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ON ZEROS OF CHARACTERS OF FINITE GROUPS

Jinshan Zhang, Zhencai Shen, Suzhou, Dandan Liu, Zigong
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Abstract. For a finite group G and a non-linear irreducible complex character χ of G

write υ(χ) = {g ∈ G | χ(g) = 0}. In this paper, we study the finite non-solvable groups G

such that υ(χ) consists of at most two conjugacy classes for all but one of the non-linear
irreducible characters χ of G. In particular, we characterize a class of finite solvable groups
which are closely related to the above-mentioned question and are called solvable ϕ-groups.
As a corollary, we answer Research Problem 2 in [Y.Berkovich and L.Kazarin: Finite groups
in which the zeros of every non-linear irreducible character are conjugate modulo its kernel.
Houston J. Math. 24 (1998), 619–630.] posed by Y.Berkovich and L.Kazarin.
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1. Introduction

Let G be a finite group and υ(χ) := {g ∈ G | χ(g) = 0}, where χ is an irreducible

complex character of G. A classical theorem of Burnside asserts that υ(χ) is non-

empty for all χ ∈ Irr1(G), where Irr1(G) denotes the set of non-linear irreducible

characters of G. It makes sense to consider the structure of a finite group whose

character table contains a small number of zeros (see [1], [2] and [18] for examples).

Y.Berkovich and L.Kazarin [1] posed the following question: classify the finite

groups G with the following property:

(∗): υ(χ) is a conjugacy class for all but one of the non-linear irreducible characters

χ of G.

For the question, we define

Project supported by the NNSF of China (Grant No. 10871032) and the NSF of Sichuan
University of Science and Engineering (Grant No. 2009XJKRL011).

801



Definition. A non-abelian group G is said to be a ϕ-group if G has exactly one

non-linear irreducible character ϕ such that ϕG′ is not irreducible.

We first characterize the solvable ϕ-groups.

Theorem A. Let G be a solvable group. Then G has exactly one non-linear

irreducible character ϕ such that ϕG′ is not irreducible if and only if one of the

following holds:

(1) G is a 2-transitive Frobenius group with kernel G′ or an extra-special 2-group.

(2) G ∼= SL(2, 3).

(3) G ∼= S4.

(4) G is a semidirect product of SL(2, 3) and the natural SL(2, 3)-module M . Fur-

thermore, G′ is a 2-transitive Frobenius group with kernel M and complement

isomorphic to Q8 (the quaternion group of order 8).

Indeed, we study the finite groups G with the following property:

(∗∗): υ(χ) consists of at most two conjugacy classes for all but one of the non-linear

irreducible characters χ of G.

Theorem B. Let G be a finite non-solvable group. Then G satisfies property

(∗∗) if and only if G is isomorphic to A5, S5, L2(7), or A6.

By Theorem A and Theorem B, we get the following Corollary, which is the main

Theorem of [27].

Corollary. Let G be a finite non-abelian group. Then G satisfies property (∗) if

and only if G is one of the following groups:

(1) G is a 2-transitive Frobenius group with kernel G′ or an extra-special 2-group;

(2) G is a Frobenius group with kernel G′ of order greater than 3 and complement

of order 2;

(3) G ∼= SL(2, 3);

(4) G ∼= S4;

(5) G ∼= A5.

In this paper, G always denotes a finite group. Notation is standard and taken

from [9]. In particular, cd(G) denotes the set of irreducible character degrees of

G, and kG(N) the number of conjugacy classes of G contained in N , where N is a

normal subset of G. For N ⊳ G, set Irr(G|N) = Irr(G) − Irr(G/N).

We shall freely use the following facts: Let N ⊳ G and write G = G/N .

(1) For any x ∈ G, x̄G (when viewed as a subset of G, that is, the set
⋃

g∈G

xgN) is

a union of conjugacy classes of G; furthermore, kG(x̄G) = 1 if and only if χ(x) = 0

for all χ ∈ Irr(G|N).
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(2) If G has property (∗), then so has G/N .

(3) If G has property (∗∗), then so has G/N .

2. On solvable ϕ-groups

First, we give some lemmas for proving Theorem A.

Lemma 2.1 ([15, Theorem 19.3]). Suppose that H acts non-trivially on N and

fixes every non-linear irreducible character of N . Assume that (|N |, |H |) = 1. Set

M = [N,H ]. Assume that H is solvable. Then N ′ = M ′ and one of the following

occurs:

(1) N is abelian;

(2) M is a p-group of class 2 and N ′ 6 Z(NH); or

(3) M is a Frobenius group with kernel M ′.

Lemma 2.2 ([15, Lemma 19.1]). Let P be a p-group of class 6 2 and suppose

that P acts non-trivially on some p′-group Qsuch that CP (x) ⊆ P ′ for all x ∈ Q−{1}.

Then the action is Frobenius and P is either cyclic or isomorphic to Q8.

Lemma 2.3 ([17, Lemma 1.10]). Let V,N be non-trivial normal subgroups of G

such that G/V is a Frobenius group with cyclic kernel N/V of order b and with

a cyclic complement of order a. If N is also a Frobenius group with kernel V , an

elementary abelian group, then ib ∈ cd(G) for any non-trivial divisor i of a.

Lemma 2.4 ([14, Theorem]). Let Z ⊳ G, G/Z be p-solvable and λ ∈ Irr(Z).

Suppose that p ∤ χ(1)/λ(1) for all χ ∈ Irr(G|λ). Then the Sylow p-subgroups of G/Z

are abelian.

For a finite group G, if G′ < G and |CG(g)| = |CG/G′(gG′)| holds for any g ∈

G−G′, then (G,G′) is called a Camina pair.

Lemma 2.5 ([10, Theorem 2.1]). Let (G,G′) be a Camina pair. Suppose that G

is not a p-group. Then either G is a Frobenius group with kernel G′ or G/G′ is a

p-group for some prime p; in this case, G has a normal p-complement M , M < G′

and CG(m) ⊆ G′ for all m ∈M − {1}.

The following Lemma is a well-known fact.
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Lemma 2.6. Let P be a non-abelian 2-group. If |P/P ′| = 4 and Aut(P ) is not a

2-group, then P ∼= Q8.

P r o o f of Theorem A. Let ϕ ∈ Irr1(G) be the unique irreducible character such

that ϕG′ is not irreducible. Then the hypothesis yields that χG′ ∈ Irr1(G
′) for every

χ ∈ Irr1(G) − {ϕ}, which implies Irr1(G/G
′′) = {ϕ}. Observe that any non-linear

irreducible character of G′ is extendible to G.

Suppose, first, that G′′ = 1. Then either G is a 2-transitive Frobenius group with

kernel G′ or G is an extra-special 2-group (see [21]), and thus G satisfies (1) of the

Theorem.

We, now, suppose that G′′ 6= 1. Then either G/G′′ is a 2-transitive Frobenius

group with kernel G′/G′′ and cyclic complement or G/G′′ is an extra-special 2-group

(note that Irr1(G/G
′′) = {ϕ}).

Case 1. G/G′′ is a 2-transitive Frobenius group with kernel G′/G′′.

Note the set of all non-identity elements of G′/G′′ is a conjugacy class of G/G′′,

and that G′/G′′ is an elementary abelian group of order pm.

By Theorem 12.4 of [9] and its proof, we obtain that for any ψ ∈ Irr1(G
′), either ψ

vanishes on G′−G′′ or (λψ)G is irreducible for some λ ∈ Irr(G′/G′′). Recall that any

non-linear irreducible character of G′ is extendible to G; it follows that ψ vanishes

on G′ −G′′ for all ψ ∈ Irr1(G
′), and so (G′, G′′) is a Camina pair. Hence we have to

consider the following three cases.

Subcase 1.1. Assume that G′ is a p-group.

Then G′ is a normal Sylow p-subgroup of G, and thus G = G′H , where H is

a p-complement of G and |H | = |G/G′| = pm − 1. Furthermore, we have G′ =

[G′, H ]G′′ = [G′, H ]Φ(G′) = [G′, H ]. Since H fixes every non-linear irreducible

character of G′ (note that any non-linear irreducible character of G′ is extendible to

G), we have G′′ 6 Z(G) (see Lemma 2.1), and thus H acts trivially on G′′. Observe

that G′ − G′′ is a conjugcy class of G, so that H acts irreducibly on G′/G′′. Since

G′ is a p-group of class 2 (because G′′ 6 Z(G)), G′ is a special p-group (see [12]).

By [6, IX, Theorem 6.5], we conclude that m = 2, p = 2, |G′/G′′| = pm = 4 and

|H | = 3. It follows that G′ ∼= Q8, so that G = G′H ∼= SL(2, 3). Hence G satisfies (2)

of the Theorem.

Subcase 1.2. Assume that G′ is a Frobenius group with kernel G′′.

Since G′/G′′ is an elementary abelian of order pm, we conclude that |G′/G′′| = p

and |G/G′′| = p(p− 1) (note that G′/G′′ is cyclic).

We, first, claim that G′′ is a 2-group. Assume otherwise. To reach a contradic-

tion, we may assume that G′′ is a minimal normal subgroup of G. Then G′′ is an
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elementary abelian q-group with q 6= 2, G′′ = F (G) and |G′| is odd. Hence G′ has

no non-principal real irreducible character, and so every character in Irr1(G) − {ϕ}

is not real (because any non-linear irreducible character of G′ is extendible to G).

Note that ϕ must be real (since ϕ is only one non-linear irreducible character of

G/G′′). Since G/G′ is a cyclic group of order p− 1, we see that G has exactly three

real irreducible characters, namely, 1G, ϕ and λ (λ2 = 1G). It follows that G has

exactly three real classes. Observing that G′ − G′′ and {1} are two real classes of

G (G′ − G′′ consists of all elements of order p in G), we conclude that the set of

all involutions is a real class. Since G/G′′ is a Frobenius group of order p(p − 1),

G/G′′ has p involutions (they are contained in G/G′′ −G′/G′′). Let z ∈ G−G′ be

an involution. Suppose that there exists an element y ∈ G′′ −{1} such that yz is an

involution. Then we have yz = y−1, and thus G has at least 4 real classes, a con-

tradiction. Hence, for every involution z ∈ G−G′ and every element y ∈ G′′ − {1},

yz is not an involution. Thus we conclude that G has exactly p involutions. Since

the p involutions form a conjugacy class, for every involution x in G we obtain that

p = |G : CG(x)| and |CG(x)| = |G|/p = |G′′|(p − 1). It follows that G′′ ⊆ CG(x),

and so x ∈ CG(G′′) = CG(F (G)) 6 F (G) = G′′. This implies that |G′′| is not odd,

a contradiction. Hence our claim is true.

Now we claim that p = 3. We may assume that G′′ is a minimal normal subgroup

of G. Recall that χG′ is irreducible for all χ ∈ Irr1(G)−{ϕ}, since G′ is a Frobenius

group with kernel G′′ and complement of order p, we easily conclude that cd(G) =

{1, p− 1, p}. It follows by Lemma 2.3 that p− 1 is a prime and thus p = 3.

Next we show that G ∼= S4. Notice that |G/G
′| = 2. Suppose G′′′ 6= {1}. Since

G/G′′′ satisfies the hypothesis |G/G′′′/(G/G′′′)′| = |G/G′| = 2, we obtain that

G/G′′′ ∼= S4 by induction, and thus |G
′′/G′′′| = 4. We easily see that G′′ ∼= Q8 and

so 3|(8 − 1), a contradiction. So G′′′ = {1}. Observe that cd(G) = cd(G′) ∪ ϕ(1) =

{1, 2, 3}. Hence G ∼= S4 (see [1, Corollary]), and thus G satisfies (3) of the Theorem.

Subcase 1.3. Assume that G′ has a normal p-complement M , M < G′′ and

CG′(m) ⊆ G′′ for all m ∈M − {1}.

Note that G/M is a solvable ϕ-group and (G′/M,G′′/M) is a Camina pair. Since

G′/M is a p-group, arguing as in Subcase 1.1, we have that p = 2, and that G/M ∼=

SL(2, 3) = Q8 ⋊ C(3). It follows by Lemma 2.2 that G′ = M ⋊ Q8 is a Frobenius

group with kernel M and complement isomorphic to Q8.

Now we show that M is a minimal normal subgroup of G. Otherwise, let E ⊳

G be such that M/E is a minimal normal subgroup of G/E. Then as shown in

the above two paragraphs, M/E is an elementary abelian group of order 9 and

G/E/M/E ∼= SL(2, 3). For any non-principal λ ∈ Irr(E) and χ ∈ Irr(G|λ), we

have 3 does not divide χ(1) (in fact, χ(1) = 8). Then it follows by Lemma 2.4 that
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G/E has an abelian Sylow 3-subgroup, which is impossible (because, as shown in

the above paragraph,M/E is a faithful G/E/M/E-module). Hence M is a minimal

normal subgroup of G.

Hence M is an elementary abelian q-group and G/M ∼= SL(2, 3) acts irreducibly

on M . Observe that cd(G) = cd(G′) ∪ ϕ(1) = {1, 2, 23, 3}. It follows from [13] that

q = 3. Hence M is an irreducible GF (3)[SL(2, 3)]-module in which every element of

order 3 has a quadratic minimal polynomial, and so M is the standard module for

SL(2, 3) (see [4, Corollary 5.2]). This implies that M is an elementary abelian group

of order 9, and thus G satisfies (4) of the Theorem.

Case 2. Suppose that G/G′′ is an extra-special 2-group.

Now we show that the case does not occur. To reach a contradiction, we may

assume that G′′ is a minimal normal subgroup of G with order qs. Suppose that

q = 2, thus G is a 2-group. We easily conclude that this is impossible. So q 6= 2. Let

λ ∈ Irr1(G
′). Since λ is extendible to G, we obtain that ker(λ) = ker(χ) ∩ G′ ⊳ G.

Note that both G′/G′′ and G′′ are chief factors of G, so we conclude that λ is faithful

for all λ ∈ Irr1(G
′). Since each normal subgroup of G′ is an intersection of the kernels

of some irreducible characters of G′, we see that G′′ is the unique minimal normal

subgroup of G′. Note that q 6= 2 and |G′/G′′| = 2, so it follows from [9, Corollary

12.3] that G′ is a Frobenius group with kernel G′′ and complement of order 2. Since

G′/G′′ = Z(G/G′′), all elements of Irr(G′/G′′) are G-invariant. For ψ ∈ Irr1(G
′),

ψ is G-invariant. Therefore, all elements of Irr(G′) are invariant under G, and thus

all the conjugacy classes of G′ are G-invariant. For any element x ∈ G′′ − {1}, we

have |xG′

| = 2, and so |xG| = 2, thus |CG(x)| = |G|/2. Suppose that P1 is a Sylow

p-subgroup of CG(x), we easily conclude that |P1| = |P |/2, where P is a Sylow p-

subgroup of G such that P1 ⊂ P . Note that P ′G′′ = G′ is a Frobenius group, so we

have that P1 ∩ P = {1}, which is impossible since P ′ = Z(P ). �

Remark. Ren and Zhang [20] have studied the solvable ϕ-groups. Here, we give

the complete classification of solvable ϕ-groups.

3. Non-solvable group with property (∗∗)

In what follows, we shall freely use the following facts:

Suppose that G is a simple group of Lie type. Then by [24, Corollary], for each

prime factor p of |G| there exists some χ ∈ Irr1(G) such that χ is of p-defect zero.

For such χ, we have {x ∈ G | p | o(x)} ⊆ υ(χ) (see [9, Theorem 8.17]), and thus

kG({x ∈ G | p | o(x)}) 6 kG(υ(χ)).
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Lemma 3.1 ([26, Theorem 3.6]). Let G be a non-abelian simple group of Lie

type except for L2(q) where q > 4, L3(4), Sz(22m+1) where m > 1. Then there exist

ξ, η ∈ Irr1(G) such that ξ is of 2-defect zero and η is of s-defect zero, and ξ(1) 6= η(1),

where s is an odd prime; furthermore, one of them vanishes on elements of at least

four distinct orders, and the other vanishes on elements of at least three distinct

orders.

Lemma 3.2. Let G ∼= Sz(22m+1) where m > 1, then G does not satisfy property

(∗∗).

P r o o f. Let α, β ∈ Irr(G) with α(1) = (22m+1 − 1)(22m+1 − 2m+1 + 1) and

β(1) = (22m+1 − 1)(22m+1 + 2m+1 + 1) (see [8, XI, Theorem 5.10]). Note that

πe(G) = {1, 2, 4, all factors of (22m+1−1), (22m+1−2m+1+1) and (22m+1+2m+1+1)}.

It follows from the hypothesis and [27, Lemma 2.10] that both 22n+1 − 2n+1 +1 and

22n+1 + 2n+1 + 1 are prime, so that G ∼= Sz(8), and thus we obtain a contradiction.

The contradiction completes the proof. �

The following Lemma is useful in our argument. We shall freely use these results

in the rest of the section.

Lemma 3.3. Let N ⊳ G. The the following statements hold:

(1) For any χ ∈ Irr(G), if G is non-solvable and kG(υ(χ)) 6 2, then χG′ is irre-

ducible.

(2) For any χ ∈ Irr(G), if υ(χ) ⊂ N for some N ⊳ G, then gcd(χ(1), |G/N |) = 1.

(3) Let G be a non-abelian simple group. Then there exists χ ∈ Irr1(G) such that

χ(1) is even and χ is of p-defect zero for some prime divisor p of |G|.

(4) Let N < M be two normal subgroups of G with kG(M −N) = 1. Then M is

solvable.

P r o o f. See [18].

Remark. Suppose that G is a non-solvable group with property (∗∗). If

kG(υ(χ)) 6 2 for any χ ∈ Irr1(G), then it follows by [2, Theorem 1.1] that ei-

ther G ∼= A5 or G ∼= L2(7). In the following Lemma, we suppose that G has a unique

non-linear irreducible character ϕ such that υ(ϕ) consists of r conjugacy classes of

G with r > 3, but υ(χ) consists of at most two conjugacy classes of G for the other

χ ∈ Irr1(G).
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Lemma 3.4. Let G be non-solvable group with property (∗∗). Suppose that N is

a minimal normal subgroup of G, and that N is non-solvable. Set N = N1× . . .×Ns

a direct product of isomorphic simple groups Ni where s > 1, and set θi ∈ Irr1(Ni)

such that θi(1) is even and that θi is of p-defect zero for some prime divisor p of |Ni|.

Then s = 1 and G/N is solvable if one of the following conditions holds:

(1) N = G′.

(2) ϕ(1) is odd.

(3) ϕ(1) is even and ϕ(1) < 4θ1(1).

P r o o f. First we show that if G satisfies one of the conditions above, then s = 1.

Assume that s > 2. Set θ = θ1 × . . .× θs. Let χ be an irreducible constituent of θ
G,

let x1 ∈ N1 be of a prime order p, x2 ∈ N2 be of a prime order q (q 6= p), x3 ∈ N2

be of a prime order r (r 6= p and r 6= q). Clearly θg is of p-defect zero for any g ∈ G,

thus ϑg(x1) = ϑg(x1x2) = ϑg(x1x3) = 0. This implies that χ(x1) = χ(x1x2) =

χ(x1x3) = 0. The hypothesis yields that χ = ϕ.

Suppose that N = G′. Set ψ = θ1 × 1N2
× . . . × 1Ns

, where 1Ni
is the trivial

character of Ni, where i = 2, . . . , s. Let ϕ be an irreducible constituent of ψG.

Clearly χ 6= ϕ. It follows from the hypothesis and Lemma 3.3(1) that ϕG′ = ψ.

Observe that kG(υ(ψ)) > 3, a contradiction.

Suppose that ϕ(1) is odd. Note that χ = ϕ. Clearly χ(1) is even, a contradiction.

Suppose that ϕ(1) is even and ϕ(1) < 4θ(1). Since ϕ(1) = χ(1) > θ(1) =

θ1(1) × . . .× θs(1) (s > 2), we obtain a contradiction.

Next we show that G/N is solvable. By induction, we may assume that Sol(G), the

maximal solvable normal subgroup of G, is trivial. Now suppose that G/N is non-

solvable. Note that out(N) is solvable by the classification of the finite simple groups,

so it follows that CG(N) is non-solvable and hence contains a non-solvable minimal

normal subgroup M of G as Sol(CG(N)) = 1. Set T = M × N . Let ψ ∈ Irr(M)

be such that ψ(1) is even and that ψ is of q-defect zero, and let θ ∈ Irr(N) be such

that θ(1) is even and that θ is of p-defect zero, where q, p are prime divisors of

|M | and |N | respectively. Let x ∈ M , y, z ∈ N be of order q, p, r respectively,

where r 6= p and r 6= q. Then for any irreducible constituent χ of (ψ × θ)G, we see

that χ(x) = χ(y) = χ(xy) = χ(xz) = 0. Observe that χ 6= ϕ, then we obtain a

contradiction. The contradiction completes the proof. �

Proposition 3.5. Suppose that N is the unique minimal normal subgroup of G

and that N is a non-abelian simple group. If G satisfies property (∗∗), then G ∼= A5,

S5, L2(7) or A6.

P r o o f. First suppose that N ∼= An for some n > 8. Let π be the permutation

character of G, and δ be the mapping of G into N such that δ(g) is the number of
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2-cycles in the standard decomposition of g. Set

λ =
(π − 1)(π − 2)

2
− δ, ̺ =

π(π − 3)

2
+ δ.

By [7, V, Theorem 20.6], both λ and ̺ are irreducible characters of G.

For odd n, set

a1 = (1, . . . , n− 2),

a2 = (1, . . . , n− 4)(n− 3, n− 2, n− 1),

a3 = (1, . . . , n− 5)(n− 4, n− 3),

b1 = (1, . . . , n),

b2 = (1, . . . , n− 3)(n− 2, n− 1),

b3 = (1, . . . , n− 6)(n− 5, n− 4, n− 3).

For even n, set

a1 = (1, . . . , n− 1),

a2 = (1, . . . , n− 2)(n− 1, n),

a3 = (1, . . . , n− 5)(n− 4, n− 3, n− 2),

b1 = (1, . . . , n− 3),

b2 = (1, . . . , n− 3)(n− 2, n− 1, n),

b2 = (1, . . . , n− 4)(n− 3, n− 2).

We see that λ(ai) = 0 = ̺(bi) for any i = 1, 2, 3. Observe that a1, a2, a3 (or b1, b2,

b3) lie in distinct conjugacy classes of G.

Let χ be an irreducible constituent of λG, and let ψ be an irreducible constituent

of ̺G. Clearly χ 6= ψ. By the hypothesis, we may assume that kG(υ(χ)) 6 2.

Lemma 3.3(1) implies that χG′ = λ. Clearly kG(υ(λ)) > 3, a contradiction.

Next suppose that N ∼= An for some n 6 7 or one of the sporadic simple groups.

If G = N , then we conclude that G ∼= A5 or A6. If N < G, then |G/N | = 2, and so

we obtain that G ∼= S5 from [3].

By the classification theorem of the finite simple groups we can now suppose that

N is a simple group of Lie type.

Remark and notation. Let χp ∈ Irr1(N) be of p-defect zero where p is a prime

of N , and let ψ be an irreducible constituent of χG
p . Observe that χ

g
p(x) = 0 for any

g ∈ G and any x ∈ N of order divisible by p. It follows that ψ(x) = 0 whenever

x ∈ N is of order divisible by p.
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Arguing as in the above paragraph, then by Lemma 3.1 and Lemma 3.3(1) we

conclude that N is isomorphic to one of the following groups: L2(q) where q > 4,

L3(4), or Sz(22m+1) where m > 1.

Suppose first that N ∼= L2(q) where q > 4. Suppose that q is even, so that

N ∼= L2(2
f ) for some f > 2. Then |N | = (2f − 1)2f(2f + 1) and N has two cyclic

subgroups of orders 2f − 1 and 2f + 1 (see [7, II, Theorem 8.27]). If both 2f − 1 and

2f + 1 are prime powers, then by Lemma 3.1 we easily conclude that either f = 2 or

f = 3. From [3], we obtain that G ∼= A5 or S5.

Now suppose that π(2f −1) > 2 (resp. π(2f +1) > 2). By [8, XI, Theorem 5.5], N

has 2f−1 characters γi of degree 2f − 1 and 2f−1 − 1 characters βi of degree 2f + 1.

Let θ ∈ Irr1(N) with θ(1) = 2f − 1 (resp. 2f + 1). Observe that θ vanishes on

at least three elements of distinct order, and so kG(υ(θ)) > 3. It follows from the

hypothesis and Lemma 3.3(1) that θG = eϕ, which implies that 2f−1 characters γi

are G-conjugate (resp. 2f−1 − 1 characters βi are G-conjugate). We easily conclude

that [G : IG(θ)] = 2f−1 (resp. [G : IG(θ)] = 2f−1−1), and thus 2f−1 divides [G : G′]

(resp. 2f−1 − 1 divides [G : G′]). Now G/G′ 6 Out(G′) and |Out(G′)| = f , where

f is the order of the group of field automorphisms of G′. Then we obtain that 2f−1

divides f (resp. 2f−1−1 divides f). If 2f−1 divides f , then f = 2 and thus 2f −1 = 3;

this contradicts the assumption that 2f − 1 is non-prime. If 2f−1 − 1 divides f , then

f = 2 or 3, and thus 2f + 1 = 5 or 9. Thus since 2f + 1 is non-prime we have

2f + 1 = 9, so that N ∼= L2(8), and from [3], we obtain a contradiction.

Similarly, if q is odd, then arguing as the above paragraph, we obtain a contradic-

tion.

Next we suppose that N ∼= Sz(22m+1) where m > 1. Let χ0 be the Steinberg

character of N , and let ψ be an irreducible constituent of χG
0 . Let P ∈ Syl2(N).

Assume that kG(υ(ψ)) > 3. Note that χ0 is the Steinberg character of N ; thus χ0

is G-invariant. It follows by Lemma 3.3(1) that any non-linear irreducible character

of N is extendible to G (note that the outer automorphism group of Sz(q) is cyclic),

so all the elements of Irr(N) are invariant under G, and thus all the conjugacy classes

of N are G-invariant. The hypothesis yields that N satisfies the property (∗∗). But

by Lemma 3.2 we obtain a contradiction. Hence kG(υ(ψ)) 6 2.

Since kG(υ(ψ)) 6 2, we see that υ(ψ) ⊆ N and kG(υ(ψ)) = 2. By Lemma 3.3(2),

|G/N | is odd and ψN = χ0. Therefore ψ is of 2-defect zero, and ψ(x) = 0 for any

x ∈ G of even order. This implies that P ∈ Syl2(G), and CG(t) is a 2-group for an

involution t. By [22] and since P is non-abelian, G is one of the following groups:

Sz(22m+1) where m > 1, L2(q) where q is a Fermat prime or Mersenne prime, L3(4),

L2(9). Then we obtain a contradiction.

Finally suppose that N is isomorphic to L3(4). Then by [3], we obtain a contra-

diction. The contradiction completes the proof. �
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P r o o f of Theorem B. We need only prove the necessity. Assume first that G

satisfies the property (∗∗). By [2, Theorem 1.1], we may suppose that G has a unique

non-linear irreducible character ϕ such that υ(ϕ) consists of r conjugacy classes of

G with r > 3, but υ(χ) consists of at most two conjugacy classes of G for the other

χ ∈ Irr1(G). �

Step 1. G has the unique minimal normal subgroup N such that G/N is solvable.

Assume this is not the case, then G has a minimal normal subgroup N such that

G/N is non-solvable. By induction, G/N ∼= A5, S5, L2(7), or L2(9).

Case 1. Assume that G/N ∼= A5.

Since G/N ∼= A5, G/N has exactly one conjugacy class of elements of order 3.

Choose a 3-element a of G such that (aN)G/N is the conjugacy class of elements of

order 3 in G/N . Set A = (aN)G/N , and set P ∈ Syl2(G).

We work for a contradiction via several steps.

Step 1.1. kG(A) = 2.

Notice that G/N has two non-linear irreducible characters of degree 3, and that

they vanish on A. It follows from the hypothesis that kG(A) 6 2. Suppose that

kG(A) = 1. Then each χ ∈ Irr(G|N) vanishes on A. By the second orthogonality

relation we have |CG(a)| = |CG/N (aN)| = 3. Hence G has an element a with CG(a)

of order 3. Applying [16, Theorem], we obtain that G = NA, where A is isomorphic

to A5
∼= SL(2, 4) and N is a normal elementary abelian 2-subgroup of order 16;

furthermore, N is isomorphic to the natural SL(2, 4)-module of dimension 2 over a

field of order 4. We easily see that G does not satisfy the hypothesis (see [23, p. 310]).

Therefore, our claim is true.

Step 1.2. ϕ ∈ Irr1(G/N).

Assume otherwise. Then ϕ ∈ Irr(G|N). Take χ3 ∈ Irr(G/N) with χ3(1) = 5. Set

B = υ(χ3). Note that kG(υ(χ3)) = 2. Then the hypothesis implies that kG/N (B) =

2 = kG(B), and hence each χ ∈ Irr(G|N) vanishes on B. By the second orthogonality

relation, we easily see that there exists a 5-element b ∈ G such that |CG(b)| = 5.

Thus b has order 5 and so |G|5 = 5, and (5, |N |) = 1. As b 6∈ N , b acts without fixed

points on N and consequently N is nilpotent, and so N is an elementary abelian

group.

Since kG(A) = 2, we easily conclude that |CG(a)| = 6. As a is a 3-element, a

must have order 3, and so |G|3 = 3 and (3, |N |) = 1. Let t be the unique involution

in CG(a). As |CG/N (aN)| = 3, t ∈ N and consequently N is an elementary abelian

2-group.
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Recall that a fixes exactly one non-identity element of N . So if we set |N | = 2m,

then 2m ≡ 2 (mod 3). As powers of 4 are congruent to 1 modulo 3, m = 2l + 1 is

odd, for some integer l. Recall that G has an element of order 5 acting fixed point

freely on N , so 2m ≡ 1 (mod 5). On the other hand 2m = 2 · 4l ≡ ±2 (mod 5), a

contradiction. Hence ϕ ∈ Irr1(G/N).

Step 1.3. N is an elementary abelian 2-group.

Since ϕ ∈ Irr1(G/N), ϕ(1) = 4, 3, or 5. By Lemma 3.4, we see that N is solvable,

and so N is an elementary abelian group. Recall that kG(A) = 2; observe that N is

an elementary abelian 2-group.

Step 1.4. ϕ(1) = 5.

Take χ3 ∈ Irr(G/N) with χ3(1) = 5. Assume that ϕ(1) = 4 or 3. The hypothesis

implies that kG(υ(χ3)) = 2. Arguing as in Claim 1.2, we obtain a contradiction.

Hence ϕ(1) = 5.

Step 1.5. G = G′ and there exists 1N 6= λ ∈ Irr(N) such that P 6 IG(λ) < G.

Note thatG/G′∩N 6 G/N×G/G′. It follows from the hypothesis thatG/G′∩N ∼=

A5. Then N 6 G′, and so G = G′.

For 1N 6= λ ∈ Irr(N), if λ is G-invariant, then N = Z(G), and since G = G′ we

conclude that N is subgroup of the Schur multiplier of A5, and so G ∼= SL(2, 5). By

[3], SL(2, 5) does not satisfy the property (∗∗), a contradiction. Therefore, IG(λ) < G

for any non-principal λ ∈ Irr(N), and in particular we have that |N | > 2. Since

N ∩ Z(P ) 6= 1, there exists 1N 6= λ ∈ Irr(N) such that P 6 IG(λ) < G.

Step 1.6. We obtain a contradiction.

Since P 6 IG(λ) < G, we see that either IG(λ)/N is a 2-group or IG(λ)/N ∼= A4.

Set T := IG(λ). Let ω be a irreducible constituent of λT , and let χ = ωG. Observe

that χ 6= ϕ. It follows from the definition of induced character that χ vanishes on

υ(ϕ). Recall that kG(υ(ϕ)) = r > 3, we obtain a contradiction.

Case 2. Assume that G/N ∼= S5.

Then ϕ(1) = 6. Choose two 2-elements a, b of G such that aN is an involution

in G/N with |CG/N (aN)| = 8, and that bN is an element of order 4 in G/N . Set

A = (aN)G/N and B = (bN)G/N . The hypothesis yields that A and B are a

conjugacy class of G, respectively, and thus χ(a) = 0 = χ(b) for each χ ∈ Irr(G|N).

Choose a 5-element c of G such that cN is an element of order 5 in G/N . Set C =

(cN)G/N . The hypothesis yields that kG(C) 6 2. Suppose that kG(C) = 1. Then

χ(c) = 0 for each χ ∈ Irr(G|N). Note that χ(a) = 0 = χ(b) for each χ ∈ Irr(G|N);

thus we obtain a contradiction, which shows that kG(C) = 2.
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Observe that |CG(d)| = 10. As d is a 5-element, d must have order 5, and so |G|5 =

5 and (5, |N |) = 1. Let t be the unique involution in CG(d). As |CG/N (dN)| = 5,

t ∈ N and consequently N is an elementary abelian 2-group.

Recall that χ(b) = 0 for any χ ∈ Irr(G|N). By the second orthogonality relation

we have |CG(b)| = |CG/N (bN)| = 4. Hence G has an element b with T = CG(b)

of order 4. Clearly T ⊆ CG(T ) ⊆ CG(b) = T . Recall that G/N ∼= S5, and that

N is an elementary abelian 2-group; then O(G) = 1, where O(G) is the largest

normal subgroup of odd order in G. Since G is non-solvable and G′ < G, we use

[25, Theorem 1, 2] (where O(G) is denoted by K), to conclude that G has a normal

subgroup M with M ∼= PSL(2, q), G ⊆ Aut(M) and |G : M | = 2. It is easy to see

that G ∼= S5, we obtain a contradiction.

Case 3. Assume that G/N ∼= L2(7).

Observe that ϕ ∈ Irr(G/N). Suppose that ϕ(1) = 6. Set χ1, χ2 ∈ Irr(G/N) with

χ1(1) = 7 and χ2(1) = 8. The hypothesis yields that kG/N (υ(χ1)) = 2 = kG(υ(χ1)),

and that kG/N (υ(χ2)) = 2 = kG(υ(χ2)). Hence χ(υ(χ1)) = 0 = χ(υ(χ2)) for each

χ ∈ Irr(G|N), and so kG(υ(χ)) > 4, a contradiction.

For the case when ϕ(1) = 7, 8, or 3, arguing as in the above paragraph, we also

obtain a contradiction.

Case 4. Assume that G/N ∼= L2(9).

In this case, arguing as in the case 3, we also obtain a contradiction.

Hence G has the unique minimal normal subgroup N such that G/N is solvable.

This implies that N 6 G′ < G. In particular, G 6 Aut(N) and G/N 6 Out(N).

Step 2. N = G′.

Assume the contrary, that N < G′. Then G/N is a non-abelian solvable group.

We first show that ϕ ∈ Irr(G/N). Suppose that ϕ ∈ Irr(G|N). Then it follows

from the hypothesis and Lemma 3.3(1) that χG′ is irreducible for any χ ∈ Irr1(G/N).

On the other hand, since G/N is a non-abelian solvable group, there exists χ ∈

Irr1(G/N) such that χG′/N is not irreducible, and thus χG′ is not irreducible, a

contradiction. Therefore, ϕ ∈ Irr(G/N).

Recall that G/N is a solvable group. It follows from the hypothesis and

Lemma 3.3(1) that χG′ is irreducible for any χ ∈ Irr1(G/N) − {ϕ}. Observe

that ϕG′ is not irreducible. Then G/N satisfies the hypothesis of Theorem A. Hence

we have to consider the following four cases.

Case 1. Suppose that G/N is a 2-transitive Frobenius group with kernel G′/N

or G/N is an extra-special 2-group.
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Then we easily see that G′/N is abelian, and thus N = G′′.

Subcase 1.1. Assume that G/G′′ is a 2-transitive Frobenius group with kernel

G′/G′′.

Then by the proof of Theorem A, we conclude that (G′, G′′) is a Camina pair.

Note that N = G′′ is the unique minimal normal subgroup of G, so it follows by

Lemma 2.5 that either G′ is a p-group or G′ is a Frobenius group with kernel G′′.

But G is solvable, a contradiction.

Subcase 1.2. Assume that G/G′′ is an extra-special 2-group.

Since G′/G′′ = Z(G/G′′), all the elements of Irr(G′/G′′) are G-invariant. Note

that any non-linear irreducible character of G′ is extendible to G, so all the elements

of Irr(G′) are invariant under G, and thus all the conjugacy classes of G′ are G-

invariant. The hypothesis yields that υ(χ) consists of at most two conjugacy classes

of G′ for all χ ∈ Irr1(G
′). Note that G′ is non-solvable. By [2, Theorem 1.1], we

have G′ ∼= A5 or L2(7). Thus G′ = G′′ = N , a contradiction.

Case 2. Suppose that G/N ∼= SL(2, 3).

Recall that ϕ ∈ Irr(G/N). The hypothesis implies that ϕ(1) = 3. By Lemma 3.4,

N is a non-abelian simple group. Applying Proposition 3.5, we obtain a contradic-

tion.

Case 3. Suppose that G/N ∼= S4.

Note that ϕ ∈ Irr(G/N). Hence ϕ(1) = 2 or 3. Arguing as in Case 2, we also

obtain a contradiction.

Case 4. Suppose that G/N is a semidirect product of SL(2, 3) and the natural

SL(2, 3)-module.

Let M be the inverse image of the natural SL(2, 3)-module in G. Note that G′/N

is a 2-transitive Frobenius group with kernel M/N and complement isomorphic to

Q8. Set θ ∈ Irr1(G
′/N) with θ(1) = 2, and set χ ∈ Irr(G/N) such that χG′/N = θ.

Note that θ vanishes on G′/N −M/N , thus χ vanishes on G′/N −M/N . Since

M/N < G′′/N < G′/N , kG/N (G′/N −M/N) > 2. On the other hand, χ 6= ϕ, so

it follows from the hypothesis that kG/N (G′/N −M/N) = 2 = kG(G′/N −M/N).

Hence kG(G′′ −M) = 1, and so G′′ is solvable by Lemma 3.3(4). Hence we obtain a

contradiction.

The final contradiction show that N = G′. Then Lemma 3.4 yields that G′ is a

non-abelian simple group. Then Proposition 3.5 implies that G is one of the following

groups: A5, S5, L2(7) or A6. The proof is complete. �
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Remark. Assume that G satisfies the property (∗). If G is non-solvable, then

G ∼= A5 by Theorem B. If G is solvable, then we easily see that G is a ϕ-group.

Observe that if G has the structure described in Theorem A(4), then G does not

satisfy the property (∗). Hence, we obtain the Corollary.
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