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Abstract. In this paper we define generalized Kihlerian spaces of the first kind (GII('N)

given by (2.1)—(2.3). For them we consider hollomorphically projective mappings with
invariant complex structure. Also, we consider equitorsion geodesic mapping between these
two spaces (GIl(' N and GII(' ~) and for them we find invariant geometric objects.
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1. MOTIVATION

A generalized Riemannian space GRy in the sense of Eisenhart’s definition [6]
is a differentiable N-dimensional manifold, equipped with a non-symmetric basic
tensor g;;. Connection coefficients of this space are generalized Cristoffel’s symbols
of the second kind. Generally, T, # T'..

The use of non-symmetric basic tensor and non-symmetric connection became
especially topical after the appearance of the papers of A. Einstein [2]-[5] related
to the creation of the Unified Field Theory (UFT). We remark that in UFT the
symmetric part g;; of the basic tensor g;; is related to the gravitation, and the
antisymmetric one gi; to the electromagnetism.
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In a generalized Riemannian space one can define four kinds of covariant deriva-

i in GRy we have

tives [12], [13]. For example, for a tensor a

i i p_ P i i i P _ TP i
(1‘1) @jim = Gjm + Fpmaj ijap’ jim = Ajm + Fmpaj ij%?
1 2
i i p_ P i i _ i i .p_TP i
(1.2) Al = A + I‘pmaj I‘mjap, Al = A + I‘mpaj I‘jmap.
4

In the case of the space GRy we have five independent curvature tensors [14]:

) 1 P 7 7 I ot P 7
(13) Jl%jmn - * jlm,n] + F][mrpn]v éz]mn - F[m],n] + F[m] nlp’
(1) By = Ty~ Ty + Ty~ Ty 4T, T
(1'5) ﬁzjmn = Fém,n - F%j,m + Fé}mrzﬁp - Ffzjr;:i)m + Fg@nrlflpj],

where [i...j] denotes antisymmetrization without division with respect to the in-
dices i, j, and also (i...j) denotes symmetrization without division with respect to
indices 1, j.

Kaihlerian spaces and their mappings were investigated by many authors, for ex-
ample K. Yano [23], [24], M. Prvanovi¢ [17], T. Otsuki [16], N.S. Sinyukov [20],
J. Mikes$ [11] and many others.

In [15], [21] we defined a generalized K&hlerian space GKn as a generalized N-
dimensional Riemannian space with a (non-symmetric) metric tensor g;; and an
almost complex structure F’ ]’ such that

) FMa) Y (@) = —8!
(1.8) 9pg FPF! = gij, g% = g?FF),
(1.9) Fi}ij =0, (=1, 2)7

where | denotes the covariant derivative of the kind 6 with respect to the metric
0
tensor g;;.
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2. GENERALIZED KAHLERIAN SPACES OF THE FIRST KIND

A generalized N-dimensional Riemannian space with (non-symmetric) metric ten-
sor g;; is a generalized Kdhlerian space of the first kind Gll(N if there exists an almost

complex structure F}(z) such that

h _ h
(2.1) Fy(x)Ff (x) = =4,
(2.2) 9pg FYF! = gij, g2 = g2eF F),
(2.3) El =0,

1

where | denotes the covariant derivative of the first kind with respect to the metric
1

tensor g;;. From (2.2), using (2.1), we get F;; = —F};, F"/ = —FJ* where we denote
Fji = ngp_i, Fit = FigP.
From here we prove the following theorems.

Theorem 2.1. For the almost complex structure FJZ of a Gfl('N the relations

h
(2.4) Fl;

_ P h hp _ hP h Ph
= 2(F! Fjvp+FpFivj), FL =2F, r”, FiJLj_ZFi Fff

are valid, where I‘?j is the torsion tensor.

Proof. We get the relations (2.4) by using the condition (2.3) and the covariant
derivative (1.1), (1.2). O

Let us denote F? = FPT" and FP = F'T?.. Then we have
ij ¢ gp ij P

Theorem 2.2. For the curvature tensors ]0%, 6=1,...,5, given by (1.3)—(1.6) of
a GII(N the relations

h
FpRp]k F R”k,

(25)  FYRY — FyRY,

AT (FYT, + BT, = 2(F; R Fl, )
FpRmk F;é%’zj (sz\k+FzJ\k>
FpRh]k + Fthgk = (E?ku Fzg|k)

are valid, where | (6 = 1,2,3,4) denotes the covariant derivative of the kind 6.

0
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Proof. The first equality follows directly from the Ricci identity for the tensor ]1%
using (2.3).
From (2.4) by using the covariant derivative of the second kind we have

(2.6) Flk = QFW + QFW
2

Now, from (2.6) we obtain

(2.7) F

Ik = Fid = 2Pl +Fu|k])
Using the Ricci identity [14], we get from (2.7)

FIRY . — Fy R

Rk + 205 F”,, 2(Fi 0 + Filja)s
2 2

and from here the second equality (2.5) is valid.
From (2.4) and (2.3) we have

h _
Fzmk =2(F meka) Fi\lkz\j =0.

Using the Ricci identity [14]

h h h pp
Filjz\k - F‘llk‘ﬁ F Rp]k 3 Rz]k’
we find the third equality (2.5).
Finally, from (2.4) we have
h _oph
Filin = 2an|k’ Eilyyj = 2F ;-
3 4 3 3
Using the Ricci identity [14]
h P
Filite = Eilvyy = RoapF? + Bipn by
we have the fourth equality (2.5). O

Theorem 2.3. For the Ricci tensor R;; given by g% the relation
(2.8) Rpk = F} Fy Rpg + g%2F} D5 pgk)
is valid, where

—- F'T?

L5 il

(2.9) D", = FP

h
ik +F5F[@p;k}+F L

J]P ]
and Dh.ijk = gpthijk'
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Proof. From (2.3) and (2.4) we get
(2.10) Fl = F;T;?v,, + F)TY.
The integrability conditions of the equality (2.10) are given by
(2.11) Fiigng = Dlijie
Using the Ricci identity in the symmetric case, from (2.11) we obtain

(2.12) F'RP

pph  _ Th
zgk_FiRpjk_Dijk'

Here Rffj i is the curvature tensor with respect to the symmetric affine connection F?J
Composition with F? in (2.12) gives

(2.13) F)FIRY . + Rl = FI'D"

Now, from (2.13) by composition with g"" we get

(2.14) thFiqRZ;jk + Rhijk = FipDh,pjk.

From here we get

(2.15) —F'F{ Rpgji + Ruijk = F'Dhpji.

From (2.15) by composition with F we have

(2.16) F Rpijjk = —Dh.ijk-

Using composition with ¢* in (2.16) we obtain

(2.17) F}I;Rpk - Fngh?k = —gm'Dh_qu.

Symmetrization in (2.17) with respect to h, k gives the relation (2.8). O

Theorem 2.4. The Ricci tensors ]e%jm (0 =1,...,5) of the space Gfl('N satisfy

the relations

(2.18) g(pq)F]ngL = faf(jm) 217 14 F‘TF‘9 + ZFp re — QQQFEID(S'qu),

""q ps q Pm
0=1,2,3,
(2:19)  Ripo) P} By = Bigmy + 6L, T Fy Py = 6T, T, + 2672 F Dy

Tq ps Jq pm

(2.20) g(pq)F]ngL - f;(jm) + 2Fp Fq F‘TF‘9 21-\[) Fq — 2g FhD(s qu)

where (j...m) denotes the symmetrization without division with respect to the
indices j, m
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Proof. We can express the tensor ijn in the form [14]:

R@mn = R’jmn + Pz[m o HITY I -

J[m pn

By contraction with respect to the indices i, n, and by symmetrization with respect
to j, m, we get

(2:21) Rijm) = Rijm) — 2001

]q I)m

From (2.8) and (2.21) we have (2.18) for curvature tensor ]{2

The tensor Rijmn can be expressed in the form [14]:

Rz _ Rz + l-w ]_—w

o Jmn jmn [n m] + Fj[n pm]
By contraction with respect to i, n, and then by symmetrization with respect to j,
m, we get
ja- v

Bjm) = Rijm) — 215,13

from where, using (2.8), we get the relation (2.18) for the curvature tensor ]2%

For the tensor R:.  we have [14]:

3 jmn

R —Rzmanmm””[ pm) — 20T

3 Jmn n pm] mn p]
Contracting with respect to 7, n, and then symmetrizing in relation to j, m, we get

Bm) = Rjmy = 205,15

pma

from where, using (2.8), we can see that the relation (2.18) is valid for the curvature
tensor R

The tensor Rijmn can be expressed in the form [14]:

jmn jmn mn p]

RZ =R +Fj(mn)+r[rpm]+2r I

Contracting with respect to i, n, and symmetrizing with respect to j, m, we get

B(jm) = B(jm) + 615,13

]q pm

Using (2.8) we get the relation (2.19).
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The tensor 15%1 satisfies the relation [14]:

jmn

i _ i P i
By = Ry Ty
\%

Contracting with respect to the of indices 4, n, and then symmetrizing with respect

to j, m, we get
Bm) = Ry + 205y,

from where, using (2.8), we get (2.20). O

3. HOLOMORPHICALLY PROJECTIVE MAPPINGS OF GENERALIZED KAHLERIAN
SPACE OF THE FIRST KIND WHICH PRESERVES COMPLEX STRUCTURE

By generalizing the notion of analytic planar curve of Kihlerian space [16], [20]
we come to an analogous notion for generalized Kéhlerian spaces of the first kind.

Definition 3.1. A GIl(' N~ space curve, which is, in parametric form, given by the

equation
(3.1) e =a2"t) (h=1,2,...,N)
will be called planar if:

(3.2) N AP = a(t)A" + b FINP (0 =1,2)
0

where \* = dz" /dt, and a(t) and b(t) are functions of the parameter .

Considering that
U LA UV U
P = T 1o A p
1 2
we conclude that the expression on the left-hand side in (3.2) is the same with respect
to both kinds of covariant derivatives, so we can define analytic planar curve in the

space GIl(' ~ by the following relation:

d)\h
dt

We can consider two N-dimensional generalized Kidhlerian spaces of the first kind

(3.3) + TR NPAT = a(t)A" + b(t)FL AP

_ —h
GIl(' ~ and GIl(' ~ with complex structures F* and F; , where:

(3.4) Fl=TF!

3 3

in the same local coordinate system, defined by the map f: Gfl(N — GKN'
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Definition 3.2. A diffeomorfism f: Gflf N — GKN will be called holomorphi-

cally projective or analytic planar if it maps analytic planar curves of the space Gflf N

into analytic planar curves of the space G?N.

We can denote
h _ Th h
(3.5) Pij = I‘ij — I‘ij

the deformation tensor of the connection under an analytic planar mapping. Here
I‘?j and TZ are the second kind Cristoffel’s symbols of the spaces GIl(' ~ and G?N,
respectively. Analytic planar curves of the space GIl(' ~ and G?N are given by the

following relations, respectively:

dr” h \p\q h hyp
g'f'r APAT = a(t)A +b(t)Fp)\,
d\" P\ h 4 % hy\p
T +F AP =A(E)N" + b(L) AP

From the previous relations we have (qu — TR INPAT = Y(t)A" + o (t)F' AP, where
we denote ¥ (t) = a(t) — a(t), o(t) = b(t) — b( ). We can now put: ¥(t) = AP,
o(t) = o429, So we have

—=h
(Tpg —Th, = 1hpol — op FP)APA? =0,

where from we can conclude that:

(3.6) Ty =Tl + 9ol + ol + €l

where flhj is an arbitrary anti-symmetric tensor. In (3.6) we can select the vector o;
so that o; = —1, F'. Because of that we have:

(3.7) F =T +0u8)) — VpF ) + &

Contracting over the indices h, i in (3.7) and using F} = 0, fgj =0, we get:

(3.8) T, — TP = (N +2)y;.

Thus from (3.8) we can see that 1; is obviously a gradient vector. If we substitute
from (3.8) into (3.7) we have

—=h 1 D oh =9 =P =h =h

(3.9) Lij = 2 Wt — FapFal) =Ty
_1h h h
=T% — N+2(rp 80y — Ti, L) ~ T,
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Denoting

1
1 HTj =T} — ool —TLFLF),
(3 0) 1] N 4 2( (¢ )
we can present (3.9) in the form:
h }
(3.11) HT,, = HT],

where by HTZ we denoted the object of the form (3.10) for G?N. The quantity

H Ti}} is not a tensor. We will call it holomorphically projective parameter of the type
of Tomass projective parameter. In this way, based on the above fact we have proved:

Theorem 3.1. The quantities (3.10) represent invariants of holomorphically pro-
Jjective mapping of generalized Ké&hlerian space of the first kind with equal complex
structures.

4. HOLOMORPHICALLY PROJECTIVE PARAMETERS OF GENERALIZED
KAHLERIAN SPACE OF THE FIRST KIND

If f: GII( N — G?N is a holomorphically projective mapping, and if the torsion
tensors of the spaces Gll( N and G?N satisfy

(4.1) rh =rh

l] )
then we can tell that:

(4.2) ho=0.

ij

4.1. Holomorphically projective parameter of the first kind
The relation between the curvature tensors ]{2 and ? of the spaces Gll( ~ and G? N

is given by

(4.3) Ry = Ry + Pj m|n] + P Tiom Pon) + 20500 Pl
Substituting (3.5), (3.7) and (4.2) into (4.3) we get

(4.4) Rl = Ry + 01 Vil + RF Wpmn) + Fj,(ijzwpm]

+ 2rﬁnvn¢j + 2%&,,5;1 —2r®, qu(qj Ej,
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where we denote
(4.5) Zfij = Pi)j — Vi + Y FY.
1

Contracting with respect to the indices i, n in (4.4) we get

(4.6) ]?jm = ]?jm + Qf[mj] - qujm - Fijgﬂf(m) + QF%jwp — 217, qug p)

Anti-symmetrization without division in (4.6) with respect to the indices j, m gives:

(4.7) (N +2)¢g5m) = Bijm) = Bigm }+ AT 2Ffmrwq G-

By symmetrization without division in (4.6) with respect to the indices j, m we
obtain:

(4.8) Rigm) = Rm) = Nom) = 2 Fnpe) = 200, 00 B,

The analogous relation to the relation (2.18) for ]1% in the space GKN is valid.

By composition with FIZ F7*, contraction with respect to j, m, and by use of the
conditions (2.18) for ]1% in GIl('N and GKN from (4.8) we get

(49)  Tgm) = Rism) = Nt FY By =20 + 205 0 Fy Py 20 00 Y
From (4.8) and (4.9) we get:

(4.10) (N — 2)FfFﬂﬂf<pq> = (N = 2)vgm) + QF(W%F]%FJ + 205, GFp Fony-

Replacing (4.10) in (4.9) we get:

(N +2)Ygm) = Bigm) = Bigm)

(4.11) ~ 2 (v

N -2 (mrquq Fy + QF%Tw(jFJFg@ )= QFIE)mrwq

TP

Using (4.7) and (4.11) we have:

2N2

(N + 2tbjm = By — By + 200000y — oo T 0y FIE
2 2
(4.12) N3 jrquq F’“ - qurw jF;,"ng) ZF%rqugF;.
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Eliminating v; and using the condition (3.8) the last equation becomes:

(4.13) (N +2)¥jm = Rjm — Rjm + Pjm — Pjm,
1 1 1 1 1

where we denoted

2 N

P 19 P s q r
1 s r s r
- N — ZF?T‘FS(]FY?’LF[) N qu s(j qu anTFGquF )

In the same way the object ?jm of the space GKN is defined. Eliminating v,
1
from (4.4) we get

(4.15) HPW:,, = HPW}

jmn jmn>

where following quantity

) 7 1
HPVlem _R]mn N—|-2[ [m (R P)jn]+5 (R[mn] [mn])
(4.16) + Fj(”F[Q(]l% = P)ym) = 205,00 — 20,15, TG, + 200, T3 FOE, |

is an object of the space Gfl(N. We denoted in last equation (]IE — lf)jm = (]Izjm -
Ifjm). We see that the quantity HPW;
quantity H PVlifijmn. Obviously, the quantity H PVlVijmn is not a tensor, so we shall

mn 15 expressed in the same way as the

call it an equitorsion holomorphically projective parameter of the first kind of the
space GIl(' ~- Because of all those facts the following theorem is proved:

Theorem 4.1. The equitorsion holomorphically projective parameter of the first
kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kéhlerian space Gll( ~ and G?N.

2. Holomorphically projective parameter of the second kind

The connection between the curvature tensors ]2% and E of the spaces Gll( ~ and

GKN is given by:
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Replacing (3.5), (3.7) and (4.2) in (4.17) we have:

(418)  Bjn = Bjoun + O Vi +9 wmn]+F"’F Ypm) + 20

i ( i3
+ 25 = 2 g F F}) = 200, g F(LF) — 2 FipFm)
where we denoted
(4.19) gﬁij =i — Vi + prqung'
2

Contracting with respect to the indices i, n in (4.18) we get

(4.20) Ejm = é%jm + %[mj] - ngjm - F;)Fgﬂg(pq) - ZF%jw;D - zrp qu(p m)”

Anti-symmetrization without division in (4.20) with respect to indices j, m gives:

T
p)”

(4.21) (N =+ 2)12&[jm] = g[jm] R[ —|— 4Fp ’Lpp ZFI[!%rqu{Im]
Symmetrization without division in (4.20) with respect to indices j, m gives:

(422)  Bim) = Bigm) = Ngm) = 25 Pt o) = 200, 00 ) 1)

The relation analogous to the relation (2.18) for }2% in the space G?N is valid.

By composition with FgF(;", contraction with respect to j, m, and by use of the
conditions (2.18) for ]2% and E in Gfl('N and G?N, respectively, from (4.22) we get

(423) Bijm) = Bim) = N FY Fry = 20 Gm) + 205,90 Ey Fp) + 2Fp( Vgl .

From (4.22) and (4.23) we get:

(4.24) (N — Z)Fnglgb(pq) =(N - Z)w(jm) + 2F quq Fr+ ZFZVT (jF;FgL

jor

)
Replacing (4.24) in (4.23) we get

(N + 20 m) = Bim) = Bim)

(4.25) _ 2 (nr

N3 Nlnr Val ) By & 2005y o)) = 20, a7 B

e
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Using (4.21) and (4.25) we have:

— 2N 2
(826) (N + 20y = By = By + 2ty T, g Fy F,

2

_N—2 mrwq ;Fq

N 5 qrw(]Fq F - 2Fp qu,’;LFg.

Eliminating v; and using the condition (3.8) the last equation becomes:
(4.27) (N +2)¥jm = Rjm — Rjm + Pjm — Pjm,
5 2 2 2 2

where we denoted

2 N —

1 1
s q ( nl’l P 18 T
— e L — g T D Ey E F]rfgngFm)
In the same way the object ?jm of the space G?N is defined. Eliminating
2
from (4.18) we get

(4.29) HPY,, = HPW'

jmn jmn>

where we denoted

1
TN T2
+F.(”F”(R—P) ] + 200 D505 + 21105

nm= sp“j

(4'30) HPVQVijmn ]2% [ [m (R P)]n] + 6 (R[mn] - -Qp[mn])

—or 15 P FY — 9T T3 FEF) — 2PP s, F R

[nq sp™ (m]” j) mn= sq” (p [n sq ml)’

It is easy to prove that the quantity H PVQVijmn is not a tensor, so we shall call
it an equitorsion holomorphically projective parameter of the second kind of the

space Gll( ~. And now we can formulate

Theorem 4.2. The equitorsion holomorphically projective parameter of the sec-
ond kind is an invariant of equitorsion holomorphically projective mapping which
preserves the complex structure of the generalized Kéhlerian space Gflf ~ and G? N-
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4.3. Holomorphically projective parameter of the third kind

The connection between the curvature tensors ];2 and E of the spaces Gll( ~ and

G?N is given by:

(4.31) Rt =R+ +P? P, —Ph.Pl. +2P" T} +2I% P

7 7
g Jmn 37 jm|n njlm jm* np nm pj nm p]
2 1

With the help of (4.1) and (4.2) we see that the tensor deformation (3.5) is symmetric,
ie. Plk = ij Now we can write

(4.32) R

gdmn }??mn—’— jm|n_ n]\m+P Pz] +2Pp Fz +2Fp Pl

jlmT n nm pj nm p]
Replacing (3.5), (3.7) and (4.2) in (4.32) we have:

+ FJP(Frizwpm Fz wpn) + Fz(prpm — I, wpn) + 2F(m3w")

Vo Fy, Fp)—21“ e F ”—2FP o P

[m i)

where we denoted
(4.34) ?é}ij = Yi); — Vi + P F 0 F) (0 =1,2).
7]

It is easy to prove that ¥, = Y[mn) + 20,9, Using the procedure given in the
2 1 v

two previous cases we get

(4.35) (N +2)jm = Bim = Bijm + Djm = Pijm,
where
(4.36) gjm = ?jma gjm = ?]’m

The expressions for ]13 and ? are given by (4.14). Eliminating t;,, from (4.33) we
1
get

(4.37) HPWS,, = HPW}

jmn jmn>
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where we denoted

HPW s = Bmn + 575 00m (B = P)n) + 8 (Bponn) = Dion)
v i) ‘
(4.38) P FE = Py + 205, T0 0+ 20, T = 205 T3 P
QFZV)rm in(p j) 2F;LQF§pF((]jF51) QF?anqF(qu ]

Of course, H PW;mn is expressed by geometric objects of the space G?N. It is not
a tensor, so we shall call it an equitorsion holomorphically projective parameter of

the third kind of the space Gflf n~. Finally, the next theorem is proved:

Theorem 4.3. The equitorsion holomorphically projective parameter of the third
kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kéhlerian space Gflf ~ and GKN.

4.4, 4.5. Holomorphically projective parameters of the fourth and fifth
kind
The connections between the curvature tensors .ZE and ?, and the curvature ten-

Sors ]5% and ? of the spaces Gflf ~ and G?N are given by:

i % 1 P % P 7
(440) By = Ry §(P[mj|n] + P[mm] 2P Py + 4T ,,m>)

For the holomorphically projective parameters of the fourth and of the fifth kind
we can do the same procedure that we used in the previous three cases, for the
holomorphically projective parameters of the first, second and third kind. It is easy
to prove that

(4.41) Pim =Pjm, Pim ="Pjm
where Jf and ? are given by (4.14). In the end we get for the fourth kind

(4.42) HPWS,,, = HPW'

jmn jmn>
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where we introduced equitorsion holomorphically projective parameter of the fourth
kind

7 7 1
H‘Plifjm _R]mn N+2[ [m(R P)]n]"'(s (R[mn]_P[mn])
(4.43) +FPE) (R - P), ]+2rf JTa00 +2r(mjrp ) — 2T, SaRpRss

S q 7 7 s q P D S q
ZFZV)rm sqt (pt) T 2anF9pF(ij) ZFJ’”FS(IF(PFW)]

and we have proved the following theorem:

Theorem 4.4. The equitorsion holomorphically projective parameter of the
fourth kind is an invariant of equitorsion holomorphically projective mapping which
preserves the complex structure of the generalized Kéhlerian space Gll( ~ and G? N-

Replacing (3.5), (3.7) and (4.2) in (4.40) we have:
I o) + 8t Blonn) + Fj(”F[prm]
(7 ny

—TEy, FYF) — 20, g F F) - r” JWaFl F(” S FGF)

where we denote
1
(4.45) }/;jm = 5(1bj\m+1/)j\m) = Yjm + YpF g F,.
1 2

Contracting with respect to the indices i, n in (4.44) we get

(4.46) Bjm = Bjm = gjm) = Ntbjm — Ff)F%;g(pq) (mr% wEh)-

Anti-symmetrization without division in (4.46) with respect to the indices j, m gives:
(4.47) (N +2)Y(im) = Biym) = Bym)-
Symmetrization without division in (4.46) with respect to the indices j, m gives:

(4.48) Bm = Bom) = Npgm) =25 FL ) = Tl 00l G 1))

The relation analogous to the relation (2.20) in the space G?N is valid.
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By composition with FIZ F7", contraction with respect to j, m, and by use of the
relation (2.20) in Gfl('N and G?N from (4.48) we get

(4.49) Bgmy = Bgm) = N Ff iy = 20 6m) = Do B F Vo FIFT,

(JT
From (4.48) and (4.49) we get:

(450) (N = 2B Fbpg = (N = 2wy + Ty By 1y = U0 FY .
Replacing (4.50) in (4.49) we get

(451) (N +2)0m) = Bijm) = Bgm)

2
+ g TG FEEny = (N 1)Fp A FIE).
Using (4.47) and (4.51) we have:
(4.52) (N +2)¢jm = Rjm — Bjm + Pjm — Pjm,
12 5 5 5 5

where we denote

1 P s
Fp m) N_Zr(gv' Fp m))

(4.53) Pjm = L(

N +2\N - qr G

In the same way the object ?yn of the space GKN is defined. Eliminating 1 m,
12
from (4.44) we get

(4.54) HPW:,, = HPW}

jmn jmn>
where
) ) 1 . .
(P 7%) i)
+ F"F (R = P) ) — rggrgng F - Q%F;qpé F,

— %, D3, FLFS +TE 13 FLFY,

[n sq ma= sp (G n)"

This quantity H PWB/ij is not a tensor, so we shall call it an equitorsion holo-

morphically projective parameter of the fifth kind of the space GII( ~- And now we

mn

can formulate a theorem we have just proved:

Theorem 4.5. The equitorsion holomorphically projective parameter of the fifth
kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kéhlerian space Gflf ~ and GKN.
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5. CONCLUDING REMARKS

1. For ¢;;(z) = g;i(x) GRx reduces to the Riemannian space Ry. The curvature

I

tensors ]0%, @ = 1,...,5 in generalized Riemannian space reduce to the single

curvature tensor R in Riemannian space (in the symmetric case).

. In the case of holomorphic mapping of the Kihlerian spaces (in the symmetric

case) HPI;Vi (0 =1,...,5), given by the formulas (4.16), (4.30), (4.38),
(4.43), (4.55) reduce to the holomorphically projective curvature tensor [20]

jmn>s

, , 1
HPW',,. =R,

mn + N—H(Rﬂnai |+ FY Ry Fy + 2F FE Ry

m

In this paper by using the condition (2.3), non-symmetric metric tensor and
equal torsion tensors in the spaces GIl(' ~ and G?N we get new quantities

HPV(g/ijmn’ (0 =1,...,5) given by the formulas (4.16), (4.30), (4.38), (4.43),
(4.55), and P, P, P given by the formulas (4.14), (4.28), (4.53).

n the future work we can consider mappings between GK n and Gll( ~, and prob-

ably get new quantities. All these quantities are interesting in constructions of new

mathematical and physical structures.
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