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Abstract. By making use of the known concept of neighborhoods of analytic functions
we prove several inclusions associated with the (j, δ)-neighborhoods of various subclasses
of starlike and convex functions of complex order b which are defined by the generalized
Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for
these function classes are studied. Relevant connections with some other recent investiga-
tions are also pointed out.
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1. Introduction

Let A(j) denote the class of functions f of the form

(1.1) f(z) = z +

∞
∑

k=j+1

akzk (j ∈ N := {1, 2, . . .})

which are analytic in the open unit disk U := {z : z ∈ C and |z| < 1}.

Denote by T (j) the subclass of A(j) consisting of functions f of the form:

(1.2) f(z) = z −

∞
∑

k=j+1

akzk (ak > 0; j ∈ N := {1, 2, . . .}).

Let Ω be the class of functions w(z) analytic in U such that w(0) = 0, |w(z)| < 1.

For the functions f(z) and g(z) in A(j), f(z) is said to be subordinate to g(z) ∈ U
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if there exists an analytic function w(z) ∈ Ω such that f(z) = g(w(z)). This subor-

dination is denoted by

f(z) ≺ g(z).

Next, for the functions fm (m = 1, 2) given by

fm(z) = z +

∞
∑

k=2

ak,mzk (m = 1, 2),

let f1 ∗ f2 denote the Hadamard product (or convolution) of f1 and f2, defined by

(1.3) (f1 ∗ f2)(z) = z +
∞
∑

k=2

ak,1ak,2z
k = (f2 ∗ f1)(z).

Thus, the Ruscheweyh derivative operator Dλ : T → T is defined for a function

f ∈ T := T (1) by

Dλf(z) =
z

(1 − z)λ+1
∗ f(z) (λ > −1)

or equivalently, by

Dλf(z) = z −

∞
∑

k=2

̟(λ, k)akzk

where

̟(λ, k) =
(λ + 1)k−1

(k − 1)!
=

(λ + 1)(λ + 2) . . . (λ + k − 1)

(k − 1)!
(λ > −1).

Let Hb
j,λ[A, B] denote the class of functions f in A(j) satisfying the condition

(1.4) 1 +
λ + 1

b

(Dλ+1f(z)

Dλf(z)
− 1

)

≺
1 + Az

1 + Bz
(−1 6 B < A 6 1, z ∈ U)

where λ > −1 and b 6= 0 is an arbitrary fixed complex number. We callHb
j,λ[A, B] the

generalized Ruscheweyh class of analytic functions of complex order b. We note that

Hb
j,λ[A, B] = Hb

λ[A, B]. The class Hb
λ[A, B] was introduced and studied for Fekete-

Szegö problem by Ahuja [1]. We also let THb
j,λ[A, B] = Hb

j,λ[A, B] ∩ T (j). It can be

seen that, by specializing the parameters j, b, λ, A, B the subclass THb
j,λ[A, B] re-

duces to several well-known subclasses of analytic functions. Some of these subclasses

are listed below.

(1) H1
1,0[A, B] = S[A, B] (Silverman [23]);

(2) H1
1,1[A, B] ≡ K[A, B] (Silverman and Silva [24]);

(3) H1
1,λ[1 − α,−1] ≡ Rλ(α) (Ahuja [2] and [27]);
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(4) H
λ+ 1

2

1,λ [1,−1] = Kλ (Ruscheweyh [19]);

(5) Hb
1,0[1,−1] = S∗

j (b) ≡ S∗

n(γ) (Nasr and Aouf [12]);

(6) H1
1,1[1,−1] = Cj(b) ≡ Cn(γ) (Wiatrowski [28]);

(7) H1−α
1,0 [1,−1] = ST (α) (Robertson [17]);

(8) H1−α
1,1 [1,−1] = CV (α) (Robertson [17]);

(9) Hb
1,0[A, B] (N. S. Sohi and L. P. Singh [25]).

The main object of the present paper is to investigate the (j, δ)-neighborhoods

of two subclasses of T (j) of normalized analytic functions in U with negative and

missing coefficients, which are introduced here by making use of the Ruscheweyh

derivative operator defined in [19]. Further, we obtain partial sums and integral

means inequalities for this class of functions.

1. Neighborhood for the class THb
j,λ[A, B]

Next, following the earlier investigations by Goodman [7], Ruscheweyh [18], and

others including Srivastava et al. [26], Orhan ([13] and [14]), Altıntaş et al. [4] (see

also [8], [11], [21], [5]), we define the (j, δ)-neighborhood of functions in the family

THb
j,λ[A, B].

Definition 2.1. For f ∈ T (j) of the form (1.2) and δ > 0 we define a (j, δ)-

neighborhood of a function f(z) by

Nj,δ(f) :=

{

g : g ∈ T (j), g(z) = z −

∞
∑

k=j+1

ckzk and

∞
∑

k=j+1

k|ak − ck| 6 δ

}

.

In particular, for the identity function

e(z) = z

we immediately have

Nj,δ(e) :=

{

g : g ∈ T (j), g(z) = z −
∞
∑

k=j+1

ckzk and
∞
∑

k=j+1

k|ck| 6 δ

}

.

For the class THb
j,λ[A, B] we prove the following lemma.
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Lemma 2.2. A function f(z) ∈ T (j) is in the class THb
j,λ[A, B] if and only if

(2.1)
∞
∑

k=j+1

ϕk(b, λ, A, B)ak 6 1,

where

(2.2) ϕk(b, λ, A, B) =
((k − 1) + |(A − B)b − B(k − 1)|)̟(λ, k)

(A − B)|b|

for −1 6 B < A 6 1.

P r o o f. Suppose that f(z) ∈ THb
j,λ[A, B], then

1 +
λ + 1

b

(Dλ+1f(z)

Dλf(z)
− 1

)

=
1 + Aw(z)

1 + Bw(z)
(z ∈ U)

and
(λ + 1)Dλ+1f(z) + (b − λ − 1)Dλf(z)

bDλf(z)
=

1 + Aw(z)

1 + Bw(z)
(z ∈ U).

Therefore

w(z) =
(λ + 1)(Dλf(z) − Dλ+1f(z))

B(λ + 1)Dλ+1f(z) − ((A − B)b + B(λ + 1))Dλf(z)
,

hence

|w(z)| =

∣

∣

∣

∣

(λ + 1)(Dλf(z) − Dλ+1f(z))

B(λ + 1)Dλ+1f(z) − ((A − B)b + B(λ + 1))Dλf(z)

∣

∣

∣

∣

< 1,

this implies that

ℜ















∞
∑

k=j+1

(k − 1)̟(λ, k)akzk

(A − B)bz −
∞
∑

k=j+1

((A − B)b − B(k − 1))̟(λ, k)akzk















< 1.

If we take z = r with 0 < r < 1, we can write the inequality

ℜ















∞
∑

k=j+1

(k − 1)̟(λ, k)akrk

(A − B)br −
∞
∑

k=j+1

(A − B)b − B(k − 1)̟(λ, k)akrk















< 1.
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Letting r → 1−, we have

∞
∑

k=j+1

(k − 1)̟(λ, k)ak

(A − B)|b| −
∞
∑

k=j+1

|(A − B)b − B(k − 1)|̟(λ, k)ak

< 1

or

(2.3)

∞
∑

k=j+1

((k − 1) + |(A − B)b − B(k − 1)|)̟(λ, k)ak < (A − B)|b|,

then (2.3) gives
∞
∑

k=j+1

ϕk(b, λ, A, B)ak 6 1

where

ϕk(b, λ, A, B) =
((k − 1) + |(A − B)b − B(k − 1)|)̟(λ, k)

(A − B)|b|
.

Conversely, suppose that the inequality (2.1) holds. Then we have for z ∈ U

(λ + 1)|Dλ+1f(z) − Dλf(z)| − |(A − B)bDλf(z) − B(λ + 1)(Dλ+1f(z) − Dλf(z))|

=

∣

∣

∣

∣

∞
∑

k=j+1

(1 − k)̟(λ, k)akzk

∣

∣

∣

∣

−

∣

∣

∣

∣

(A − B)bz

(

z −

∞
∑

k=j+1

̟(λ, k)akzk

)

− B

∞
∑

k=j+1

(1 − k)̟(λ, k)akzk

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=j+1

(1 − k)̟(λ, k)akzk

∣

∣

∣

∣

−

∣

∣

∣

∣

(A − B)bz −

∞
∑

k=j+1

((A − B)b − B(k − 1))̟(λ, k)akzk

∣

∣

∣

∣

6

∞
∑

k=j+1

(k − 1)̟(λ, k)akrk − (A − B)|b|r

+

∞
∑

k=j+1

|(A − B)b − B(k − 1)|̟(λ, k)akrk

=

∞
∑

k=j+1

((k − 1) + |(A − B)b − B(k − 1)|)̟(λ, k)akrk − (A − B)|b|r.
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Letting r → 1−, we have

(λ+1)|Dλ+1f(z)−Dλf(z)|−|(A−B)bDλf(z)−B(λ+1)(Dλ+1f(z)−Dλf(z))| 6 0.

Hence it follows that

∣

∣

∣

(λ + 1)(Dλ+1f(z)/Dλf(z) − 1)

(A − B)b − B(λ + 1)(Dλ+1f(z)/Dλf(z)− 1)

∣

∣

∣
< 1 (z ∈ U).

If we put

w(z) =
(λ + 1)(Dλ+1f(z)/Dλf(z) − 1)

(A − B)b − B(λ + 1)(Dλ+1f(z)/Dλf(z) − 1)
,

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence

1 +
λ + 1

b

(Dλ+1f(z)

Dλf(z)
− 1

)

=
1 + Aw(z)

1 + Bw(z)
(−1 6 B < A 6 1, z ∈ U),

which shows that f(z) belongs to THb
j,λ[A, B] and the proof is complete. �

Remark 2.3. For j = 1, λ = 0, b = 1, B = 0 and A = 1 − α, 0 6 α < 1 we get

the result obtained by Silverman [20].

Remark 2.4. For j = 1, b = 1, B = 0 and A = 1 − α, 0 6 α < 1 we get the

result obtained by Ahuja [3].

Remark 2.5. For b = γ, B = 0 and A = β, 0 < β 6 1 we find the result of

Lemma 1 obtained by Mugurusundaramoorthy et. al. [11].

Remark 2.6. For b = γ, B = 0, A = β, 0 < β 6 1 and ̟(λ, k) = (k − 1)!−1 ×
k
∏

m=2

(m − 2α) we get the result of Lemma 1 obtained by Orhan [13]. Applying the

above lemma, we prove the following result.

Theorem 2.7. THb
j,λ[A, B] ⊂ Nj,δ(e), where

δ :=
j + 1

ϕj+1(b, λ, A, B)
.

P r o o f. For a function f(z) ∈ THb
j,λ[A, B] of the form (1.2), Lemma 2.2 imme-

diately yields

(j + |(A − B)b − Bj|)̟(λ, j + 1)

∞
∑

k=j+1

ak 6 (A − B)|b|,

∞
∑

k=j+1

ak 6
(A − B)|b|

(j + |(A − B)b − Bj|)̟(λ, j + 1)
=

1

ϕj+1(b, λ, A, B)
.(2.4)
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On the other hand, we also find from (2.1) and (2.4) that

̟(λ, j + 1)

∞
∑

k=j+1

kak 6 (A − B)|b| + (1 − |(A − B)b − Bj|)̟(λ, j + 1)

∞
∑

k=j+1

ak

6 (A − B)|b| + (1 − |(A − B)b − Bj|)

× ̟(λ, j + 1)
(A − B)|b|

(j + |(A − B)b − Bj|)̟(λ, j + 1)

=
(j + 1)(A − B)|b|

(j + |(A − B)b − Bj|)
,

that is,

(2.5)
∞
∑

k=j+1

kak 6
(j + 1)(A − B)|b|

(j + |(A − B)b − Bj|)̟(λ, j + 1)
=

j + 1

ϕj+1(b, λ, A, B)
:= δ,

which, in view of Definition 2.1, proves Theorem 2.7. �

Corollary 2.8. THb
1,λ[A, B] ⊂ N1,δ(e) where

δ :=
2

ϕ2(b, λ, A, B)
=

2(A − B)|b|

(1 + |(A − B)b − B|)(λ + 1)
.

Remark 2.9. For b = γ, B = 0 and A = β, 0 < β 6 1 we get the result of

Theorem 1 obtained by Mugurusundaramoorthy et.al. [11].

Remark 2.10. For b = γ, B = 0, A = β, 0 < β 6 1 and ̟(λ, k) = (k − 1)!−1 ×
k
∏

m=2

(m − 2α) we get the result of Theorem 1 obtained by Orhan [13].

Remark 2.11. For b = 1, B = 0, λ = 0 and A = 1 − α, 0 6 α < 1 we get the

result of Theorem 2.1 obtained by Altıntaş et. al. [4].

3. Neighborhood for the class Kb
j,λ[A, B, C, D]

We define the following class.

Definition 3.1. A function f(z) ∈ T (j) is said to be in the classKb
j,λ[A, B, C, D]

if it satisfies

(3.1)
∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣
<

A − B

1 − B
(z ∈ U)

for −1 6 B < A 6 1, −1 6 D < C 6 1 and g(z) ∈ THb
j,λ[C, D].
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Theorem 3.2. Nj,δ(g) ⊂ Kb
j,λ[A, B, C, D] where g(z) ∈ THb

j,λ[C, D] and

(3.2)
1 − A

1 − B
= 1 −

δ

j + 1

ϕj+1(b, λ, C, D)

ϕj+1(b, λ, C, D) − 1
.

P r o o f. Suppose that f(z) ∈ Nj,δ(g). Then Definition 2.1 yields

∞
∑

k=j+1

k|ak − ck| 6 δ,

which readily implies the coefficients inequality

∞
∑

k=j+1

|ak − ck| 6
δ

j + 1
.

Next, since g(z) ∈ THb
j,λ[C, D], we have

∞
∑

k=j+1

ck 6
1

ϕj+1(b, λ, C, D)
.

Further,

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣
6

∞
∑

k=j+1

|ak − ck|

1 −
∞
∑

k=j+1

ck

6
δ/(j + 1)

1 − 1/ϕj+1(b, λ, C, D)

=
δ

j + 1

ϕj+1(b, λ, C, D)

ϕj+1(b, λ, C, D) − 1
=

A − B

1 − B
.

This implies that f(z) ∈ Kb
j,λ[A, B, C, D]. �

Putting j = 1 in Theorem 3.2, we have

Corollary 3.3. N1,δ(g) ⊂ Kb
1,λ[A, B, C, D] where g(z) ∈ THb

1,λ[C, D] and

(3.3)
1 − A

1 − B
= 1 −

δ

2

ϕ2(b, λ, C, D)

ϕ2(b, λ, C, D) − 1
.
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4. Partial sums

Following the earlier works by Silverman [22], N. C. Cho et al. [6] and others

(see also [16], [9]), in this section we investigate the ratio of real parts of functions

involving (1.2) and their sequence of partial sums defined by

f1(z) = z;(4.1)

fn(z) = z −

n
∑

k=j+1

akzk (j ∈ N := {1, 2, 3, . . .})

and determine sharp lower bounds for

ℜ{f(z)/fn(z)}, ℜ{fn(z)/f(z)}, ℜ{f ′(z)/f ′

n(z)} and ℜ{f ′

n(z)/f ′(z)}.

Theorem 4.1. If f of the form (1.2) satisfies condition (2.1), then

(4.2) ℜ
{ f(z)

fn(z)

}

>
ϕn+j+1(b, λ, A, B) − 1

ϕn+j+1(b, λ, A, B)

and

(4.3) ℜ
{fn(z)

f(z)

}

>
ϕn+j+1(b, λ, A, B)

ϕn+j+1(b, λ, A, B) + 1

where ϕn+j+1(b, λ, A, B) is given by (2.2). The results are sharp for every n, with

the extremal function given by

(4.4) f(z) = z −
1

ϕn+j+1(b, λ, A, B)
zn+1.

P r o o f. In order to prove (4.2), it is sufficient to show that

(4.5) ϕn+j+1(b, λ, A, B)
[ f(z)

fn(z)
−

(ϕn+j+1(b, λ, A, B) − 1

ϕn+j+1(b, λ, A, B)

)]

≺
1 + z

1 − z
(z ∈ U).
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We can write

ϕn+j+1(b, λ, A, B)
[ f(z)

fn(z)
−

(ϕn+j+1(b, λ, A, B) − 1

ϕn+j+1(b, λ, A, B)

)]

= ϕn+j+1(b, λ, A, B)





1 −
∞
∑

k=j+1

akzk−1

1 −
n
∑

k=j+1

akzk−1

−
(ϕn+j+1(b, λ, A, B) − 1

ϕn+j+1(b, λ, A, B)

)





= ϕn+j+1(b, λ, A, B)

×





1 −
n
∑

k=j+1

akzk−1 −
∞
∑

k=n+j+1

akzk−1

1 −
n
∑

k=j+1

akzk−1

−
(ϕn+j+1(b, λ, A, B) − 1

ϕn+j+1(b, λ, A, B)

)





=
1 + w(z)

1 − w(z)
.

Then

w(z) =

−ϕn+j+1(b, λ, A, B)
∞
∑

k=n+j+1

akzk−1

2 − 2
n
∑

k=j+1

akzk−1 − ϕn+j+1(b, λ, A, B)
∞
∑

k=n+j+1

akzk−1

.

Obviously w(0) = 0 and

|w(z)| 6

ϕn+j+1(b, λ, A, B)
∞
∑

k=n+j+1

ak

2 − 2
n
∑

k=j+1

ak − ϕn+j+1(b, λ, A, B)
∞
∑

k=n+j+1

ak

.

Now, |w(z)| 6 1 if and only if

2ϕn+j+1(b, λ, A, B)

∞
∑

k=n+j+1

ak 6 2 − 2

n
∑

k=j+1

ak,

which is equivalent to

(4.6)

n
∑

k=j+1

ak + ϕn+j+1(b, λ, A, B)

∞
∑

k=n+j+1

ak 6 1.

In view of (2.1), this is equivalent to showing that

n
∑

k=j+1

(ϕk(b, λ, A, B) − 1)ak(4.7)

+

∞
∑

k=n+j+1

(ϕk(b, λ, A, B) − ϕn+j+1(b, λ, A, B))ak > 0.
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To see that the function f given by (4.4) gives the sharp result, we observe for

z = re2πi/n that

f(z)

fn(z)
= 1 −

1

ϕn+j+1(b, λ, A, B)
zn → 1 −

1

ϕn+j+1(b, λ, A, B)

where r → 1−.

Thus, we have completed the proof of (4.2). �

The proof of (4.3) is similar to (4.2) and will be omitted.

Similarly, we can establish the following theorem.

Theorem 4.2. If f(z) of the form (1.2) satisfies (2.1), then

(4.8) ℜ
{ f ′(z)

f ′

n(z)

}

>
ϕn+j+1(b, λ, A, B) − n − 1

ϕn+j+1(b, λ, A, B)

and

(4.9) ℜ
{f ′

n(z)

f ′(z)

}

>
ϕn+j+1(b, λ, A, B)

ϕn+j+1(b, λ, A, B) + n + 1

where ϕn+j+1(b, λ, A, B) is given by (2.2). The results are sharp for every n, with

the extremal function given by (4.4).

P r o o f. In order to prove (4.8), it is sufficient to show that

ϕn+j+1(b, λ, A, B)

n + 1

[ f ′(z)

f ′

n(z)
−

(ϕn+j+1(b, λ, A, B) − n − 1

ϕn+j+1(b, λ, A, B)

)]

≺
1 + z

1 − z
(4.10)

(z ∈ U).

We can write

ϕn+j+1(b, λ, A, B)

n + 1

[ f ′(z)

f ′

n(z)
−

(ϕn+j+1(b, λ, A, B) − n − 1

ϕn+j+1(b, λ, A, B)

)]

=
ϕn+j+1(b, λ, A, B)

n + 1





1 −
∞
∑

k=j+1

kakzk−1

1 −
n
∑

k=j+1

kakzk−1

−
(ϕn+j+1(b, λ, A, B) − n − 1

ϕn+j+1(b, λ, A, B)

)





=
ϕn+j+1(b, λ, A, B)

n + 1

×





1 −
n
∑

k=j+1

kakzk−1 −
∞
∑

k=n+j+1

kakzk−1

1 −
n
∑

k=j+1

kakzk−1

−
(ϕn+j+1(b, λ, A, B) − n − 1

ϕn+j+1(b, λ, A, B)

)





=
1 + w(z)

1 − w(z)
.
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Then

w(z) =

−ϕn+j+1(b, λ, A, B)(n + 1)−1
∞
∑

k=n+j+1

kakzk−1

2 − 2
n
∑

k=j+1

kakzk−1 − ϕn+j+1(b, λ, A, B)(n + 1)−1
∞
∑

k=n+j+1

kakzk−1

.

Obviously w(0) = 0 and

|w(z)| 6

ϕn+j+1(b, λ, A, B)(n + 1)−1
∞
∑

k=n+j+1

kak

2 − 2
n
∑

k=j+1

kak − ϕn+j+1(b, λ, A, B)(n + 1)−1
∞
∑

k=n+j+1

kak

.

Now |w(z)| 6 1 if and only if

2
ϕn+j+1(b, λ, A, B)

n + 1

∞
∑

k=n+j+1

kak 6 2 − 2

n
∑

k=j+1

kak,

which is equivalent to

(4.11)

n
∑

k=j+1

kak +
ϕn+j+1(b, λ, A, B)

n + 1

∞
∑

k=n+j+1

kak 6 1.

In view of (2.1), this is equivalent to showing that

n
∑

k=j+1

[ϕk(b, λ, A, B) − k]ak(4.12)

+

∞
∑

k=n+j+1

[

ϕk(b, λ, A, B) −
ϕn+j+1(b, λ, A, B)

n + 1
k
]

ak > 0.

Thus we have completed the proof of (4.8). �

The proof of (4.9) is similar to (4.8) and is omitted.

5. Integral means

The following subordination result due to Littlewood [10] will be required in our

investigation. The integral means of analytic functions was studied in [16], [15].
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Lemma 5.1. If f(z) and g(z) are analytic in U with f(z) ≺ g(z), then

∫ 2π

0

|f(reiθ)|µ dθ 6

∫ 2π

0

|g(reiθ)|µ dθ,

where µ > 0 z = reiθ and 0 < r < 1.

Application of Lemma 5.1 to functions f(z) in the class THb
j,λ[A, B] gives the

following result using known procedures.

Theorem 5.2. Let µ > 0. If f(z) ∈ THb
j,λ[A, B] is given by (1.2) and f2(z) is

defined by

f2(z) = z −
1

ϕj+2(b, λ, A, B)
z2

where ϕn+j+1(b, λ, A, B) is defined in (2.2), then for z = reiθ, 0 < r < 1, we have

(5.1)

∫ 2π

0

|f(z)|µ dθ 6

∫ 2π

0

|f2(z)|µ dθ.

P r o o f. For f(z) = z −
∞
∑

k=j+1

akzk, (5.1) is equivalent to proving that

∫ 2π

0

∣

∣

∣

∣

1 −
∞
∑

k=j+1

akzk−1

∣

∣

∣

∣

µ

dθ 6

∫ 2π

0

∣

∣

∣
1 −

1

ϕj+2(b, λ, A, B)
z
∣

∣

∣

µ

dθ.

By Lemma 5.1, it suffices to show that

1 −

∞
∑

k=j+1

akzk−1 ≺ 1 −
1

ϕj+2(b, λ, A, B)
z.

Setting

(5.2) 1 −

∞
∑

k=j+1

akzk−1 = 1 −
1

ϕj+2(b, λ, A, B)
w(z),

from (5.2) and (2.1) we obtain

|w(z)| =

∣

∣

∣

∣

∞
∑

k=j+1

ϕj+2(b, λ, A, B)akzk−1

∣

∣

∣

∣

6 |z|
∞
∑

k=j+1

ϕj+2(b, λ, A, B)ak

6 |z|

∞
∑

k=j+1

ϕn+j+1(b, λ, A, B)ak 6 |z|.

This completes the proof of the theorem. �
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