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FINITE GROUPS
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Abstract. Let kG be a group algebra, and D(kG) its quantum double. We first prove
that the structure of the Grothendieck ring of D(kG) can be induced from the Grothendieck
ring of centralizers of representatives of conjugate classes of G. As a special case, we then
give an application to the group algebra kDn, where k is a field of characteristic 2 and Dn

is a dihedral group of order 2n.
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1. Introduction

The quantum double of a Hopf algebra, also called the Drinfeld double, was defined

by Drinfeld in the study of quantum Yang-Baxter equations. It is defined in terms

of what Drinfeld calls the “quasitriangular Hopf algebra”, and its construction is

based on a general procedure, also due to Drinfeld, assigning to a Hopf algebra

H a quasitriangular Hopf algebra D(H) (see Section 10 in [2]). The Hopf algebra

D(H) is called the quantum double of H . It has brought remarkable applications to

new aspects of representation theory, theoretical physics, non-commutative geometry,

low-dimensional topology and so on.

For a Hopf algebra H with a bijective antipode S, a Yetter-Drinfeld H-module

M is both a left H-module and a right H-comodule satisfying the two equivalent

Project supported by the National Natural Science Foundation of China (No. 10771183)
and Agricultural Machinery Bureau Foundation of Jiangsu Province (No. GXZ08001).
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compatibility conditions

∑

h1 · m0 ⊗ h2m1 =
∑

(h2 · m)0 ⊗ (h2 · m)1h1,
∑

(h · m)0 ⊗ (h · m)1 =
∑

h2 · m0 ⊗ h3m1S
−1(h1)

for all h ∈ H and m ∈ M . The category of Yetter-Drinfeld H-modules is denoted

by HYDH . Majid first proved that the Yetter-Drinfeld category HYDH can be

identified with the category D(H)M of left modules over the quantum double D(H)

(see Proposition 2.1 of [4]).

Now we return to the case that H = kG is a finite dimensional group algebra.

Let K(G) be the set of conjugate classes in G. For any g ∈ G, let CG(g) = {x ∈

G : xg = gx} be the centralizer of g in G. For any C ∈ K(G), fix a gC ∈ C. Then

{gC : C ∈ K(G)} is a set of representatives of conjugate classes in G. Now suppose

that N is a left kCG(gC)-module. Then N↑G = kG⊗kCG(gC) N is a left kG-module.

Define a k-linear map ϕ : N↑G → N↑G ⊗ kG by ϕ(g ⊗ n) = (g ⊗ n)⊗ ggCg−1 for all

g ∈ G, n ∈ N. A straightforward verification shows that (N↑G, ϕ) is a Yetter-Drinfeld

kG-module, denoted by D(N).

Let M be a Yetter-Drinfeld kG-module with coaction ϕ : M → M ⊗ kG. For

C ∈ K(C), let

MC =
⊕

g∈C

Mg

where Mg = {m ∈ M : ϕ(m) = m ⊗ g}. An easy computation shows that Mg is a

kCG(g)-submodule of M ↓CG(g) and MC is a Yetter-Drinfeld kG-submodule of M .

By Corollary 2.3 of [6], we have the following characterization of Yetter-Drinfeld

kG-modules. Let C ∈ K(G) and let N be a kCG(gC)-module. Then D(N) is

an indecomposable (or simple) Yetter-Drinfeld kG-module if and only if N is an

indecomposable (or simple) kCG(gC)-module. LetM be an indecomposable (simple)

Yetter-Drinfeld kG-module. Then there exists a conjugate class C ∈ K(G) such that

M = MC
∼= D(MgC

). Let N1 and N2 be an indecomposable (simple) kCG(gC)-

module. Then D(N1) ∼= D(N2) if and only if N1
∼= N2.

Thus up to isomorphism, there is a 1-1 correspondence between the indecompos-

able (simple) kCG(gC)-modules and indecomposable (simple) Yetter-Drinfeld kG-

modules.

Following the characterization of Yetter-Drinfeld kG-modules and Majid’s result,

we prove that the structure of the Grothendieck ring of D(kG) can be induced

from the Grothendieck ring of centralizers of representatives of conjugate classes

of G. We then give an application to the group algebra kDn, where k is a field of
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characteristic 2, and

Dn =
〈

a, b : an = 1, b2 = 1, (ab)2 = 1
〉

= {1, a, . . . , an−1, b, ba, . . . , ban−1}

is a dihedral group of order 2n.

Throughout this paper we will work over a field k. All modules are left modules,

all comodules are right comodules, and moreover they are finite dimensional over k,

⊗ means ⊗k, and C denotes the complex number field. We refer the reader to [3], [5]

for standard definitions and results concerning Hopf algebras and quantum doubles.

2. Grothendieck ring of finite groups

Let A be a finite-dimensional algebra over k. We fix a full set of non-isomorphic

simple left A-modules V1, V2, . . . , Vm. Let G0(A) denote the Grothendieck group of

the category of finite dimensional left A-modules. This is the abelian group generated

by the isomorphism classes [V ] of left A-modules V modulo the relation [V ] = [U ] +

[W ] for each short exact sequence of A-modules 0 → U → V → W → 0. It is well

known (see Theorem 1.7 of [1]) that G0(A) is a free abelian group with the basis

{[Vi] : i = 1, . . . , m}.

Let H be a finite-dimensional Hopf algebra over k, and let U and V be left H-

modules. Then U ⊗V is also a left H-module with the H-action given by h(u⊗ v) =
∑

h1u⊗h2v, where h ∈ H, u ∈ U and v ∈ V . Define [U ][V ] = [U ⊗V ], then G0(H) is

a ring. IfH is a quasitriangular Hopf algebra, then U⊗V ∼= V ⊗U as left H-modules,

and so G0(H) is a commutative ring (see Proposition VIII.3.1 of [3]). In particular,

the Grothendieck ring of the quantum double of a finite group is commutative.

Lemma 2.1. Let G be a finite group and ϕL the Brauer character afforded by a

finite dimensional kG-module L. Then we have the following well-known results.

(1) ϕL(1) = dimk L;

(2) let

0 → L → M → N → 0

be a short exact sequence of finite dimensional kG-modules, then

ϕM = ϕL + ϕN ;

(3) ϕM⊗N = ϕMϕN .

Let B(kG) denote the ring generated by {ϕL : L is a finite dimensional kG-

module}, which is called the character ring of kG. Then the following proposition

implies that the structure of G0(kG) is totally determined by B(kG).
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Proposition 2.2. Let G be a finite group. Then there is an isomorphism between

the rings G0(kG) and B(kG).

P r o o f. Define maps ϕ : G0(kG) → B(kG) by ϕ([M ]) = ϕM and ϕ−1 :

B(kG) → G0(kG) by ϕ−1(ϕM ) = [M ]. It follows from Lemma 2.1 that ϕ is well

defined. Then ϕ([M ] + [N ]) = ϕ([M ⊕N ]) = ϕM⊕N = ϕM + ϕN = ϕ([M ]) + ϕ([N ])

and ϕ([M ][N ]) = ϕ([M ⊗ N ]) = ϕM⊗N = ϕMϕN = ϕ([M ])ϕ([N ]). Thus ϕ is an

isomorphism of rings. �

Before discussing the structure of the Grothendieck ring of kDn, we fix some

notation. Let x be any integer, and let y, z non-negative integers. We define

[x, y, z] =

{

x, x 6 y;

z − x, x > y + 1,
{x}y =

{

x, x > 0;

y + x, x < 0,
and [x]y = x mod y.

Let

Dn = 〈a, b : an = 1, b2 = 1, (ab)2 = 1〉 = {1, a, . . . , an−1, b, ba, . . . , ban−1}

be a dihedral group of order 2n, k a field of characteristic 2. Suppose that n = 2s+1,

s > 1. Then there are s + 2 conjugate classes in Dn:

{1}, {ai, an−i} (1 6 i 6 s), {ajb : 0 6 j 6 2s},

with representatives 1, a, a2, . . . , as, b respectively, where 1, a, a2, . . . , as are 2-regular.

Hence, there are only s + 1 distinct simple kDn-modules up to isomorphism.

Lemma 2.3. Let M2(k) be the algebra of 2 × 2 matrices over k, and ξ the n-th

primitive root of unity in k. For any 1 6 i 6 s, define Ai, B in M2(k) by

Ai =

(

ξi 0

0 ξ−i

)

, B =

(

0 1

1 0

)

.

Then there is a unique algebra morphism Ωi from kDn to M2(k) such that Ωi(a) =

Ai, Ωi(b) = B for every i.

P r o o f. One can easily check that An
i = B2 = (AiB)2 = E, where E is the

identity matrix in M2(k). Then it follows by the definition of Dn that there is a

unique algebra morphism Ωi from kDn to M2(k). �
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We also define Ω0 : kDn → k, Ω0(a) = Ω0(b) = 1. Then we can show that {Ωi :

0 6 i 6 s} is a complete set of irreducible representations of kDn up to isomorphism.

We denote their corresponding modules by Wi and their Brauer characters by χi.

Then the Brauer character table of kDn is

1 a a2 . . . as

χ0 1 1 1 . . . 1
χi 2 ωi + ω−i ω2i + ω−2i . . . ωsi + ω−si

where ω ∈ C is the n-th primitive root of unity, 1 6 i 6 s.

Theorem 2.4. Let 1 6 i, j 6 s. Then the structure of the Grothendieck ring of

kDn can be described as follows:

[W0]
2 = [W0], [W0][Wi] = [Wi], [Wi]

2 = 2[W0] + [W[2i,s,n]],

[Wi][Wj ] = [W[i+j,s,n]] + [Wi−j ], j < i.

P r o o f. From the above discussion, we can compute the Brauer character of

kDn:
[χ0]

2 = [χ0], [χ0][χi] = [χi], [χi]
2 = 2[χ0] + [χ[2i,s,n]],

[χi][χj ] = [χ[i+j,s,n]] + [χi−j ], j < i.

Hence, the result follows from Proposition 2.2. �

3. Grothendieck ring of quantum double of finite groups

We first give a general method used later for determining the structure of the

Grothendieck ring of the quantum double of finite groups.

Theorem 3.1. Let G be a finite group, k an arbitrary field, and M a Yetter-

Drinfeld kG-module. Let D(N) = kG ⊗kCG(gC) N be a simple Yetter-Drinfeld kG-

module, where gC is a representative of some conjugate class C and N is a simple

kCG(gC)-module. Then the multiplicity of D(N) in M is equal to the multiplicity

of N = D(N)gC
in MgC

as a kCG(gC)-module.

P r o o f. Let

M0 = MgC
⊃ M1 ⊃ . . . ⊃ Mn−1 ⊃ Mn = 0

be a composition series of MgC
, and N a composition factor of MgC

. Then there

exist Mi, Mi+1 such that

Mi/Mi+1
∼= N
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as kCG(gC)-modules. This implies that

D(N) ∼= D(Mi/Mi+1) ∼= D(Mi)/D(Mi+1)

as Yetter-Drinfeld kG-modules. Hence, D(N) is a composition factor of M .

Conversely, let

M0 = M ⊃ M1 ⊃ . . . ⊃ Mm−1 ⊃ Mm = 0

be a composition series of M , and let D(N) be a composition factor of M . Then

there exist M i, M i+1 such that

M i/M i+1 ∼= D(N)

as Yetter-Drinfeld kG-modules. Consequently,

N = D(N)gC

∼= (Mi/Mi+1)gC

∼= M i
gC

/M i+1
gC

as kCG(gC)-modules. Hence, N is a composition factor of MgC
. This completes the

proof. �

Let C1, C2 be conjugate classes in G. Take x ∈ C1, y ∈ C2, and let M , N be

kCG(x)- and kCG(y)-modules, respectively. Let {g1, . . . , gm} and {h1, . . . , hl} be

the sets of left coset representatives of CG(x) and CG(y) in G, respectively. For any

z ∈ G and a simple kCG(z)-module P we can determine the multiplicity of D(P )

in D(M) ⊗ D(N) by Theorem 3.1. Consider the tensor product D(M) ⊗ D(N) as

kG-modules. It contains the subspace

S(z) =
⊕

i,j

(gi ⊗kCG(x) M) ⊗ (hj ⊗kCG(y) N)

where the sum is taken over all indices i, j such that (hjyh−1
j )(gixg−1

i ) = z. Then

S(z) = (D(M) ⊗ D(N))z is a kCG(z)-module, and the multiplicity of D(P ) in

D(M) ⊗ D(N) is equal to the multiplicity of P in S(z) by Theorem 3.1.

In the rest of this section, we assume that k is a field of characteristic 2, n = 2s+1,

s > 1. From the discussion in the preceding section we know that the representatives

of conjugate classes of Dn are 1, ai (1 6 i 6 s), b. Their centralizers are CDn
(1) =

Dn, CDn
(ai) = Cn, CDn

(b) = {1, b}, respectively. Thus we can construct all simple

Yetter-Drinfeld kDn-modules by the characterization in Introduction.

874



Let Wi (0 6 i 6 s) be the simple kDn-modules defined in the preceding section.

Since the centralizer CDn
(1) = Dn, D(Wi) = Wi (0 6 i 6 s) are non-isomorphic

simple Yetter-Drinfeld kDn- modules, with the comodule structures given by

ϕ : Wi → Wi ⊗ kDn, ϕ(wi) = wi ⊗ 1,

where wi ∈ Wi.

Now CDn
(ai) = Cn (1 6 i 6 s) is a cyclic group of order n. The representatives

set of left cosets of CDn
(ai) in Dn is {1, b}. Let Vj be the simple 1-dimensional

kCn-module given by

a · v = ξjv, v ∈ Vj , 0 6 j 6 n − 1,

where ξ is the n-th primitive root of unity in k. For any i (1 6 i 6 s), let V i
j = Vj as

kCn-modules, where the upper index indicates that it is a kCDn
(ai)-module. Then

the induced kDn-modules D(V i
j ) = kDn ⊗kCn

V i
j are non-isomorphic simple Yetter-

Drinfeld kDn-modules of dimension 2, with the comodule structures given by

ϕ : D(V i
j ) → D(V i

j ) ⊗ kDn,

ϕ(b ⊗kCn
vi

j) = (b ⊗kCn
vi

j) ⊗ an−i, ϕ(1 ⊗kCn
vi

j) = (1 ⊗kCn
vi

j) ⊗ ai,

where vi
j ∈ V i

j .

Further, CDn
(b) = 〈b〉 is a cyclic group of order 2, the representatives set of left

cosets of CDn
(b) in Dn is Cn. Let U be the only simple 1-dimensional kCDn

(b)-

module. Then the induced kDn-module D(U) = kDn ⊗k〈b〉 U is a simple Yetter-

Drinfeld kDn-module of dimension n, with the comodule structure given by

ϕ : D(U) → D(U) ⊗ kDn, ϕ(ai ⊗k〈b〉 u) = (ai ⊗k〈b〉 u) ⊗ a2ib,

where 1 6 i 6 n, u ∈ U .

Up to now, we know that D(Wi) (0 6 i 6 s), D(V i
j ) (0 6 j 6 n − 1, 1 6 i 6 s)

and D(U) are all simple Yetter-Drinfeld kDn-modules up to isomorphism.

Theorem 3.2. The ring structure of G0(D(kDn)) can be described as follows.

(1) Let 1 6 i, j 6 s, then

[D(W0)][D(Wi)] = [D(Wi)], [D(Wi)]
2 = 2[D(W0)] + [D(W[2i,s,n])],

[D(W0)]
2 = [D(W0)], [D(Wi)][D(Wj)] = [D(W[i+j,s,n])] + [D(Wi−j)], j < i.

(2) Let 1 6 i 6 s, then

[D(U)][D(W0)] = [D(U)], [D(U)][D(Wi)] = 2[D(U)].
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(3) Let 1 6 i, k 6 s, 0 6 j 6 n − 1, then

[D(W0)][D(V i
j )] = [D(V i

j )], [D(V i
j )][D(Wk)] = [D(V i

[j+k]n
)] + [D(V i

{j−k}n
)].

(4) We have

[D(U)]2 =

s
∑

i=0

[D(Wi)] +

n−1
∑

j=0

s
∑

k=1

[D(V k
j )].

(5) Let 1 6 i1, i2 6 s, 0 6 j1, j2 6 n − 1, then

[D(V i1
j1

)][D(V i2
j2

)] = [D(V i2−i1
{j2−j1}n

)] + [D(V
[i1+i2,s,n]
[j1+j2]n

)], i1 < i2;

[D(V i
j1)][D(V i

j2 )] = [D(W[j2−j1,s,n])] + [D(V
[2i,s,n]
[j1+j2]n

)], j1 < j2;

[D(V i
j )]2 = 2[D(W0)] + [D(V

[2i,s,n]
[2j]n

)].

(6) Let 1 6 i 6 s, 1 6 j 6 n, then

[D(V i
j )][D(U)] = 2[D(U)].

P r o o f. (1) The result follows from Theorem 3.1 and the structure of D(Wi)

(0 6 i 6 s).

(2) Take w ∈ Dn. Consider the subspace

S(w) = ⊕i(a
i ⊗k〈b〉 U) ⊗ (1 ⊗kDn

Wj)

of D(U) ⊗ D(Wj) (0 6 j 6 s), where the sum is taken over all indices i such that

aiba−i = a2ib = w. If w = b, then

S(b) = (1 ⊗k〈b〉 U) ⊗ (1 ⊗kDn
Wj) ∼= U ⊗ Wj

is a kCDn
(b) = k 〈b〉-module.

When j = 0 one can easily check that S(b) ∼= U . When j 6= 0, the Brauer

character χS(b) = 2χ, where χ is the Brauer character afforded by U . By Propo-

sition 2.2, the multiplicity of U in S(b) is 2. Consequently, from the discussion

following Theorem 3.1, the multiplicity of D(U) in D(U) ⊗ D(Wj) is 2. Hence, we

have [D(U)][D(Wj)] = 2[D(U)] by comparing the dimensions of both sides. We will

use this method frequently in the rest of this section. However, we will not explicitly

mention it in the proof, for the sake of simplicity.

(3) Take w ∈ Dn. Consider the subspace

S(w) = ⊕m(bm ⊗kCn
V i

j ) ⊗ (1 ⊗kDn
Wl)
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of D(V i
j ) ⊗ D(Wl) (0 6 l 6 s), where the sum is taken over all indices m such that

bmaib−m = w. If w = ai, then

S(ai) = (1 ⊗kCn
V i

j ) ⊗ (1 ⊗kDn
Wl) ∼= V i

j ⊗ Wl

is a kCDn
(ai) = kCn-module. When l = 0, one can easily check that S(ai) ∼= V i

j .

When l 6= 0, the Brauer character of S(ai)is

1 a a2 . . . an−1

χS(ai) 2 ωj+l + ωj−l ω2(j+l) + ω2(j−l) . . . ω(n−1)(j+l) + ω(n−1)(j−l)

where ω ∈ C is the n-th primitive root of unity. Hence χS(ai) = χ[j+l]n +

χ{j−l}n
, where χ[j+l]n , χ{j−l}n

are irreducible Brauer characters of kCn. Thus

[D(V i
j )][D(Wl)] = [D(V i

[j+l]n
)] + [D(V i

{j−l}n
)].

(4) Take w ∈ Dn. Consider the subspace

S(w) = ⊕j,k(aj ⊗k〈b〉 U) ⊗ (ak ⊗k〈b〉 U)

of D(U) ⊗ D(U), where the sum is taken over all indices j, k such that (akba−k)×

(ajba−j) = a2(k−j) = w. If w = 1, then

S(1) = ⊕j(a
j ⊗k〈b〉 U) ⊗ (aj ⊗k〈b〉 U)

is a kDn-module. The Brauer character of S(1) is

1 a a2 . . . as

χS(1) 2 ωi + ω−i ω2i + ω−2i . . . ωsi + ω−si

where ω ∈ C is the n-th primitive root of unity. Hence χS(1) =
s

∑

i=0

χi, where

χi (0 6 i 6 s) is the irreducible Brauer character of kDn. Thus the multiplicity of

D(Wi) (0 6 i 6 s) in D(U) ⊗ D(U) is 1. If w = a, then

S(a) = ⊕j(a
j ⊗k〈b〉 U) ⊗ (aj+s+1 ⊗k〈b〉 U)

is a kCDn
(a) = kCn-module. The Brauer character of S(a) is

1 a a2 . . . an−1

χS(a) n 0 0 . . . 0

Hence χS(a) =
n−1
∑

j=0

χj , where χj (0 6 j 6 n − 1) is the irreducible Brauer character

of kCn. Thus the multiplicity of D(V 1
j ) (0 6 j 6 n − 1) in D(U) ⊗ D(U) is 1.
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Similarly, we can show that the multiplicity of D(V i
j ) (2 6 i 6 s, 0 6 j 6 n − 1) in

D(U) ⊗ D(U) is also 1.

(5) We only prove the first equation, since the others can be done similarly. Take

w ∈ Dn. Consider the subspace

S(w) = ⊕i,j(b
i ⊗kCn

V i1
j1

) ⊗ (bj ⊗kCn
V i2

j2
)

ofD(V i1
j1

)⊗D(V i2
j2

), where the sum is taken over all indices i, j such that (bjai2b−j)×

(biai1b−i) = w. If w = ai2−i1 , then

S(ai2−i1) = (b ⊗kCn
V i1

j1
) ⊗ (1 ⊗kCn

V i2
j2

) ∼= V i2−i1
{j2−j1}n

is a kCDn
(ai2−i1) = kCn-module. Hence the multiplicity ofD(V i2−i1

{j2−j1}n
) inD(V i1

j1
)⊗

D(V i2
j2

) is 1. If w = ai1+i2 , then

S(ai1+i2) = (1 ⊗kCn
V i1

j1
) ⊗ (1 ⊗kCn

V i2
j2

) ∼= V
[i1+i2,s,n]
[j1+j2]n

is a kCDn
(ai1+i2) = kCn-module. Hence, the multiplicity of D(V

[i1+i2,s,n]
[j1+j2]n

) in

D(V i1
j1

) ⊗ D(V i2
j2

) is 1. Thus, [D(V i1
j1

)][D(V i2
j2

)] = [D(V i2−i1
{j2−j1}n

)] + [D(V
[i1+i2,s,n]
[j1+j2]n

)],

i1 < i2.

(6) Take w ∈ Dn. Consider the subspace

S(w) = ⊕l,k(bl ⊗kCn
V i

j ) ⊗ (ak ⊗k〈b〉 U)

of D(V i
j ) ⊗ D(U), where the sum is taken over all indices l, k such that (akba−k)×

(blaib−l) = w. If w = b and i is odd, then

S(b) = (1 ⊗kCn
V i

j ) ⊗ (a(n+i)/2 ⊗k〈b〉 U) ⊕ (b ⊗kCn
V i

j ) ⊗ (a(n−i)/2 ⊗k〈b〉 U)

is a kCDn
(b) = k 〈b〉-module. One can easily check that the multiplicity of U in S(b)

is 2. If w = b and i is even, then

S(b) = (1 ⊗kCn
V i

j ) ⊗ (ai/2 ⊗k〈b〉 U) ⊕ (b ⊗kCn
V i

j ) ⊗ (a(2n−i)/2 ⊗k〈b〉 U)

is a kCDn
(b) = k 〈b〉-module. It is also easy to check that the multiplicity of U in

S(b) is 2. Hence the multiplicity of D(U) in D(V i
j )⊗D(U) is 2. This completes the

proof. �

Remark 3.3. I have computed the Grothendieck ring of D(kDn) in the cases

n = 3, 5, 7 and found out that their generators are [D(V 1
0 )], [D(V 1

1 )], [D(U)]. Hence

I guess the generators of G0(D(kDn)) are [D(V 1
0 )], [D(V 1

1 )], [D(U)] for arbitrary n.
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Remark 3.4. In case n is even, we can proceed similarly. However, the compu-

tation is very tedious. So I omit this case.
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