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Abstract. The paper deals with the existence of a quasi continuous selection of a multi-
function for which upper inverse image of any open set with compact complement contains
a set of the form (G \ I)∪J , where G is open and I , J are from a given ideal. The methods
are based on the properties of a minimal multifunction which is generated by a cluster
process with respect to a system of subsets of the form (G \ I) ∪ J .
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1. Introduction

The upper and lower semi continuity, their generalizations and the problem of

finding a desirable selection are intensively studied in the theory of multifunctions and

they play crucial role in many applications. Recall that a multifunction F is upper

semi continuous/lower semi continuous (briefly usc/lsc), if F+(V ) = {x : F (x) ⊂

V }/F−(V ) = {x ∈ X : F (x) ∩ V 6= ∅} is open for any open set V . In the paper we

will be interested in searching a quasi continuous selection. For this goal the upper

semi continuity is too strong and the existence of a quasi continuous selection has

been studied in a series of papers [1], [9], [10] for more general continuity. Perhaps the

most general technic was presented in [1] based on Zorn’s lemma. Namely, a compact

valued upper Baire continuous multifunction (definition is below) acting from an

arbitrary topological space into a regular T1-space has a quasi continuous selection.

Compactness of the values is necessary. A multifunction from R to R defined by

F (x) = {1/x} for x 6= 0 and F (0) = R is upper Baire continuous (even usc) without

a quasi continuous selection. The multifunction F above has closed graph which
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is closely connected to c-upper semi continuity. Namely, F is c-usc (c-upper semi

continuous), if F+(V ) is open for any open set V with compact complement (see

[5], [7], [12]). The dual notion of c-lower semi continuity, briefly c-lsc, means that

F−(V ) is open for any open set V with compact complement. From the continuity

point of view, c-lower semi continuity has very nice behavior. Under reasonable

conditions, c-lower semi continuity of F guarantees lower semi continuity of F except

for a nowhere dense set [5]. On the other hand, c-upper semi continuity is rather

strange. Namely, a c-upper semi continuous multifunction need not be usc/lsc at any

point. An example can be found in [5]. The question if a c-upper semi continuous

multifunction has a selection (submultifunction) which is quasi continuous (minimal

usco) except for a nowhere dense set is the main stimulation for our investigation (see

Theorem 4). Moreover, c-upper semi continuity will be replaced by c-u-E-continuity

(see Definition 2) which seems to be suitable for finding a selection being quasi

continuous except for a nowhere dense set. It is more general than the notion of c-

upper semi continuity and closedness of graph, even than the upper Baire continuity,

and on the other hand it still leads to reasonable results. The notion of u-E-continuity

(formally derived from the upper quasi continuity) is based on a family E ⊂ 2X \ {∅}

and the results obtained flexibly depend on a specification of E .

2. Basic definitions and preliminary results

In the sequel X, Y are topological spaces. By A, A◦ we denote the closure and

the interior of A, respectively. A σ-compact space Y (i.e., Y =
∞⋃

n=1

Cn, where Cn

are compact) is understood to be Hausdorff. By a multifunction F we understand a

subset of the cartesian product X × Y with the values {y ∈ Y : [x, y] ∈ F} =: F (x)

(it can be empty valued at some points). For a multifunction F and a set C ⊂ Y ,

F ∩ C denotes the multifunction with the values F (x) ∩ C. By Dom (F ), we denote

the domain of F , i.e., the set of all arguments x at which F (x) is non-empty. A

function f is understood as a special multifunction with values {f(x)}, x ∈ Dom (f).

For a function f , we will prefer traditional notation of its values as f(x).

A multifunction can be considered as a set-valued mapping from its domain to Y

denoted as F : A → Y , where A = Dom (F ). Then the set {[x, y] ∈ A×Y : y ∈ F (x)}

is the graph of F . In the paper, we identify the mapping with its graph.

A multifunction F is bounded on a set A if F (A) :=
⋃
{F (x) : x ∈ A} is a

subset of some compact set, and F is locally bounded at x if there is an open set

U containing x and a compact set C such that F (U) ⊂ C. If S ⊂ F , then S is

called a submultifunction of F . A function f is a selection of a multifunction F , if

f(x) ∈ F (x) for all x ∈ Dom (f) = Dom (F ). If f(x) ∈ F (x) for all x ∈ A ⊂ Dom (f),
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then f is called a selection of F on a set A. A multifunction F is usco, if F (x) is

compact and F is usc at x for all x ∈ Dom(F ).

Any non-empty system E ⊂ 2X \ {∅} will be called a cluster system. For some

special cluster systems we will use a special notation. For example, O, Br is a cluster

system containing all non-empty open sets or all sets being of second category with

the Baire property, respectively. For an ideal I on X , put EI = {(G \ S) ∪ T } where

S, T ∈ I and G is open such that none of its non-empty open subsets is from I.

The next two definitions introduce the notion of an E-cluster point and an upper

E-continuity (u-E-continuity), as a basic tool for investigation of the properties of

multifunctions. In this form it was studied for the first time in [9], later in [10]

and for the functions in [3]. Formally, upper E-continuity (see Definition 2 below) is

motivated by the notion of the upper quasi continuity, which is a special case of our

approach.

Definition 1. A point y ∈ Y is an E-cluster point of F at a point x, if for any

open sets V ∋ y and U ∋ x there is a set E ∈ E , E ⊂ U such that F (e) ∩ V 6= ∅

for any e ∈ E. The set of all E-cluster points of F at x is denoted by EF (x). A

multifunction EF with the values EF (x) is called E-cluster multifunction of F .

Definition 2. A multifunction F is u-E-continuous at x ∈ Dom(F ) (c-u-E-

continuous), if for any open sets V, U (Y \ V is compact) such that F (x) ⊂ V and

x ∈ U there is a set E ∈ E , E ⊂ U ∩ Dom (F ) such that F (e) ⊂ V for any e ∈ E.

The global definition is given by the local one at any point of Dom(F ). Notation

“c-u-E-continuity” is derived from the notion of c-upper semi continuity (see [5], [7]).

Since a function is a special case of a multifunction when upper and lower inverse

images coincide, we will say that f is E-continuous, c-E-continuous, respectively. It is

evident that if f is E-continuous at x, then f(x) ∈ Ef (x). For the system O we have

the notion of upper quasi continuity/c-upper quasi continuity, which is intensively

studied, see a survey [13]. A few new characterizations of quasi continuity have been

studied in [11]. A u-Br-continuous multifunction is called upper Baire continuous and

i his is one of the most general notions of continuity which guarantees the existence

of a quasi continuous selection, see [1], [9], [10].

It can happen that some open sets need not contain a set from a given cluster

system E . Avoiding such case we can enlarge E by some reasonable sets, for example

by open ones. That is the case of the cluster system EI above, which is of our main

interest. So we will deal with a cluster system O∪EI and the continuity introduced in

Definition 2 can be considered as the local definition of measurability, i.e., F+(V )∩U

contains a set of the form (G \ S) ∪ T (G is open, S, T ∈ I) whenever F+(V ) ∩ U

is non-empty. For example, a compact valued multifunction F acting from a Baire
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space to a metric one has the Baire property if and only if F is u-EI-continuous except

for a set of first category, where I is the ideal of all sets of first category (see [10]).

Now we give a definition which is a natural generalization of a minimal multifunc-

tion ([2], [6], [8]) and in this form has been studied in [11].

Definition 3. A multifunction F is E-minimal at a point x, if F (x) is non-

empty and for any open sets U, V such that U ∋ x and V ∩ F (x) 6= ∅ there is a

set E ⊂ U ∩ Dom (F ). The global definition is given by the local one at any point

from Dom (F ). It is evident that any selection of an E-minimal multifunction is

E-continuous.

Lemma 1 (see also [4]). For any net {xt} converging to x and yt ∈ EF (xt), EF (x)

contains all accumulation points of the net {yt}. Consequently, EF has a closed graph

and closed values.

P r o o f. Let y be an accumulation point of {yt}. Then for any open sets

V ∋ y and U ∋ x there are frequently given indexes t′ such that xt′ ∈ U and

yt′ ∈ V ∩ EF (xt′ ). Hence there is E ∈ E , E ⊂ U such that F (e) ∩ V 6= ∅ for any

e ∈ E. That means y ∈ EF (x). �

Remark 1. Since EF has a closed graph, E
−

F (K) is closed for any compact set

K or equivalently, E+

F (G) is open for any open G with compact complement in Y .

Hence, EF is c-upper semi continuous. Consequently, if E−

F (K) is dense in an open

set G, then G ⊂ E−

F (K), so EF is non-empty valued on G.

3. Main results

Lemma 2. Let Y be Hausdorff.

(1) If F (x) is closed, F is c-u-E-continuous at x and S is usco at x, then F ∩ S is

c-u-E-continuous at x provided F ∩S is non-empty on some neighborhood of x.

(2) If F is locally bounded and c-u-E-continuous at x, then F is u-E-continuous

at x.

P r o o f. 1. Let G ⊃ F (x) ∩ S(x) be open with compact complement and let W

be open containing x. Then S(x) is disjoint with F (x)\G and since S(x) is compact,

there are two disjoint open sets G1 ⊃ S(x) and G2 ⊃ F (x) \ G. The complement of

G∪G2 is compact, G∪G2 ⊃ F (x) and by virtue of usc of S and c-u-E-continuity of

F , there is an open set U ⊂ W containing x and there is E ∈ E , E ⊂ U ∩ Dom (F )

such that F (E) ⊂ G ∪ G2 and S(U) ⊂ G1. Then F (E) ∩ S(E) ⊂ (G ∪ G2) ∩ G1 ⊂

(G ∪ G2) ∩ (Y \ G2) ⊂ G. So F ∩ S is c-u-E-continuous.
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2. F is a locally bounded multifunction, so there is an open set U containing x and

a compact set K such that F (U) ⊂ K. Let H ⊃ F (x), let H be open and U0 ⊂ U

open containing x. Since the complement of (Y \ K) ∪ H is compact, there is a set

E ⊂ U0∩Dom (F ) such that F (E) ⊂ (Y \K)∪H . So F (E) = F (E)∩((Y \K)∪H) =

F (E) ∩ H , which means F (E) ⊂ H . �

Theorem 1. Let Y be Hausdorff and F compact valued (it can be empty valued

at some points) c-u-E-continuous. Then F has a c-E-continuous selection.

P r o o f. LetM be the family of all c-u-E-continuous non-empty compact valued

submultifunctions of F which is partially ordered by inclusion. It is non-empty,

since F ∈ M. For any linearly ordered subfamily M0, a multifunction M0(x) :=
⋂
{M(x) : M ∈ M0} is a non-empty compact valued submultifunction of F, and for

any open sets V ⊃ M0(x), Y \V compact, and U containing x there isM ∈ M0 such

that M(x) ⊂ V . By the c-u-E-continuity of M there is a set E ∈ E , E ⊂ Dom (M)∩

U ∩ M+(V ), hence for any e ∈ E we have M0(e) ⊂ M(e) ⊂ V . That means M0 is

c-u-E-continuous andM has a minimal element Mm with respect to inclusion. Now

we will prove thatMm is E-minimal with respect to co-compact topology on Y given

by all open sets with compact complement. If not at a ∈ Dom (Mm), there is an open

set V intersectingMm(a), Y \V compact and an open set U containing a such that for

any E ⊂ U∩Dom (Mm) from E there is a point e ∈ E such thatMm(e) is not a subset

of V . Since Mm is c-u-E-continuous, hence for all u ∈ U ∩Dom (Mm), Mm(u) is not

a subset of V . Define a multifunction N as N(x) := Mm(x) if x ∈ Dom (Mm) \ U

and N(x) := Mm(x) ∩ (Y \ V ) if x ∈ U ∩ Dom (Mm). Then N is a non-empty

compact valued submultifunction of F . We will show that N is c-u-E-continuous. If

x ∈ Dom (Mm) \ U there is nothing to prove. Let x ∈ U ∩ Dom (Mm), N(x) ⊂ W ,

let Y \ W be compact, x ∈ H ⊂ U and H, W be open. Then Mm(x) ⊂ V ∪ W and

by the c-u-E-continuity of Mm there is a set E ∈ E , E ⊂ H ∩ Dom(Mm) such that

Mm(e) ⊂ V ∪ W for any e ∈ E. That means N(e) ⊂ W for any e ∈ E. Hence

N ∈ M and N(a) is a proper subset of Mm(a), a contradiction with the minimality

of Mm. Finally, since Mm is E-minimal with respect to the co-compact topology,

any selection of Mm is c-E-continuous. �

Remark 2. In a similar way we can prove the next result: If Y is Hausdorff

and F is compact valued u-E-continuous, then F has an E-continuous selection. For

E = Br it was proved in [1].

Definition 4. A multifunction is partially E-bounded if for any non-empty open

set G there is a set E ∈ E , E ⊂ G and a compact set C such that F (e) ∩ C 6= ∅ for

any e ∈ E. Hence, a multifunction F ∩ C is bounded on E.
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Theorem 2. Let Y be Hausdorff, E ⊂ O ∪ EI and let F defined on X (i.e.,

X = Dom(F )) be closed valued and c-u-E-continuous. Then F is partially E-bounded

if and only if F has a selection which is both locally bounded and E-continuous except

for a nowhere dense set.

P r o o f. ⇒ We will prove that for any non-empty open set G there is a non-

empty open set G0 ⊂ G and a compact set C such that F ∩ C is non-empty valued

on G0.

By assumption, there are a set E ∈ E , E ⊂ G and a compact set C such that

(∗) F (e) ∩ C 6= ∅ for any e ∈ E.

There are two possibilities. Either the set E is open (E ∈ O) or E = (G0 \ I) ∪ J

(E ∈ EI), where G is open and I, J ∈ I and no non-empty open subset of G0 is from

I. First, if E is open, we can put G0 = E. Secondly, if E = (G0 \ I) ∪ J , we will

show that F (x) ∩ C 6= ∅ for any x ∈ G0. If F (x) ∩ C = ∅ for some x ∈ G0, then by

the c-u-E-continuity there is E′ ⊂ G0 ∩Dom (F ), E′ ∈ E , such that F (E′) ⊂ Y \ C.

If E′ is open, then E′ is not from I, so ∅ 6= E′ \ I ⊂ G0 \ I ⊂ E, a contradiction with

(∗). If E′ = (G′ \I ′)∪J ′ ∈ EI, then E′ is not from I either, and G′∩G0 is non-empty

(otherwise, E′ = E′ ∩G0 ⊂ (G′ ∩G0)∪ (J ′ ∩G0) = J ′ ∩G0 ∈ I, a contradiction), so

there is a point a ∈ G′∩G0 \(I ′∪I) ⊂ E′∩E. Hence F (a) ⊂ Y \C and F (a)∩C 6= ∅

(see (∗)), a contradiction. That means that in both cases F ∩ C is a multifunction

which is non-empty valued on G0.

By Lemma 2 (1), F ∩ C is non-empty compact valued and c-u-E-continuous on

G0 and by Theorem 1, F ∩ C has a c-E-continuous selection fG0
on G0. Again, fG0

is bounded, so it is E-continuous by Lemma 2 (2).

We have proved for any non-empty open set G there is a non-empty open set

G0 ⊂ G such that F has a selection that is both bounded and E-continuous on G0.

Using Zorn’s lemma, we can prove the existence of an open set H and a function

f : H → Y such that f is both locally bounded and E-continuous and X \ H is

nowhere dense. So, a function g : X → Y such that g = f on H and g(x) ∈ F (x) for

x ∈ X \ H is a desirable selection.

The converse implication is obvious. �
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4. Applications

Global E-continuity on an open set has a very interesting feature. For some cluster

systems, global E-continuity of the functions implies quasi continuity. It is the case

when Y is regular and E ⊂ O ∪ EI (see the next theorem or Corollary 1). But in

multifunction setting the two notions are different as we can see from the multifunc-

tion F defined as F (x) = 〈0, 1〉, if x is rational and F (x) = {0} otherwise. It is

u-Br-continuous but not upper quasi continuous. This is a nice methodological fea-

ture of the upper Baire continuity, when a more general continuity of a multifunction

guarantees a stronger continuity of a selection, see [1], [9], [10].

Theorem 3. Suppose that the interior of Dom(Ef ) is non-empty, where f is an

arbitrary function. If Y is a regular topological space, then Ef is O-minimal on the

interior of Dom(Ef ) provided E ⊂ O ∪ EI.

P r o o f. Recall that no E ∈ EI is from I. If not at x ∈ (Dom (Ef ))◦, there

are the open sets U ∋ x, V and a set A ⊂ U ⊂ (Dom (Ef ))◦ dense in U such that

Ef (x)∩V 6= ∅ and Ef(a)∩ (Y \V ) 6= ∅ for any a ∈ A. Let y ∈ Ef (x)∩V . Then there

is a set E ∈ E , E ⊂ U such that f(E) ⊂ V .

First, suppose that the set E is of the form E = (G \S)∪T ∈ EI, where G is open

and S, T ∈ I. Then the intersection G∩U 6= ∅ (otherwise E ⊂ (G∩U)∪(T ∩U) = T ∩

U ∈ I, a contradiction) so there is a point a ∈ A∩G∩U such that Ef(a)∩(Y \V ) 6= ∅.

Pick up z ∈ Ef (a) ∩ (Y \ V ). Then there is a set E0 ∈ E , E0 ⊂ G ∩ U such that

f(E0) ⊂ Y \V and E0 is of the form E0 = (G0 \S0)∪T0 ∈ EI, where G0 is open and

S0, T0 ∈ I or E0 ∈ O. In the first case, the intersection G ∩ U ∩ G0 6= ∅ (otherwise

E0 = G ∩ U ∩ ((G0 \ S0) ∪ T0) ⊂ (G ∩ U ∩ G0) ∪ (G ∩ U ∩ T0) = G ∩ U ∩ T0 ∈ I,

a contradiction), hence G ∩ U ∩ G0 \ (S ∪ S0) is not from I and there is a point

e ∈ G ∩ U ∩ G0 \ (S ∪ S0) ⊂ E, so f(e) ∈ V . On the other hand, e ∈ E0, so

f(e) ∈ Y \ V , a contradiction. In the second case, when E0 ∈ O, E0 = E0 ∩ G ∩ U

is a non-empty open subset of G, so E0 is not from I and there is a point e ∈ E0 \ S

for which f(e) ∈ Y \V . Since E0 ⊂ G, we have e ∈ E and f(e) ∈ V , a contradiction.

Secondly suppose, the set E is open subset of U . Then there is a point a ∈ A∩E

such that Ef (a)∩(Y \V ) 6= ∅. Pick up z ∈ Ef (a)∩(Y \V ). Then there is a set E0 ∈ E ,

E0 ⊂ E such that f(E0) ⊂ Y \ V but f(E) ⊂ V , which is a contradiction. �

Corollary 1. Let Y be regular and E ⊂ O ∪ EI. If a function f is E-continuous

on an open set H , then f is quasi continuous on H .

P r o o f. Since f is E-continuous, f(h) ∈ Ef (h) for any h ∈ H and by the above

theorem, Ef is O-minimal on H . Then any of its selections is quasi continuous, hence

f is also quasi continuous. �
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Corollary 2. Let Y be T1-regular and E ⊂ O∪EI. If a closed valued multifunction

F defined on X is c-u-E-continuous and partially E-bounded, then F has a selection

which is quasi continuous except for a nowhere dense set.

Theorem 4. Let Y be a σ-compact regular space and let F be a closed valued

multifunction with Dom(F ) = X . Each of the following conditions ensures the

existence of a selection of F which is both locally bounded and quasi continuous

except for a nowhere dense set.

(1) F is c-upper Baire continuous.

(2) X is Baire and F is c-upper quasi continuous.

Moreover, if X is Baire and F is c-usc, then F has a non-empty valued submul-

tifunction which is both locally bounded and O-minimal usco except for a nowhere

dense set.

P r o o f. (1) Since F is c-upper Baire continuous, X is Baire. We will show

F+(V ) has the Baire property for any open set V with compact complement. If not,

there is an open set U such that both the sets X0 := F+(V ) and X \X0 are of second

category at any point from U . Let x ∈ X0∩U . By the c-upper Baire continuity there

is E ∈ Br, E ⊂ U such that F (E) ⊂ V . Since E is of second category with the Baire

property, E = (G \ I) ∪ J for some G open and I, J of first category and G ∩ U 6= ∅

(otherwise E = ((G\I)∪J))∩U = ((G\I)∩U)∪(J ∩U) = J∩U is of first category).

The set X \X0 is of second category at any point from U , so ((G∩U ∩ (X \X0)) \ I

is of second category, that means there is a point e ∈ ((G ∩ U ∩ (X \ X0)) \ I ⊂ E.

So F (e) 6⊂ V , a contradiction with F (E) ⊂ V .

Let Y =
⋃

k∈N

Ck, let Ck be compact and G non-empty open. Since G ⊂
⋃

k∈N

F−(Ck), there is m such that F−(Cm) = X \ F+(Y \ Cm) has the Baire

property and is of second category, so F is partially Br-bounded. By Theorem 2

and Corollary 1, F has a desirable selection.

(2) Since X is Baire, F is also c-upper Baire continuous and the proof follows from

item (1).

Moreover, suppose X is Baire and F is c-usc. Hence F is c-upper Baire continuous

and by item (2), F has a selection f which is quasi continuous and locally bounded

on an open dense set H . Put F0 = Brf . That means f(h) ∈ F (h) ∩ F0(h) for all

h ∈ H . It is clear that F0 is both locally bounded and with closed graph, so it is usco

on H and F0 is O-minimal on H . Hence for any x ∈ H there is an open U0 containing

x such that F0(U0) ⊂ C, where C is compact. We will show that F0(x) ⊂ F (x). If

not, there is a point y ∈ F0(x) \F (x) and there are two disjoint open sets V ⊃ F (x)

and W ∋ y such that W ∩V = ∅ (we use regularity of Y and the closed values of F ).
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A set C ∩ W is non-empty compact and disjoint with F (x) and since F is c-usc,

there is an open set U containing x, U ⊂ U0 such that F (U) ⊂ Y \ (C ∩ W ). Since

F0 is minimal, there is a non-empty open set H0 ⊂ U such that F0(H0) ⊂ W . Hence

F0(H0) ⊂ C ∩W . So F and F0 have disjoint values on H0, a contradiction with the

fact that f(h) ∈ F (h) ∩ F0(h) for all h ∈ H . Defining G as G(x) = F0(x) if x ∈ H

and G(x) an arbitrary non-empty subset of F (x) if x ∈ X \H we obtain a desirable

submultifunction of F . �

As we have mentioned, by [5] there is a multifunction F which is c-usc but not

usc/lsc at any point. The question is, if there is some reasonable “small” or “big”

submultifunction of F . A “small” variant is given in Theorem 4 by proving the

existence of a submultifunction which is both O-minimal usco and locally bounded

except for a nowhere dense set. The open problem is a “big” variant, namely, to

describe a “maximal” usco (usc, lsc) submultifunction of F . More generally, for

a c-upper Baire continuous closed (compact) valued multifunction to describe its

maximal submultifunction which is lower/upper quasi continuous or usco except for

a nowhere dense set.
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