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Czechoslovak Mathematical Journal, 60 (135) (2010), 817–833

ON ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF n-TH ORDER

EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH

ADVANCED ARGUMENT

R. Koplatadze, Tbilisi

(Received March 3, 2009)

Abstract. We study oscillatory properties of solutions of the Emden-Fowler type differ-
ential equation

u
(n)(t) + p(t)

∣

∣u(σ(t))
∣

∣

λ
sign u(σ(t)) = 0,

where 0 < λ < 1, p ∈ Lloc(R+ ;R), σ ∈ C(R+ ;R+) and σ(t) > t for t ∈ R+ .
Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of

the above equation are established.
Some results given in this paper generalize the results obtained in the paper by Kiguradze

and Stavroulakis (1998).

Keywords: proper solution, property A, property B

MSC 2010 : 34K15, 34C10

1. Introduction

This work concerns the study of oscillatory properties of the differential equation

(1.1) u(n)(t) + p(t)
∣∣u(σ(t))

∣∣λ signu(σ(t)) = 0,

where p ∈ Lloc(R+;R), σ ∈ C(R+;R+) and

(1.2) 0 < λ < 1, σ(t) > t for t ∈ R+.

It will always be assumed that either the condition

(1.3) p(t) > 0 for t ∈ R+
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or the condition

(1.4) p(t) 6 0 for t ∈ R+

is fulfilled.

Let t0 ∈ R+. A function u : [t0, +∞) → R is said to be a proper solution of

Eq. (1.1) if it is locally absolutely continuous along with its derivatives up to the order

n − 1 inclusive, satisfies (1.1) almost everywhere on [t0, +∞) and sup{|u(s)| : s ∈

[t, +∞)} > 0 for any t ∈ [t0, +∞).

A proper solution u : [t0, +∞) → R of Eq. (1.1) is said to be oscillatory if it

has a sequence of zeros tending to +∞. Otherwise the solution u is said to be

nonoscillatory.

Definition 1.1 ([2]). We say that Eq. (1.1) has Property A if any of its proper

solutions is oscillatory when n is even and either is oscillatory or satisfies

(1.5)
∣∣u(i)(t)

∣∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n − 1)

when n is odd.

Definition 1.2 ([1]). We say that Eq. (1.1) has Property B if any of its proper

solutions either is oscillatory or satisfies (1.5) or

(1.6)
∣∣u(i)(t)

∣∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n − 1)

when n is even, and either is oscillatory or satisfies (1.6) when n is odd.

A number of survey papers and monographs have been devoted to various aspects

of oscillation of nonlinear differential equations (see, for example, [3]–[10]).

Some results analogous to those of this paper are given without proofs in [11]–[13].

2. Some auxiliary lemmas

In the sequel, C̃loc([t0, +∞)) will denote the set of all functions u : [t0, +∞) → R

absolutely continuous on any finite subinterval of [t0, +∞) along with their deriva-

tives of order up to and including n − 1.
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Lemma 2.1 ([1]). Let u ∈ C̃n−1
loc ([t0, +∞)), u(t) > 0 for t > t0, u(n)(t) 6≡ 0 in

any neighborhood of +∞ and u(n)(t) 6 0 (u(n)(t) > 0) for t > t0. Then there exist

t1 > t0 and l ∈ {0, . . . , n} such that l + n is odd (l + n is even) and

u(i)(t) > 0 (i = 0, . . . , l − 1) for t > t1,(2.1l)

(−1)i+l u(i)(t) > 0 (i = l, . . . , n − 1) for t > t1.

In the case l = 0 we mean that only the second inequality in (2.1l) holds, while if

l = n only the first holds and u(n)(t) > 0.

Lemma 2.2 ([14]). Let u ∈ C̃loc([t0, +∞)), u(n)(t) 6 0 (u(n)(t) > 0) and (2.1l)

be satisfied for some l ∈ {1, . . . , n − 1}, where l + n is odd (l + n is even). Then

(2.2)

∫ +∞

t0

tn−l−1
∣∣u(n)(t)

∣∣ dt < +∞.

Moreover, if

(2.3)

∫ +∞

t0

tn−l
∣∣u(n)(t)

∣∣ dt = +∞,

then there exists t∗ > t0 such that

u(i)(t)

tl−i
↓ 0,

u(i)(t)

tl−i−1
↑ +∞ (i = 0, . . . , l − 1),(2.4)

u(t) >
tl−1

l!
u(l−1)(t) for t > t∗(2.5)

and

u(l−1)(t) >
t

(n − l)!

∫ +∞

t

sn−l−1
∣∣u(n)(s)

∣∣ ds(2.6)

+
1

(n − l)!

∫ t

t∗

sn−l
∣∣u(n)(s)

∣∣ ds for t > t∗.

3. Necessary conditions for existence of solutions of type (2.1l)

The results of this section play an important role in establishing sufficient condi-

tions for Eq. (1.1) to have Properties A and B.

Let t0 ∈ R+. By Ul,t0 we denote the set of all solutions of Eq. (1.1) satisfying the

condition (2.1l).
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Theorem 3.1. Let the conditions (1.2), (1.3) ((1.4)) be fulfilled, l ∈ {1, . . . , n−1}

with l + n odd (l + n even) and

(3.1l)

∫ +∞

0

tn−l
(
σ(t)

)λ(l−1)
|p(t)| dt = +∞.

If, moreover, Ul,t0 6= ∅ for some t0 ∈ R+, then for any δ ∈ [0, λ] and k ∈ N we have

(3.2l)

∫ +∞

0

tn−l−1+λ−δ
(
σ(t)

)λ(l−1)(
̺

l,k
(σ(t))

)δ
|p(t)| dt < +∞,

where

̺
l,1

(t) =

(
1 − λ

l! (n − l)!

∫ t

0

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)| dξ ds

) 1
1−λ

,(3.3l)

̺
l,k

(t) =
1

l! (n − l)!

∫ t

0

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)
(3.4l)

×
(
̺

l,k−1
(σ(ξ))

)λ
|p(ξ)| dξ ds, k = 2, 3, . . .

P r o o f. Let t0 ∈ R+ and Ul,t0 6= ∅. By definition of the set Ul,t0 , Eq. (1.1) has

a proper solution u ∈ Ul,t0 satisfying the condition (2.1l). By (2.1l) and (3.1l) it is

clear that the condition (2.3) holds. Thus, by Lemma 2.2, (2.4)–(2.6) are fulfilled

and

u(l−1)(t) >
t

(n − l)!

∫ +∞

t

sn−l−1|p(s)|uλ(σ(s)) ds(3.5)

+
1

(n − l)!

∫ t

t∗

sn−l|p(s)|uλ(σ(s)) ds for t > t∗,

where t∗ is a sufficiently large number.

According to (2.5), from (3.5) we get

u(l−1)(t) >
t

(n − l)!

∫ +∞

t

sn−l−1|p(s)|uλ(σ(s)) ds

−
1

(n − l)!

∫ t

t∗

s d

∫ +∞

s

ξn−l−1|p(ξ)|uλ(σ(ξ)) dξ
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=
t

(n − l)!

∫ +∞

t

sn−l−1|p(s)|uλ(σ(s)) ds

−
t

(n − l)!

∫ +∞

t

sn−l−1|p(ξ)|uλ(σ(ξ)) dξ

+
t∗

(n − l)!

∫ +∞

t∗

ξn−l−1|p(ξ)|uλ(σ(ξ)) dξ

+
1

(n − l)!

∫ +∞

t∗

∫ +∞

s

ξn−l−1|p(ξ)|uλ(σ(ξ)) dξ ds

>
1

(n − l)!

∫ t

t∗

∫ +∞

s

ξn−l−1|p(ξ)|uλ(σ(ξ)) dξ ds

>
1

l! (n − l)!

∫ t

t∗

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)|

×
(
u(l−1)(σ(ξ))

)λ
dξ ds for t > t∗.

Therefore, by (1.2) and the second condition of (2.4) we have

(3.7) x′(t)>
(u(l−1)(t))λ

l! (n − l)!

∫ +∞

t

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)| dξ for t> t∗,

where

(3.8) x(t) =
1

l! (n − l)!

∫ t

t∗

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)(
u(l−1)(σ(ξ))

)λ
|p(ξ)| dξ ds.

Thus, according to (3.6) and (3.8), from (3.7) we get

x′(t) >
xλ(t)

l! (n − l)!

∫ +∞

t

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)| dξ for t > t∗.

Therefore,

x(t) >

(
1 − λ

l! (n− l)!

∫ t

t∗

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)| dξ ds

) 1
1−λ

for t > t∗.

Hence, according to (3.6) and (3.8), we have

(3.9) u(l−1)(t) > ̺
t∗,l,1

(t) for t > t∗,

where

(3.10) ̺
t∗,l,1

=

(
1 − λ

l! (n − l)!

∫ t

t∗

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)| dξ ds

) 1
1−λ

.
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Thus, by (3.6), (3.9) and (3.10), we get

(3.11) u(l−1)(t) > ̺
t∗,l,k

(t) for t > t∗, k = 2, 3, . . . ,

where

̺
t∗,l,k

(t) =
1

l! (n − l)!

∫ t

t∗

∫ +∞

s

ξn−l−1
(
σ(ξ)

)λ(l−1)
|p(ξ)|(3.12)

×
(
̺

t∗,l,k−1
(σ(ξ))

)λ
dξ ds, k = 2, 3, . . . .

On the other hand, by (1.2), (2.1l), (2.5) and (3.11), from (3.5) for any δ ∈ [0, λ] we

have

u(l−1)(t) >
t

l! (n − l)!

∫ +∞

t

sn−l−1
(
σ(s)

)λ(l−1)(
̺

t∗,l,k
(σ(s))

)δ
|p(s)|(3.13)

×
(
u(l−1)(s)

)λ−δ
ds for t > t∗, k = 1, 2, . . . .

If δ = λ, then from (3.13) we get

∫ +∞

t∗

sn−l−1
(
σ(s)

)λ(l−1)(
̺

t∗,l,k
(σ(s))

)λ
|p(s)| ds(3.14)

6 l! (n − l)!
u(l−1)(t∗)

t∗
, k = 1, 2, . . . .

Let δ ∈ [0, λ). Then (3.13) implies

ϕ(t)
(∫ +∞

t
ϕ(s) ds

)λ−δ
>

1

(l! (n − l)!)λ−δ
tn−l−1+λ−δ

(
σ(t)

)λ(l−1)

×
(
̺

t∗,l,k
(σ(t))

)δ
|p(t)| for t > t∗,

where

(3.15) ϕ(t) = tn−l−1
(
σ(t)

)λ(l−1)
|p(t)|

(
̺

t∗,l,k
(σ(t))

)δ(
u(l−1)(t)

)λ−δ
.

Thus, from the last inequality we get

−

∫ y(t)

y(t∗)

ds

sλ−δ
>

1

(l! (n − l)!)λ−δ

∫ t

t∗

sn−l−1+λ−δ
(
σ(s)

)λ(l−1)
(3.16)

× |p(s)|
(
̺

t∗,l,k
(σ(s))

)δ
ds,
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where

(3.17) y(t) =

∫ +∞

t

ϕ(s) ds.

Therefore,

∫ t

t∗

sn−l−1+λ−δ
(
σ(s)

)λ(l−1)
|p(s)|

(
̺

t∗,l,k
(σ(s))

)δ
ds(3.18)

6
(
l!(n − l)!

)λ−δ
∫ y(t∗)

0

ds

sλ−δ
.

By (3.17), without loss of generality we can assume that y(t∗) 6 1. Thus from (3.18)

we have

∫ t

t∗

sn−l−1+λ−δ
(
σ(s)

)λ(l−1)
|p(s)|

(
̺

t∗,l,k
(σ(s))

)δ
ds

6 (l!(n − l)!)λ−δ

∫ 1

0

ds

sλ−δ
=

(l!(n − l)!)λ−δ

1 − λ + δ
for t > t∗.

Passing to the limit in the latter inequality, we obtain

(3.19)

∫ +∞

t∗

sn−l−1+λ−δ
(
σ(s)

)λ(l−1)(
̺

t∗,l,k
(σ(s))

)δ
|p(s)| ds 6

(l!(n − l)!)λ−δ

1 − λ + δ
.

According to (3.14) and (3.19), for any δ ∈ [0, λ] and k ∈ N we have

(3.20)

∫ +∞

t∗

sn−l−1+λ−δ
(
σ(s)

)λ(l−1)(
̺

t∗,l,k
(σ(s))

)δ
|p(s)| ds < +∞.

On the other hand, since

lim
t→+∞

̺
l,k

(t)

̺
t∗,l,k

= 1,

by (3.20) it is obvious that (3.2l) holds, which proves the validity of the theorem. �
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4. Sufficient conditions of nonexistence of solutions of type (2.1l)

Theorem 4.1. Let the conditions (1.2), (1.3) ((1.4)), (3.1l) be fulfilled, l ∈

{1, . . . , n − 1} with l + n odd (l + n even), and assume that for some δ ∈ [0, λ] and

k ∈ N

(4.1l)

∫ +∞

0

tn−l−1+λ−δ
(
σ(t)

)λ(l−1)(
̺

l,k
(σ(t))

)δ
|p(t)| dt = +∞,

where ̺
l,k
is defined by (3.3l) and (3.4l). Then Ul,t0 = ∅ for any t0 ∈ R+.

P r o o f. Assume the contrary. Let there exist t0 ∈ R+ such thatUl,t0 6= ∅. Thus

Eq. (1.1) has a proper solution u : [t0, +∞) → (0, +∞) satisfying the conditions

(2.1l). Since the conditions of Theorem 3.1 are fulfilled, (3.2l) holds for any δ ∈ [0, λ]

and k ∈ N, which contradicts (4.1l). The obtained contradiction proves the validity

of the theorem. �

Theorem 4.2. Let the conditions (1.2), (1.3) ((1.4)) be fulfilled, l ∈ {1, . . . , n−1}

with l + n odd (l + n even), and for some γ ∈ (0, 1) let

(4.2l) lim inf
t→+∞

tγ
∫ +∞

t

sn−l−1
(
σ(s)

)λ(l−1)
|p(s)| ds > 0.

If, moreover, for some δ ∈ [0, λ]

(4.3l)

∫ +∞

0

tn−l−1+λ−δ
(
σ(t)

)λ(l−1)((
σ(t)

) δ(1−γ)
1−λ

)
|p(t)| dt = +∞,

then Ul,t0 = ∅ for any t0 ∈ R+.

P r o o f. Clearly the condition (3.1l) is fulfilled by virtue of (4.2l). On the other

hand, according to (3.3l) and (4.2l) there exist c > 0 and t1 ∈ R+ such that

̺
l,1

(t) > c t
1−γ
1−λ for t > t1.

Therefore, for k = 1 (4.1l) follows from (4.3l), and all conditions of Theorem 4.1

hold, which proves the validity of the theorem. �

In a similar manner one can prove the following theorem.
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Theorem 4.3. Let the conditions (1.2), (1.3) ((1.4)) be fulfilled, l ∈ {1, . . . , n−1}

with l + n odd (l + n even), and

(4.4l) lim inf
t→+∞

t

∫ +∞

t

sn−l−1
(
σ(s)

)λ(l−1)
|p(s)| ds > 0.

If, moreover,

(4.5l)

∫ +∞

0

tn−l−1+λ
(
σ(s)

)λ(l−1)(
ln(σ(s))

) λ
1−λ |p(s)| ds = +∞,

then Ul,t0 = ∅ for any t0 ∈ R+.

Theorem 4.4. Let the conditions (1.2), (1.3), ((1.4)) and (4.2l) hold, l ∈

{1, . . . , n − 1} with l + n odd (l + n even) and for some α ∈ (1, +∞) let

(4.6) lim inf
t→+∞

σ(t)

tα
> 0.

If, moreover, at least one of the conditions:

(4.7) α λ > 1

or αλ < 1 and for some ε > 0

(4.8l)

∫ +∞

0

sn−l−1+ αλ(1−γ)
1−αλ

−ε
(
σ(t)

)λ(l−1)
|p(t)| dt = +∞

holds, then Ul,t0 = ∅ for any t0 ∈ R+.

P r o o f. It suffices to show that the condition (4.1l) is satisfied for some k ∈ N

and σ = λ. Indeed, according to (4.2l) and (4.6) there exist α > 1, γ ∈ (0, 1), c > 0

and t1 ∈ R+ such that

(4.9) tγ
∫ +∞

t

sn−l−1
(
σ(s)

)λ(l−1)
|p(s)| ds > c for t > t1

and

(4.10) σ(t) > c tα for t > t1.

By (3.3l) and (4.2l), it is obvious that lim
t→+∞

̺
l,1

(t) = +∞. Therefore, without loss

of generality we can assume that ̺
l,1

(t) > 1 for t > t1. Thus, by (4.9) from (3.4l) we

get

̺
l,2

(t) >
c

l! (n − l)!

∫ t

t1

s−γ ds =
c

l! (n − l)! (1 − γ)

(
t1−γ − t1−γ

1

)
.
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We can choose t2 > t1 such that

̺
l,2

(t) >
c t1−γ

2l! (n− l)! (1 − γ)
for t > t2.

Thus, by (4.9) and (4.10), from (3.4l) for k = 3 we have

̺
l,3

(t) >

(
c

2l! (n− l)! (1 − γ)

)1+λ

t(1−γ)(1+αλ) for t > t3,

where t3 > t2 is a sufficiently large number. Therefore, for any k0 ∈ N there exists

tk0 ∈ R+ such that for t > tk0 ,

(4.11) ̺
l,k0

(t) >

(
c

2l! (n− l)! (1 − γ)

)1+λ+...+λk0−2

t(1−γ)(1+αλ+...+(αλ)k0−2).

Assume that (4.7) is fulfilled. Choose k0 ∈ N such that (1− γ)(k0 − 1) > 1/λ. Then

according to (4.10) and (4.11) we have

̺λ
l,k0

(t) > c0 t for t > tk0 ,

where c0 > 0. Therefore, by (4.9) and (4.10) it is obvious that (4.1l) holds for δ = λ

and k = k0. In the case when (4.7) holds, the validity of the theorem has been

already proved.

Assume now that (4.8l) is fulfilled. Let ε > 0 and choose k0 ∈ N such that

1 + αλ + . . . + (αλ)k0−2 >
1

1 − αλ
−

ε

(1 − γ)α
.

Then from (4.11) we have

̺
l,k0

(t) > c0 t
1−γ

1−αλ
−

ε
α for t > tk0 ,

where c0 > 0. Therefore, by (4.10)

̺λ
l,k0

(
σ(t)

)
> c1 t

αλ(1−γ)
1−αλ

−ε for t > tk0 ,

where c1 > 0. Consequently, according to (4.8l) it is obvious that (4.1l) holds for

k = k0 and δ = λ. The proof of the theorem is complete. �

In a similar manner one can prove the following theorem.
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Theorem 4.5. Let the conditions (1.2), (1.3), ((1.4)) and (4.4l) be fulfilled,

l ∈ {1, . . . , n − 1} with l + n odd (l + n even), and let there exist α > 0 such that

(4.12) lim inf
t→+∞

t−α lnσ(t) > 0.

Then Ul,t0 = ∅ for any t0 ∈ R+.

5. Differential equations with property A and B

Theorem 5.1. Let the conditions (1.2), (1.3) ((1.4)) be fulfilled and for any

l ∈ {1, . . . , n− 1} with l +n odd (l +n even) let (3.1l) as well as (4.1l) hold for some

δ ∈ [0, λ] and k ∈ N. Let, moreover,

(5.1)

∫ +∞

0

tn−1|p(t)| dt = +∞

when n is odd (n is even) and

(5.2)

∫ +∞

0

(
σ(t)

)λ(n−1)
|p(t)| dt = +∞

in the case when (1.4) holds. Then Eq. (1.1) has Property A(B).

P r o o f. Let Eq. (1.1) have a proper nonoscillatory solution u : [t0, +∞) →

(0, +∞) (the case u(t) < 0 is similar). Then by (1.1), (1.3) ((1.4)) and Lemma 2.1,

there exists l ∈ {0, . . . , n} such that l+n is odd (l+n is even) and the condition (2.1l)

holds. Since the conditions of Theorem 4.1 are fulfilled for any l ∈ {1, . . . , n − 1}

with l + n odd (l + n even), we have l 6∈ {1, . . . , n − 1}. Therefore, n is odd (n is

even) and l = 0, or (1.4) holds and l = n. Let l = 0. Then we will show that the

conditions (1.5) hold. If that is not the case, there exists c > 0 such that u(t) > c

for sufficiently large t. According to (2.10), from (1.1) we have

n−1∑

i=0

(n − i − 1)! ti1
∣∣u(i)(t1)

∣∣ > cλ

∫ t

t1

sn−1|p(s)| ds for t > t1,

where t1 is a sufficiently large number. The latter inequality contradicts the condition

(5.1). Thus, (1.5) is fulfilled.

Now assume that (1.4) holds and l = n. To complete the proof, it suffices to show

that (1.6) is valid when l = n.
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From (2.1n) we have u(σ(t)) > c(σ(t))n−1 for t > t1, where c > 0 and t1 is a

sufficiently large number. Therefore, by (1.4), (5.2) and (2.1n), from (1.1) we get

u(n−1)(t) > u(n−1)(t1) + cλ

∫ t

t1

(σ(s))λ(n−1)|p(s)| ds → +∞ for t → +∞,

i.e., (1.6) holds. Therefore Eq. (1.1) has Property A (B). �

Remark 5.1. Theorem 5.1 is a generalization of Theorem 1.1 [1].

Theorem 5.2. Let the conditions (1.2), (1.3) as well as (5.1) be fulfilled for odd

n, and let

(5.3) lim inf
t→+∞

σλ(t)

t
> 0.

If, moreover, for some δ ∈ [0, λ] and k ∈ N, (4.11) holds when n is even and (4.12)

holds when n is odd, then Eq. (1.1) has Property A.

P r o o f. It is obvious that, according to (4.11), (4.12) and (5.3), for any l ∈

{1, . . . , n−1}, where l+n is odd, the conditions (4.1l) hold. Therefore, all conditions

of Theorem 5.1 for the case of Property A hold, which proves the validity of the

theorem. �

Corollary 5.1. Let the conditions (1.2), (1.3) and (5.3) be fulfilled and for even n

let

(5.4)

∫ +∞

0

tn−2+λp(t) dt = +∞

hold. If, moreover, (5.1) and

(5.5)

∫ +∞

0

tn−3+λ
(
σ(t)

)λ
p(t) dt = +∞

hold for odd n, then Eq. (1.1) has Property A.

P r o o f. It is obvious by (5.4) and (5.5) that for δ = 0, (4.11) and (4.12) are

fulfilled. Thus, all conditions of Theorem 5.2 are fulfilled, which proves the validity

of the theorem. �

Analogously of Theorem 5.2 we can prove
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Theorem 5.3. Let the conditions (1.2), (1.4), (5.2) and (5.3) as well as (5.1) be

fulfilled for even n. If, moreover, for some δ ∈ [0, λ] and k ∈ N, (4.11) holds when n

is odd and (4.12) holds when n is even. Then Eq. (1.1) has Property B.

Corollary 5.2. Let the conditions (1.2), (1.4) and (5.3) be fulfilled and for odd n

let

(5.6)

∫ +∞

0

tn−2+λ|p(t)| dt = +∞

hold. If, moreover, (5.1) and

(5.7)

∫ +∞

0

tn−3+λ
(
σ(t)

)λ
|p(t)| dt = +∞

hold for even n, then Eq. (1.1) has Property B.

Theorem 5.4. Let the conditions (1.2) and (1.3) as well as (5.1) be fulfilled for

odd n, and let

(5.8) lim sup
t→+∞

σλ(t)

t
< +∞.

Then for Eq. (1.1) to have Property A it is sufficient that for some k ∈ N and

δ ∈ [0, λ], (4.1n−1) hold, where ̺
n−1,k

is defined by (3.4n−1).

P r o o f. By (5.8), there exist c > 0 and t1 ∈ R+ such that t > cσλ(t) for t > t1.

Therefore, according to (4.1n−1), for any l ∈ {1, . . . , n − 1} with l + n odd (4.1l)

holds, which proves the validity of the theorem. �

Corollary 5.3. Let the conditions (1.2), (1.3), (5.8) be fulfilled and let

(5.9)

∫ +∞

0

tλ
(
σ(t)

)λ(n−2)
p(t) dt = +∞.

Then Eq. (1.1) has Property A.

Analogously to Theorem 5.4 we can prove

Theorem 5.5. Let the conditions (1.2), (1.4), (5.2), (5.8) be fulfilled. Then for

Eq. (1.1) to have Property B it is sufficient that for some k ∈ N and δ ∈ [0, λ]

(4.1n−2) hold, where ̺n−2,k is defined by (3.4n−2).
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Corollary 5.4. Let the conditions (1.2), (1.4), (5.2), (5.8) be fulfilled and let

(5.10)

∫ +∞

0

t1+λ
(
σ(t)

)λ(n−2)
|p(t)| dt = +∞.

Then Eq. (1.1) has Property B.

Theorem 5.6. Let the conditions (1.2), (1.3) and (5.3) be fulfilled and for even

n let the conditions (4.21) and (4.31) hold. If, moreover, (5.1), (4.22) and (4.32) hold

for odd n, then Eq. (1.1) has Property A.

Theorem 5.7. Let the conditions (1.2), (1.4) and (5.3) be fulfilled and for odd n

let the conditions (4.21) and (4.31) hold. If, moreover, (5.1), (4.22) and (4.32) hold

for even n, then Eq. (1.1) has Property B.

For proving Theorems 5.6 and 5.7, it suffices to note that by (5.3), (4.21) and (4.31)

(by (5.3), (4.22) and (4.32)), for any l ∈ {1, . . . , n − 1} (for any l ∈ {2, . . . , n − 1}),

(4.2l) and (4.3l) hold.

Analogously to Theorems 5.5 and 5.6, using Theorems 4.3 and 4.5, we can prove

Theorems 5.8–5.13.

Theorem 5.8. Let the conditions (1.2), (1.3) and (5.3) be fulfilled and for even

n let the conditions (4.41) and (4.51) hold. If, moreover, (5.1), (4.42) and (4.52) hold

for odd n, then Eq. (1.1) has Property A.

Theorem 5.9. Let the conditions (1.2), (1.4) and (5.3) be fulfilled and for odd n

let the conditions (4.41) and (4.51) hold. If, moreover, (5.1), (4.42) and (4.52) hold

for even n, then Eq. (1.1) has Property B.

Theorem 5.10. Let the conditions (1.2), (1.3), (4.6) and (4.7) be fulfilled and for

even n (for odd n) let the conditions (4.11) ((4.12) and (5.1)) hold. Then Eq. (1.1)

has Property A.

Theorem 5.11. Let the conditions (1.2), (1.4), (4.6) and (4.7) be fulfilled and for

odd n (for even n) let the conditions (4.11) ((4.12) and (5.1)) hold. Then Eq. (1.1)

has Property B.

Theorem 5.12. Let the conditions (1.2), (1.3), (4.6) and (5.3) be fulfilled, where

αλ < 1. If, moreover, for even n (odd n) the conditions (4.21) and (4.81) ((5.1),

(4.22) and (4.82)) hold, then Eq. (1.1) has Property A.
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Theorem 5.13. Let the conditions (1.2), (1.4), (4.6) and (5.3) be fulfilled, where

αλ < 1. If, moreover, for odd n (for even n) the conditions (4.21) and (4.81) ((5.1),

(4.22) and (4.82)) hold, then Eq. (1.1) has Property B.

Remark 5.2. Using Theorems 4.1–4.5 it is possible to get effective conditions for

the validity of properties A and B different from the conditions given above.

6. Necessary and sufficient conditions

Theorem 6.1. Let n be odd (n be even), the conditions (1.2), (1.3) ((1.4)) be

fulfilled and let

(6.1) lim inf
t→+∞

σ(t)

t
2−λ

λ

> 0.

Then the condition (5.1) is necessary and sufficient for Eq. (1.1) to have Property

A(B).

P r o o f. Sufficiency. By virtue of (5.1) and (6.1), when n is odd (when n is even)

the conditions of Corollary 5.1 (of Corollary 5.2) are satisfied. Therefore, according

to the same corollaries, Eq. (1.1) has Property A(B).

Necessity. Assume that Eq. (1.1) has Property A(B) and
∫ +∞

0

tn−1|p(t)| dt < +∞.

Then by [7, Lemma 4.1] there exists c 6= 0 such that (1.1) has a proper solution

u : [t0, +∞) → R satisfying the condition lim
t→+∞

u(t) = c. But this contradicts the

fact that Eq. (1.1) has Property A(B). �

Remark 6.1. Theorem 6.1 is a generalization of Theorem 1.2 [1].

Remark 6.2. The condition (6.1) defines the set of the functions σ for which the

condition (5.1) is necessary and sufficient. It turns out that the number (2 − λ)/λ

is optimal. Indeed, let ε ∈ (0, (1 + λ)/λ), λ ∈ [1/(1 + ε), 1) and γ ∈ (1, 2). Consider

the differential Eq. (1.1), where

p(t) = −γ(γ − 1) . . . (γ − n + 1) t−n−γ(1−λ)(1+ε)), σ(t) = t
2−λ

λ
−ε, t > 1.

It is obvious that the condition (5.1) is fulfilled and

lim inf
t→+∞

σ(t)

t
2−λ

λ

= 0 and lim
t→+∞

σ(t)

t
2−λ

λ
−ε

> 0.

On the other hand, for odd n (for even n), u(t) = tγ is a solution of Eq. (1.1).

Therefore, for odd n (for even n) Eq. (1.1) does not have Property A(B).
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Theorem 6.2. Let n > 3, let the conditions (1.2), (1.4) be fulfilled and

(6.2) lim sup
t→+∞

σ(t)

t
1+λ
2λ

< +∞.

Then the condition (5.2) is necessary and sufficient for Eq. (1.1) to have Property B.

P r o o f. Necessity follows from [7, Lemma 4.1]. On the other hand, by (5.2) and

(6.2) the condition (5.10) is fulfilled. Therefore, sufficiency follows from Corollary 5.4.

�

Remark 6.3. The condition (6.2) defines the set of the functions σ for which the

condition (5.2) is necessary and sufficient. It turns out that the number 1
2 (1 + λ)/λ

is optimal. Indeed, let ε > 0, λ ∈ [1/(1 + 2ε), 1) and γ ∈ (n − 3, n − 2). Consider

Eq. (1.1), where

p(t) = −γ(γ − 1) . . . (γ − n + 1) t−n+γ 1−λ−2ελ
2 , σ(t) = t

1+λ
2λ

+ε, t > 1.

Since λ(1 + 2ε) > 1 and γ ∈ (n − 3, n − 2), we have

∫ +∞

1

(σ(t))λ(n−1)|p(t)| dt = −γ(γ − 1) . . . (γ − n + 1)

×

∫ +∞

1

t−1 · t((n−1)−γ)( λ+2ελ−1
2 ) dt = +∞.

Thus, all conditions of Theorem 6.2 hold, except the condition (6.2). On the other

hand, u(t) = tγ is a solution of Eq. (1.1). Therefore, Eq. (1.1) does not have Prop-

erty B.
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