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Abstract. In this paper two Denjoy type extensions of the Pettis integral are defined and
studied. These integrals are shown to extend the Pettis integral in a natural way analogous
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1. Introduction

This paper deals with some function classes that arise naturally in the context of

vector-valued integration [6], [11]. In the case of real-valued functions, the Denjoy

integrals (referred to as D∗ and D in Saks [13]) obviously extend the Lebesgue in-

tegral from the descriptive point of view. The classical result elucidates the nature

of this extension: a Denjoy integrable real-valued function must be Lebesgue inte-

grable on some portion of each perfect set [13]. The Pettis integral is the widest

among the classical integrals of vector-valued functions [8]. The reader should refer

to Talagrand’s monograph [14] for the general theory of the Pettis integral. It is

important to point out that the Pettis integral is equivalent to the Lebesgue integral

for real-valued functions. Some Denjoy type extensions of the Pettis integral have

already been proposed (see [2], [6] and the references therein). However, those inte-

grals are actually too general. For example, it can be shown that the corresponding

indefinite integrals may fail to be continuous (see Example 4.1). As a further result

of this generality, neither of those integrals inherits the classical extension property

of the real-valued Denjoy integrals. These difficulties have led us to demand other

extensions. To this end we introduce and study classes of vector-valued functions
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that are V B∗, V B, AC∗, or AC in a weak sense. In particular, in the situation in

which the Banach space involved contains no isomorphic copy of c0, the space of all

sequences of reals that tend to 0, we obtain a characterization of the relationship

between the AC and V B properties by means of an analogue of the Banach-Zarecki

Theorem. In the concluding section, it will be demonstrated how these classes can

become the basis for descriptive definitions of two Denjoy type extensions of the

Pettis integral, the Henstock-Kurzweil-Pettis∗ and Denjoy-Pettis∗ integrals, having

the classical extension property. In addition, we examine the connection between

the Denjoy-Pettis∗ integral and Gordon’s Denjoy-Pettis integral [6].

2. Notation and Preliminaries

First of all, we set our notation and recall basic definitions. Throughout this paper

[a, b] will denote a fixed non-degenerate interval of the real line and I (or J) its closed

non-degenerate subinterval. X denotes a real Banach space and X∗ its dual. The

closed unit ball of X is denoted by B(X). Given F : [a, b] → X , ∆F (I) denotes the

increment of F on I. Finally, if E is a subset of the real line, then E, ∂E, χE , and

µ(E) will denote the closure of E, the boundary of E, the characteristic function

of E, and the Lebesgue measure of E, respectively.

In what follows, we will need some standard notions related to the integration

and differentiation of vector-valued functions. They are summarized below for the

reader’s convenience.

We first define scalar derivatives and approximate scalar derivatives [12].

Definition 2.1. Let F : [a, b] → X .

(a) Let t ∈ (a, b). A vector w in X is the approximate derivative of F at t if there

exists a measurable set E ⊂ [a, b] that has t as a point of density such that

lim
s→t
s∈E

F (s) − F (t)

s − t
= w.

We write F ′

ap(t) to represent the vector w.

(b) Let E ⊂ [a, b]. A function f : E → X is a scalar derivative (an approxi-

mate scalar derivative) of F on E if for each x∗ in X∗ the function x∗F

is differentiable (approximately differentiable) almost everywhere on E and

(x∗F )′ = x∗f ((x∗F )′ap = x∗f) almost everywhere on E (the exceptional set

may vary with x∗).

Next we define the classical Dunford and Pettis integrals. It should be noted that

Theorem 19 of [6] guarantees the existence of the Dunford integral.
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Definition 2.2. Let f : [a, b] → X .

(a) The function f is Dunford integrable on [a, b] if for each x∗ in X∗ the func-

tion x∗f is Lebesgue integrable on [a, b]. In this case, the Dunford integral of f

on a measurable set E ⊂ [a, b] is the vector x∗∗

E in X∗∗ such that x∗∗

E (x∗) =

(L)
∫

E
x∗f for all x∗ in X∗.

(b) The function f is Pettis integrable on [a, b] if f is Dunford integrable on [a, b] and

x∗∗

E ∈ X (X is identified with its canonical image in X∗∗) for each measurable

set E in [a, b].

As usual, we say that the function f is Dunford or Pettis integrable on a set

E ⊂ [a, b] if the function fχE is Dunford or Pettis integrable on [a, b], respectively.

In either case, it will be convenient to use the phrase ‘indefinite integral’ to mean

the function F (t) =
∫ t

a f . Then it is easy to verify that if (D)
∫

I f ∈ X for each

interval I in [a, b], then the function f is a scalar derivative of its indefinite Dunford

integral on [a, b].

3. Vector-valued functions of bounded variation

We begin with the notions of bounded variation and absolute continuity on a set.

Let F : [a, b] → X and let E be a non-empty subset of [a, b].

Definition 3.1. F is said to be V B or V B∗ on E if there exists a positive

number M such that

(1)

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

6 M

for each finite collection of pairwise non-overlapping intervals {Ik}K
k=1 with ∂Ik ⊂ E

or ∂Ik ∩E 6= ∅, respectively. We denote by V(F, E) or V∗(F, E) the lower bound of

those M .

Definition 3.2. F is said to be AC or AC∗ on E if for each positive number ε

there exists a positive number η such that

(2)

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

< ε

for each finite collection of pairwise non-overlapping intervals {Ik}
K
k=1 with ∂Ik ⊂ E

or ∂Ik ∩ E 6= ∅, respectively, and
K
∑

k=1

µ(Ik) < η.
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Further, we say that F is V BG (ACG, V BG∗, ACG∗) on E if E can be written as

a countable union of sets on each of which F is V B (AC, V B∗, AC∗). Throughout

it will be convenient to say that F is scalarly V B (scalarly AC, V B∗, AC∗, V BG,

ACG, V BG∗, ACG∗) on E if for each x∗ in X∗ the function x∗F is V B (AC,

V B∗, AC∗, V BG, ACG, V BG∗, ACG∗, respectively) on E. The following lemma

illustrates the usefulness of this notion.

Lemma 3.1. Let F : [a, b] → X and let E be a non-empty subset of [a, b]. F is V B

or V B∗ on E if and only if F is respectively scalarly V B or scalarly V B∗ on E.

P r o o f. We will prove the V B case. Suppose that F is scalarly V B on E. For

each positive integer m let Vm = {x∗ ∈ B(X∗) : V(x∗F, E) 6 m}. Then B(X∗) =
⋃

m
Vm and we next show that each Vm is closed.

Let x∗

i ∈ Vm and ‖x∗

i −x∗‖ → 0 as i → ∞. Fix a finite collection of non-overlapping

intervals {Ik}K
k=1 with ∂Ik ⊂ E and compute

∣

∣

∣

∣

K
∑

k=1

∆(x∗F )(Ik)

∣

∣

∣

∣

= lim
i

{∣

∣

∣

∣

K
∑

k=1

∆(x∗

i F )(Ik)

∣

∣

∣

∣

}

6 m.

This means that x∗ ∈ Vm.

By the Baire Category Theorem there exist M , x∗

0, and r > 0 such that {x∗ :

‖x∗ − x∗

0‖ 6 r} ⊂ VM . For each x∗ ∈ B(X∗) we have

V(x∗F, E) = r−1
V(rx∗F + x∗

0F − x∗

0F, E)

6 r−1{V((rx∗ + x∗

0)F, E) + V(x∗

0F, E)} 6
2M

r
.

The necessity part of the lemma is obvious. �

The next theorem establishes the basic properties of the V B, V B∗, AC, and AC∗

function classes.

Theorem 3.1. Let F : [a, b] → X and let E be a non-empty subset of [a, b].

(a) If F is AC on E, then F is V B on E.

(b) If F is both AC∗ on E and bounded on [a, b], then F is V B∗ on E.

(c) If F is V B∗ on E, then F is V B∗ on E.

(d) Suppose that F |E is weakly continuous on E. If F is V B on E, then F is V B

on E.

(e) Suppose that F |E is continuous on E. If F is AC (resp. AC∗) on E, then F

is AC (resp. AC∗) on E.
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(f) Suppose that E is closed with a, b ∈ E and let G be the linear extension of F

from E to [a, b]. If F is V B or AC on E, then G is respectively V B or AC on

[a, b]. In either case, if f is an approximate scalar derivative of F on E, then

G is scalarly differentiable on [a, b] to a function g such that g|E = f .

P r o o f. Standard arguments show that parts (a), (b), and (e) are valid.

Part (c) (and part (d)) result from Lemma 3.1 and [9, Lemma 5.3.9] (and part (d)

of Theorem 6.2 of [7]).

The the V B case of part (f) follows from Lemma 3.1 and [7, Exercise 6.2].

We will prove the AC case of part (f). Let {Jn}∞n=1 be the sequence of intervals

contiguous to E and let wn = ∆F (Jn)/µ(Jn) for each n. Fix ε > 0. Choose

η1 > 0 that corresponds to ε/6 in Definition 3.2. Since
∞
∑

n=1
µ(Jn) < ∞, there exists

a positive integer N such that
∞
∑

n=N

µ(Jn) < η1. Choose M > 0 such that ‖wn‖ 6 M

for all 1 6 n < N . If 1 6 n < N , then ‖∆G(I)‖ 6 Mµ(I) for each I ⊂ Jn. Let

η = min{η1, ε/3M}. Suppose that {Ik}K
k=1 is a finite collection of pairwise non-

overlapping intervals with
K
∑

k=1

µ(Ik) < η. By partitioning each interval if necessary,

we may assume that for each k either ∂Ik ⊂ E or Ik is a proper subset of Jn for

some n. Let π0 be the set of all k such that ∂Ik ⊂ E and let πn be the set of all k

such that Ik is a proper subset of Jn. We make note of the fact that
∑

k∈πn

∆G(Ik) =

λn∆F (Jn) for each n and for some λn ∈ [0, 1]. Let σ be the set of all n > N

such that πn 6= ∅. Choose x∗ in X∗ such that ‖x∗‖ = 1 and
∥

∥

∥

∑

n∈σ
λn∆F (Jn)

∥

∥

∥
=

x∗

(

∑

n∈σ
λn∆F (Jn)

)

. Finally, we let σ+ and σ− denote the set of all n ∈ σ for which

∆(x∗F )(Jn) > 0 and ∆(x∗F )(Jn) < 0, respectively. Then

∥

∥

∥

∥

K
∑

k=1

∆G(Ik)

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

k∈π0

∆F (Ik)

∥

∥

∥

∥

+
∑

16n<N

∑

k∈πn

‖∆G(Ik)‖ +

∥

∥

∥

∥

∑

n∈σ

∑

k∈πn

∆G(Ik)

∥

∥

∥

∥

< ε/6 + ε/3 +
∑

n∈σ

λn∆(x∗F )(Jn)

6 ε/2 +
∑

n∈σ

|∆(x∗F )(Jn)|

= ε/2 +

∣

∣

∣

∣

∑

n∈σ+

∆(x∗F )(Jn)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

n∈σ
−

∆(x∗F )(Jn)

∣

∣

∣

∣

6 ε/2 +

∥

∥

∥

∥

∑

n∈σ+

∆F (Jn)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

n∈σ
−

∆F (Jn)

∥

∥

∥

∥

< ε/2 + ε/6 + ε/6 < ε.
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Now suppose that f is an approximate scalar derivative of F on E. Fix x∗ in X∗.

It is clear that G has a scalar derivative on each interval where it is linear. Since

G is V B on [a, b], the function x∗G is differentiable almost everywhere on [a, b].

Clearly, we have (x∗F )′ap = x∗f almost everywhere on E. On the other hand, the

equality F |E = G|E implies (x∗G)′ = (x∗F )′ap almost everywhere on E. It follows

that (x∗G)′ = x∗f almost everywhere on E. Thus G is scalarly differentiable on

[a, b] to a function g such that g|E = f . The proof is complete. �

The next theorem gives the Denjoy-Lusin definition of the V BG, ACG, V BG∗,

and ACG∗ properties. The proof follows the same lines as the proof in Gordon [7,

Theorem 6.10].

Theorem 3.2. Let F : [a, b] → X and let E be a non-empty closed subset of

[a, b].

(a) Suppose that F is bounded on [a, b]. Then F is V BG∗ on E if and only if each

perfect set in E contains a portion on which F is V B∗.

(b) Suppose that F |E is weakly continuous on E. Then F is V BG on E if and only

if each perfect set in E contains a portion on which F is V B.

(c) Suppose that F |E is continuous on E. Then F is ACG or ACG∗ on E if and

only if each perfect set in E contains a portion on which F is AC or AC∗,

respectively.

The following theorem provides a useful characterization of the V BG and

V BG∗ properties. Our proof patterned after Gordon’s proof [6, Lemma 29] is

included for completeness.

Theorem 3.3. Let F : [a, b] → X and let E be a non-empty closed subset of [a, b].

Suppose that F |E is weakly continuous on E. If F is scalarly V BG or scalarly V BG∗

on E, then F is V BG or V BG∗, respectively, on E.

P r o o f. We will prove the V BG case. Let P be a perfect set in E and let {Jn} be

the sequence of all open intervals in (a, b) such that ∂Jn ⊂ Q and Jn ∩ P 6= ∅. For

each pair of positive integers m and n let An
m = {x∗ ∈ X∗ : V(x∗F, Jn ∩ P ) 6 m}.

It follows from part (b) of Theorem 3.2 that X∗ =
⋃

m

⋃

n
An

m. We claim that each of

the sets An
m is closed.

Let x∗

i ∈ An
m and lim

i
‖x∗

i − x∗‖ = 0. Fix a finite collection of non-overlapping

intervals {Ik}K
k=1 with ∂Ik ⊂ Jn ∩ P and compute

∣

∣

∣

∣

K
∑

k=1

∆(x∗F )(Ik)

∣

∣

∣

∣

= lim
i

{∣

∣

∣

∣

K
∑

k=1

∆(x∗

i F )(Ik)

∣

∣

∣

∣

}

6 m.

This means that x∗ ∈ An
m.
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By the Baire Category Theorem there exist M , N , x∗

0, and r > 0 such that

{x∗ : ‖x∗ − x∗

0‖ 6 r} ⊂ AN
M . For each x∗ ∈ X∗ \ {0} we have

V(x∗F, JN ∩ P ) =
‖x∗‖

r
V

( r

‖x∗‖
x∗F + x∗

0F − x∗

0F, JN ∩ P
)

6
‖x∗‖

r

{

V

(( r

‖x∗‖
x∗ + x∗

0

)

F, JN ∩ P
)

+ V(x∗

0F, JN ∩ P )
}

6
2M

r
‖x∗‖.

Hence, F is V B on P ∩ JN and it follows from part (b) of Theorem 3.2 that F is

V BG on E. �

In passing we point out that, by part (a) of Theorem 3.2, Theorem 3.3 is valid for

the V BG∗ case even if the function F |E is not weakly continuous.

4. Banach-Zarecki Type Theorems

In the first theorem of this section we will find a sufficient condition for the Dunford

integrability of a scalar derivative in the situation in which no restriction is placed

on the Banach space involved.

Theorem 4.1. Let F : [a, b] → X be scalarly AC on [a, b]. If f : [a, b] → X is a

scalar derivative of F on [a, b], then f is Dunford integrable on [a, b] and ∆F (I) =

(D)
∫

I f for each interval I in [a, b].

P r o o f. For each positive integer n let

fn(t) =
∆F

(

∆
k

n

)

µ
(

∆k
n

)

whenever t ∈ ∆k
n =

[

a + (k − 1)n−1(b− a), a + kn−1(b− a)
)

for some k ∈ {1, . . . , n}.

Fix x∗ in X∗. As the function x∗F is V B on [a, b], it follows from Lebesgue’s The-

orem [13, Chapter IV, Theorem 5.4] that {x∗fn} converges to x∗f almost everywhere

on [a, b) and
∫ b

a

|x∗fn| 6 2V(x∗F, [a, b]) 6 2V(F, [a, b]).

By Fatou’s Lemma we have

∫ b

a

|x∗f | 6 2V(F, [a, b])

743



and it follows that f is Dunford integrable on [a, b]. Since the function x∗F is AC on

[a, b] and (x∗F )′ = x∗f almost everywhere on [a, b], we have x∗(∆F (I)) =
∫

I x∗f for

each interval I in [a, b]. Hence, ∆F (I) = (D)
∫

I
f for each interval I in [a, b]. This

completes the proof. �

Now suppose that the Banach space X does not contain an isomorphic copy of c0.

In this context, it can easily be seen that the same hypotheses are in fact sufficient

for the Pettis integrability of a scalar derivative.

Corollary 4.1. Suppose that X does not contain an isomorphic copy of c0 and

let F : [a, b] → X be scalarly AC on [a, b]. If f : [a, b] → X is a scalar derivative of F

on [a, b], then f is Pettis integrable on [a, b] and ∆F (I) = (P)
∫

I
f for each interval I

in [a, b].

P r o o f. By the preceding theorem, ∆F (I) = (D)
∫

I
f ∈ X for each interval I in

[a, b]. The Pettis integrability of f follows from [6, Theorem 23], and the equality

∆F (I) = (P)
∫

I
f is obvious. �

Recall that a function F : E → R is said to satisfy condition (N) on E ⊂ [a, b]

if µ∗(F (A)) = 0 for each Lebesgue negligible set A ⊂ E. Here µ∗(A) represents

the Lebesgue outer measure of the set A. A function F : E → X satisfies scalar

condition (N) on E if for each x∗ in X∗ the function x∗F satisfies condition (N)

on E. A further consequence of Theorem 4.1 reads as follows.

Corollary 4.2. Suppose that X does not contain an isomorphic copy of c0 and

let F : [a, b] → X be V B and weakly continuous on [a, b], satisfy scalar condition (N)

on [a, b] and have a scalar derivative on [a, b]. Then F is AC on [a, b].

P r o o f. The Banach-Zarecki Theorem [7, Theorem 6.16] implies that F is

scalarly AC on [a, b]. Now Corollary 4.1 applies to F . Thus, F is an indefinite

Pettis integral and, by Proposition 2B of [4], F is AC on [a, b]. �

Theorem 4.2. Suppose that X does not contain an isomorphic copy of c0 and

E is a non-empty closed subset of [a, b]. Let F : [a, b] → X have an approximate

scalar derivative on E and let F |E be weakly continuous on E. Then F is AC on E

if and only if F is V B on E and satisfies scalar condition (N) on E.

P r o o f. With no loss of generality, we may assume that E contains a and b.

Suppose first that F is V B on E and satisfies scalar condition (N) on E. We seek to

prove that F is AC on E. Let G denote the linear extension of F from E to [a, b] and

let f be an approximate scalar derivative of F on E. By part (f) of Theorem 3.1, G is

both V B and scalarly differentiable on [a, b]. Furthermore, the function G is weakly
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continuous on [a, b] and satisfies scalar condition (N) on [a, b]. Thus Corollary 4.2

applies to G.

The necessity part of the theorem is a compilation of part (a) of Theorem 3.1 and

[7, Theorem 6.12]. �

Corollary 4.3. Suppose that X does not contain an isomorphic copy of c0 and

E is a non-empty closed subset of [a, b]. Let F : [a, b] → X be V BG on E, have an

approximate scalar derivative on E, satisfy scalar condition (N) on E, and let F |E be

weakly continuous on E. Then E can be written as a countable union of closed sets

on each of which F is AC.

P r o o f. Suppose that F is V BG on E and satisfies scalar condition (N) on E.

Since E is closed and since F |E is weakly continuous on E, it follows from part (d)

of Theorem 3.1 that E can be written as a countable union of closed sets En on each

of which F is V B. By the preceding theorem, F is AC on each En. �

Corollary 4.4. Suppose that X does not contain an isomorphic copy of c0 and

E is a non-empty closed subset of [a, b]. Let F : [a, b] → X be V BG∗ on E, have

a scalar derivative on E, satisfy scalar condition (N) on E, and let F |E be weakly

continuous on E. Then E can be written as a countable union of closed sets on each

of which F is both V B∗ and AC.

P r o o f. The proof is completely similar to that of Corollary 4.3. �

We conclude our discussion of Banach-Zarecki type theorems with two examples

showing that the principal results of this section are complete in their own terms.

Example 4.1 (Russ Gordon [6]). Let {In}∞n=1 be a fixed sequence of intervals

in [a, b] such that bn = max In < min In+1 for each n, lim
n

bn = b, and let {en}∞n=1

denote the standard unit vector basis of c0. We write ϕn to represent the function

χI2n−1

2µ(I2n−1)
−

χI2n

2µ(I2n)
.

Define a function f : [a, b] → c0 by f =
∑

n
ϕnen. Then f is Dunford integrable on

[a, b] and

(D)

∫

E

f =

(

µ(E ∩ I2n−1)

2µ(I2n−1)
−

µ(E ∩ I2n)

2µ(I2n)

)∞

n=1

∈ c∗∗0

for each Lebesgue measurable set E ⊂ [a, b] [5, pp. 128–129]. Moreover, F (t) =

(D)
∫ t

a
f ∈ c0 for all t in [a, b) and F (b) = (D)

∫ b

a
f = 0. For each n, we have

‖F (b) − F (b2n−1)‖ = ‖F (b2n−1)‖ = 1/2.

Thus the indefinite Dunford integral of f is not continuous at b.
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Now we modify Gordon’s example, showing that a continuous indefinite Dunford

integral is not necessarily AC.

Example 4.2. Under the notation of the above example, define a sequence {xn}

in c0 by

e1,
e2

2
,

e2

2
,

e3

3
,

e3

3
,

e3

3
,

e4

4
, . . .

Note that ‖x1‖ > ‖x2‖ > . . ., lim
n

‖xn‖ = 0, and the series
∑

n
xn diverges. By [3,

Chapter V, Theorem 6],
∑

n
xn is weakly unconditionally Cauchy (wuC in short).

Define a function g : [a, b] → c0 by g =
∑

n
ϕnxn. Since

∑

n
xn is wuC, we have

∫ b

a

|x∗g| 6
∑

n

|x∗(xn)|

∫ b

a

( χI2n−1

2µ(I2n−1)
+

χI2n

2µ(I2n)

)

=
∑

n

|x∗(xn)| < ∞

for all x∗ in c∗0. It follows that g is Dunford integrable on [a, b]. Evidently we have

G(t) = (D)
∫ t

a
g ∈ c0 for all t in [a, b) and G(b) = (D)

∫ b

a
g = 0. It is clear that G is

continuous on [a, b). Fix a positive number ε. Choose a positive integer N such that

‖xN‖ < 2ε. We have

‖G(b) − G(t)‖ = ‖G(t)‖ 6 ‖xN‖/2 < ε

whenever t > min I2N−1. Hence G is continuous at b as well. As the series

∑

n

∆G(I2n−1) =
∑

n

xn

2

diverges, G is not AC on [a, b]. It should be noted that nevertheless G is ACG∗ on

[a, b].

5. Some Denjoy type extensions of the Pettis integral

We begin by describing indefinite Pettis integrals. The next theorem extends Pet-

tis’ classical result [12, §8] from weakly sequentially complete spaces to the context

of arbitrary Banach spaces.

Theorem 5.1. A function F : [a, b] → X is an indefinite Pettis integral if and

only if F has a scalar derivative on [a, b] and is AC on [a, b]. In this case, the

function F is the indefinite Pettis integral of any of its scalar derivatives.
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P r o o f. Suppose first that F is AC on [a, b] and f is a scalar derivative of F on

[a, b]. We seek to prove that f is Pettis integrable on [a, b]. Theorem 4.1 yields the

Dunford integrability of f on [a, b] and the equality ∆F (I) = (D)
∫

I
f for each inter-

val I in [a, b]. Let {In}∞n=1 be an arbitrary sequence of pairwise non-overlapping inter-

vals in [a, b]. Fix a positive number ε and let η > 0 correspond to ε in Definition 3.2.

Since
∞
∑

n=1
µ(In) < ∞, there exists a positive integer N such that

∞
∑

n=N

µ(In) < η.

Then
∥

∥

∥

∑

n∈σ
∆F (In)

∥

∥

∥
< ε for each finite set σ ⊂ {N, N + 1, . . .}. By [10, Proposi-

tion 1.c.1], the series
∞
∑

n=1
∆F (In) is unconditionally convergent in X . Now, by [4,

Proposition 2B], f is Pettis integrable on [a, b] and F is its indefinite Pettis integral.

The necessity part of the theorem follows easily from the definition of the Pettis

integral and [4, Proposition 2B]. �

Corollary 5.1. Suppose that E is a non-empty closed subset of [a, b]. Let F :

[a, b] → X be AC on E. If f is an approximate scalar derivative of F on E, then

f is Pettis integrable on E.

P r o o f. With no loss of generality we may assume that E contains a and b. We

let G denote the linear extension of F from E to [a, b]. By part (f) of Theorem 3.1,

G is both AC and scalarly differentiable on [a, b] to a function g such that g|E = f .

By the previous theorem, the function g is Pettis integrable on [a, b]. Hence, f is

Pettis integrable on E which is what we desired. �

We give below an example showing that the scalar differentiability hypothesis of

Theorem 5.1 cannot be eliminated.

Example 5.1 ([1]). Let {xij}∞i,j=1 denote a doubly infinite complete orthonormal

system in L2 and let Σ be the σ-algebra of Lebesgue measurable sets in [0, 1]. To

each t in [0, 1] we assign gi(t) = xij · χ[(j−1)/2i,j/2i)(t) (j = 1, . . . , 2i) and, for each

positive integer n, we let fn(t) denote the sum g1(t) + . . . + gn(t). Finally, for each

E ∈ Σ we write νn(E) to represent the vector (P)
∫

E
fn. Pettis [12, p. 303] observed

that there exists a countably additive and absolutely continuous function ν from Σ

to L2 such that

lim
n

sup
E∈Σ

‖νn(E) − ν(E)‖ = 0.

On the other hand, Birkhoff [1, p. 376] actually proved that there exists no Pettis

integrable function f from [0, 1] to L2 satisfying

lim
n

sup
E∈Σ

∥

∥

∥

∥

νn(E) − (P)

∫

E

f

∥

∥

∥

∥

= 0.
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It is evident that F (t) = ν([0, t]) is AC on [0, 1]. Now it follows from Theorem 5.1

that F has no scalar derivative on [0, 1].

We define four extensions of the Pettis integral.

Definition 5.1. Let f : [a, b] → X .

(a) The function f is Henstock-Kurzweil-Pettis integrable or Denjoy-Pettis inte-

grable on [a, b] if there exists a function F : [a, b] → X such that F (a) = 0 and F is

scalarly ACG∗ or ACG and weakly continuous on [a, b] and f is respectively a scalar

derivative or an approximate scalar derivative of F on [a, b].

(b) The function f is Henstock-Kurzweil-Pettis∗ integrable or Denjoy-Pettis∗ in-

tegrable on [a, b] if there exists a function F : [a, b] → X such that F (a) = 0 and F is

ACG∗ or ACG and continuous on [a, b] and f is a scalar derivative or an approximate

scalar derivative of F on [a, b], respectively.

A straightforward argument can be given to show that function F in the above

definition is unique. Throughout such a function will be referred to as the indefinite

integral of the function f . Given I, we write
∫

I f to denote the vector ∆F (I).

Further, we say that the function f is integrable on a set E ⊂ [a, b] if the function fχE

is integrable on [a, b].

It should be noted that Theorem 5.1 yields the Henstock-Kurzweil-Pettis∗ inte-

grability of a Pettis integrable function. The Henstock-Kurzweil-Pettis and Denjoy-

Pettis integrals have received a considerable study—see [2], [6], [5] and the references

therein. Gámez and Mendoza [5] refined Gordon’s Example 4.1, showing that there

exists a Dunford integrable function f : [a, b] → c0 with the indefinite Dunford in-

tegral F such that ∆F (I) ∈ c0 for each interval I in [a, b] and f is not Pettis

integrable on any subinterval of [a, b]. On the other hand, it can easily be seen that

the Denjoy-Pettis∗ integrability suffices to insure the Pettis integrability on a portion

of an arbitrary perfect set. More precisely, we have the following result.

Theorem 5.2. Suppose that f : [a, b] → X is Denjoy-Pettis∗ integrable on [a, b].

Then each perfect set E in [a, b] contains a portion P on which f is Pettis integrable.

Moreover, if {(an, bn)} is an enumeration of the intervals in [a, b] contiguous to P ,

then
∑

n
(DP∗)

∫ bn

an

f is unconditionally convergent and

(DP∗)

∫ b

a

f = (P)

∫

P

f +
∑

n

(DP∗)

∫ bn

an

f.

P r o o f. Let F be the indefinite Denjoy-Pettis∗ integral of f . By part (c) of

Theorem 3.2 there exists a portion P of E such that F is AC on P . Hence, F is

AC on P and Corollary 5.1 yields the Pettis integrability of f on P . Let In =
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[an, bn]. Reference to the proof of Theorem 5.1 makes it obvious that
∑

n
(DP∗)

∫

In

f

is unconditionally convergent. Finally, by Theorem 9 of [5], the desired equality is

valid and the theorem is proved. �

The next theorem gives a condition that ensures the Denjoy-Pettis∗ integrability

of a Denjoy-Pettis integrable function.

Theorem 5.3. Suppose that X does not contain an isomorphic copy of c0 and let

f : [a, b] → X be Denjoy-Pettis integrable on [a, b]. If F (t) = (DP)
∫ t

a f is continuous

on [a, b], then f is Denjoy-Pettis∗ integrable on [a, b] and F (t) = (DP∗)
∫ t

a
f for all t

in [a, b].

P r o o f. It suffices to show that the function F is ACG on [a, b]. By part (a) of

Theorem 3.1, F is scalarly V BG on [a, b]. Since F is weakly continuous on [a, b],

it follows from Theorem 3.3 that F is V BG on [a, b]. Now Corollary 4.3 applies

to F . �

Recall that a real Banach space X is said to have the Schur property (or to be a

Schur space, in short) if each weakly null sequence in X converges in norm.

Theorem 5.4. The following two assertions are equivalent:

(i) X is a Schur space;

(ii) if f : [0, 1] → X is Denjoy-Pettis integrable on [0, 1], then f is Denjoy-Pettis∗

integrable on [0, 1].

P r o o f. (i) ⇒ (ii). Let f : [0, 1] → X be Denjoy-Pettis integrable on [0, 1] and

let F (t) =
∫ t

0 f for all t in [0, 1]. Since F is weakly continuous on [0, 1] and X is a

Schur space, F is continuous on [0, 1]. Now Theorem 5.3 applies to f .

(ii) ⇒ (i). On the contrary, assume that X fails the Schur property, then there is a

sequence {xn} in X such that for all x∗ in X∗ we have lim
n

x∗(xn) = 0 and ‖xn‖ > 1

for all n. Let C denote the Cantor ternary set and let {(a
(i)
k , b

(i)
k )}, k = 1, . . .,

i = 1, . . . , 2k−1 be the natural enumeration of the intervals in [0, 1] contiguous to C.

For a fixed positive integer k, we let Fk denote the real-valued function defined on

[0, 1] that equals 0 on the set
{

0, 1, a
(1)
k , b

(1)
k , . . . , a

(2k−1)
k , b

(2k−1)
k

}

, equals 1 on the set
{

1
2 (a

(1)
k + b

(1)
k ), . . . , 1

2 (a
(2k−1)
k + b

(2k−1)
k )

}

, and is linear on the intervals between these

points. Then define F (t) by
∞
∑

k=1

Fk(t)xk for all t in [0, 1]. It is obvious that F is ACG

on [0, 1] and discontinuous on C. We claim that F is weakly continuous on [0, 1].

Fix an arbitrary balanced weak neighborhood O of 0. Then there exists a positive

integer K such that xk ∈ O for each k > K. Since 0 6 Fk(t) 6 1 for all t in [0, 1] and
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for all k, it follows that
∞
∑

k=K+1

Fk(t)xk ∈ O for all t in [0, 1]. By Lemma 1 of [15],

F is weakly continuous on [0, 1]. On the other hand, it is clear that F ′ = f almost

everywhere on [0, 1]. So, by (ii), f is Denjoy-Pettis∗ integrable on [0, 1]. Thus, the

function F is an indefinite Denjoy-Pettis∗ integral while it is discontinuous on C.

This is the desired contradiction. �
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