of Hermitian matrices with rank r in Nm(R) is equal

to


















































q2mrpβ
m
∏

i=m−r+1

(

1 − 1/q2i
)

qr2pβ−
1
2 (r2+r)

r
∏

i=1

(qi − (−1)i)
, r = 2s,

q2mrpβ
m
∏

i=m−r+1

(

1 − 1/q2i
)

(q + 1)qr2pβ−
1
2 (r2+r)

r
∏

i=1

(qi − (−1)i)
, r = 2s+ 1.

P r o o f. Let l be the number of Hermitian matrices with rank r in Nm(R).

Consider the action of GLm(R) on the set Nm(R):

GLm(R) ×Nm(R) → Nm(R)

(P,A) 7→ tPAP.

Then

l =
|GLm(R)|

|G0|
,

where G0 is the stabilizer of

(

I(r)

0

)

. Note that |G0| is equal to the number of

the solutions of equation

tP

(

I(r)

0

)

P =

(

I(r)

0

)

.

Let

P =

(

P11 P12

P21 P22

)

.

Then tP 11I
(r)P11 = I(r), P22 ∈ GLm−r(R) and P21 is uniquely determined by P12.

Thus

l =
|GLm(R)|

q2pβr(m−r)|GLm−r(R)||Ur(R)|
,

as required. �
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Lemma 4.2.

|S| = m, |E| = q2pβm2
m
∏

i=1

(

1 −
1

q2i

)

,

|M | =























































































































































































n
∑

s=1









q4mspβ
m
∏

i=m−2s+1

(

1 − 1/q2i
)

q4s2pβ−(2s2+s)
2s
∏

i=1

(qi − (−1)i)

+

q(4ms−2m)pβ
m
∏

i=m−2s+2

(

1 − 1/q2i
)

(q + 1)q(4s2−4s+1)pβ−(2s2−s)
2s−1
∏

i=1

(qi − (−1)i)









,

m = 2n,

n
∑

s=1









q4mspβ
m
∏

i=m−2s+1

(

1 − 1/q2i
)

q4s2pβ−(2s2+s)
2s
∏

i=1

(qi − (−1)i)

+

q(4ms−2m)pβ
m
∏

i=m−2s+2

(

1 − 1/q2i
)

(q + 1)q(4s2−4s+1)pβ−(2s2−s)
2s−1
∏

i=1

(qi − (−1)i)









+

q2m2pβ
m
∏

i=1

(1 − 1/q2i)

(q + 1)q(4n2+4n+1)pβ−(2n2+3n+1)
2n+1
∏

i=1

(qi − (−1)i)

,

m = 2n+ 1.

P r o o f. The conclusion is obvious by Lemma 4.1. �

Lemma 4.3. The number of encoding rules contained in a message m is

q2(m
2
−mr)pβ

q4s2pβ
−(2s2+s)

2s
∏

i=1

(qi − (−1)i)

m−2s
∏

i=1

(

1 −
1

q2i

)

and

q2(m
2
−mr)pβ

(q + 1)q(4s2+4s+1)pβ
−(2s2+3s+1)

2s+1
∏

i=1

(qi − (−1)i)

m−2s−1
∏

i=1

(

1 −
1

q2i

)

when r = 2s and r = 2s+ 1, respectively.
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P r o o f. Let

A =

(

I(r)

0

)

be the source state corresponding to m. It is easy to see that the number of the

encoding rules contained in the message m is equal to the number of the solutions

of the equation tXAX = A. �

Lemma 4.4. Let m1 and m2 be two distinct messages which contain a common

encoding rule. Then the number of the encoding rules in both m1 and m2 is

q2(m
2
−r1m)pβ

m−r1
∏

i=1

(

1 −
1

q2i

)

|Ur2(R)||Ur1−r2(R)|,

where rank(m1) = r1, rank(m2) = r2 and r1 > r2.

P r o o f. Let

A1 =

(

I(r1)

0

)

and A2 =

(

I(r2)

0

)

be the source states corresponding to m1 and m2 respectively. Assume that r1 > r2,

for otherwise, m1 = m2, a contradiction. It suffices to compute the number of the

solutions of the matrix equations

(6)

{

tXA1X = m1,

tXA2X = m2,
i.e.

{

tXA1X = A1,

tXA2X = A2.

By Lemma 4.1, we can assume that

X =

(

X11 X12

X22

)

m×m

,

where tX11I
(r1)X11 = I(r1), X22 ∈ GLm−r1(R). By (6), we have

tX11

(

I(r2)

0

)

r1×r1

X11 =

(

I(r2)

0

)

r1×r1

.

If we write X11 as follows

X11 =

(

a b

d

)

,

then tāI(r2)a = I(r2), d ∈ GLr1−r2(R). The fact tX11I
(r1)X11 = I(r1) implies that

b = 0, whence

X11 =

(

a

d

)

r1×r1

,

where tāI(r2)a = I(r2) and td̄I(r1−r2)d = I(r1−r2). �
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Theorem 4.5. If the encoding rules are chosen according to a uniform probability

distribution, then the probabilities of a successful impersonation attack PI and of a

successful substitution attack PS are

PI =
(q + 1)2

q(2m−1)(pβ−1)(q2m − 1)
, PS =

(q + 1)3

(qm − (−1)m)q(2m−2)pβ−(m−1)
.
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