Mathematica Bohemica

E. M. E. Zayed; M. A. El-Moneam

On the rational recursive sequence $x_{n+1}=\left(A+\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right) / \sum_{i=0}^{k} \beta_{i} x_{n-i}$

Mathematica Bohemica, Vol. 133 (2008), No. 3, 225-239
Persistent URL: http://dml.cz/dmlcz/140612

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON THE RATIONAL RECURSIVE SEQUENCE

$$
x_{n+1}=\left(A+\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right) / \sum_{i=0}^{k} \beta_{i} x_{n-i}
$$

E. M. E. Zayed, El-Taif, M. A. El-Moneam, Zagazig
(Received December 17, 2006)

Abstract. The main objective of this paper is to study the boundedness character, the periodic character, the convergence and the global stability of positive solutions of the difference equation

$$
x_{n+1}=\left(A+\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right) / \sum_{i=0}^{k} \beta_{i} x_{n-i}, \quad n=0,1,2, \ldots
$$

where the coefficients A, α_{i}, β_{i} and the initial conditions $x_{-k}, x_{-k+1}, \ldots, x_{-1}, x_{0}$ are positive real numbers, while k is a positive integer number.

Keywords: difference equations, boundedness character, period two solution, convergence, global stability

MSC 2010: 39A10, 39A11, 39A99, 34C99

1. Introduction

Our goal in this paper is to investigate the boundedness character, the periodic character, the convergence and the global stability of positive solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\left(A+\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right) / \sum_{i=0}^{k} \beta_{i} x_{n-i}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where the coefficients A, α_{i}, β_{i} and the initial conditions $x_{-k}, x_{-k+1}, \ldots, x_{-1}, x_{0}$ are positive real numbers, while k is a positive integer number. The case when any of A, α_{i}, β_{i} is allowed to be zero gives different special cases of the equation (1) which
have been studied by many authors (see for example [1]-[14]). For related work see [15]-[27]. The study of these equations is challenging and rewarding and is still in its infancy. We believe that nonlinear rational difference equations are of paramount importance in their own right. Furthermore, the results about such equations offer prototypes for the development of the basic theory of the global behavior of nonlinear difference equations.

Definition 1. A difference equation of order $(k+1)$ is of the form

$$
x_{n+1}=F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1,2, \ldots
$$

where F is a continuous function which maps some set J^{k+1} into J and J is a set of real numbers. An equilibrium point \tilde{x} of this equation is a point that satisfies the condition $\tilde{x}=F(\tilde{x}, \tilde{x}, \ldots, \tilde{x})$. That is, the constant sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ with $x_{n}=\tilde{x}$ for all $n \geqslant-k$ is a solution of that equation.

Definition 2. Let $\tilde{x} \in(0, \infty)$ be an equilibrium point of the difference equation (1). Then
(i) An equilibrium point \tilde{x} of the difference equation (1) is called locally stable if for every $\varepsilon>0$ there exists $\delta>0$ such that, if $x_{-k}, \ldots, x_{-1}, x_{0} \in(0, \infty)$ with $\left|x_{-k}-\tilde{x}\right|+\ldots+\left|x_{-1}-\tilde{x}\right|+\left|x_{0}-\tilde{x}\right|<\delta$, then $\left|x_{n}-\tilde{x}\right|<\varepsilon$ for all $n \geqslant-k$.
(ii) An equilibrium point \tilde{x} of the difference equation (1) is called locally asymptotically stable if it is locally stable and there exists $\gamma>0$ such that, if $x_{-k}, \ldots, x_{-1}, x_{0} \in$ $(0, \infty)$ with $\left|x_{-k}-\tilde{x}\right|+\ldots+\left|x_{-1}-\tilde{x}\right|+\left|x_{0}-\tilde{x}\right|<\gamma$, then

$$
\lim _{n \rightarrow \infty} x_{n}=\tilde{x} .
$$

(iii) An equilibrium point \tilde{x} of the difference equation (1) is called a global attractor if for every $x_{-k}, \ldots, x_{-1}, x_{0} \in(0, \infty)$ we have

$$
\lim _{n \rightarrow \infty} x_{n}=\tilde{x} .
$$

(iv) An equilibrium point \tilde{x} of the equation (1) is called globally asymptotically stable if it is locally stable and a global attractor.
(v) An equilibrium point \tilde{x} of the difference equation (1) is called unstable if it is not locally stable.

Definition 3. We say that a sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is bounded and persists if there exist positive constants m and M such that

$$
m \leqslant x_{n} \leqslant M \quad \text { for all } n \geqslant-k
$$

Definition 4. A sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is said to be periodic with period p if $x_{n+p}=x_{n}$ for all $n \geqslant-k$. A sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is said to be periodic with prime period p if p is the smallest positive integer having this property.

Assume that $\tilde{a}=\sum_{i=0}^{k} \alpha_{i}, \bar{a}=\sum_{i=0}^{k}(-1)^{i} \alpha_{i}, \tilde{b}=\sum_{i=0}^{k} \beta_{i}$ and $\bar{b}=\sum_{i=0}^{k}(-1)^{i} \beta_{i}$. Since the coefficients A, α_{i}, β_{i} are positive, a positive equilibrium point \tilde{x} of Eq. (1) is a solution of the equation

$$
\begin{equation*}
\tilde{x}=\frac{A+\tilde{a} \tilde{x}}{\tilde{b} \tilde{x}} \tag{2}
\end{equation*}
$$

Consequently, the positive equilibrium point \tilde{x} of the difference equation (1) is given by

$$
\tilde{x}=\tilde{x}_{1,2}=\frac{\tilde{a} \pm \sqrt{\tilde{a}^{2}+4 A \tilde{b}}}{2 \tilde{b}}
$$

Let $F:(0, \infty)^{k+1} \longrightarrow(0, \infty)$ be a continuous function defined by

$$
\begin{equation*}
F\left(u_{0}, u_{1}, \ldots, u_{k}\right)=\left(A+\sum_{i=0}^{k} \alpha_{i} u_{i}\right) / \sum_{i=0}^{k} \beta_{i} u_{i} \tag{3}
\end{equation*}
$$

We have

$$
y_{n+1}=\sum_{j=0}^{k} \frac{\partial F(\tilde{x}, \ldots, \tilde{x})}{\partial u_{j}} y_{n-j}
$$

and then the linearized equation is

$$
\begin{equation*}
y_{n+1}=\sum_{j=0}^{k} b_{j} y_{n-j} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j}=\left(\alpha_{j}-\beta_{j} \tilde{x}\right) / \tilde{b} \tilde{x} \tag{5}
\end{equation*}
$$

The characteristic equation of the linearized equation (4) is given by

$$
\begin{equation*}
\lambda^{n+1}=\sum_{j=0}^{k} b_{j} \lambda^{n-j} \tag{6}
\end{equation*}
$$

which can be rewritten in the form

$$
\begin{equation*}
\sum_{j=0}^{k} b_{j} \lambda^{-j-1}=1 \tag{7}
\end{equation*}
$$

2. Main Results

In this section we establish some results which show that the positive equilibrium point \tilde{x} of the difference equation (1) is globally asymptotically stable and every positive solution of the difference equation (1) is bounded and has prime period two.

Theorem 1 ([13] The linearized stability theorem).
Suppose F is a continuously differentiable function defined on an open neighbourhood of the equilibrium \tilde{x}. Then the following statements are true.
(i) If all roots of the characteristic equation (6) of the linearized equation (4) have absolute value less than one, then the equilibrium point \tilde{x} is locally asymptotically stable.
(ii) If at least one root of Eq. (6) has absolute value greater than one, then the equilibrium point \tilde{x} is unstable.
(iii) If all roots of Eq. (6) have absolute value greater than one, then the equilibrium point \tilde{x} is a source.

Theorem 2 (See [4], [10], [13], [17]). Assume that $a, b \in \mathbb{R}$ and $k \in\{0,1,2, \ldots\}$. Then

$$
\begin{equation*}
|a|+|b|<1 \tag{8}
\end{equation*}
$$

is a sufficient condition for the asymptotic stability of the difference equation

$$
\begin{equation*}
x_{n+1}+a x_{n}+b x_{n-k}=0, \quad n=0,1, \ldots \tag{9}
\end{equation*}
$$

Remark 1 (See [13]). Theorem 1 can be easily extended to a general linear difference equation of the form

$$
\begin{equation*}
x_{n+k}+p_{1} x_{n+k-1}+\ldots+p_{k} x_{n}=0, \quad n=0,1,2, \ldots \tag{10}
\end{equation*}
$$

where $p_{1}, p_{2}, \ldots, p_{k} \in \mathbb{R}$ and $k \in\{1,2, \ldots\}$. We can see that the equation (10) is asymptotically stable provided that

$$
\begin{equation*}
\sum_{i=1}^{k}\left|p_{i}\right|<1 . \tag{11}
\end{equation*}
$$

Theorem 3 (See [13]). Consider the difference equation

$$
x_{n+1}=F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

where $F \in C\left(I^{k+1}, \mathbb{R}\right)$ where I is an open interval of real numbers and \mathbb{R} is the set of real numbers. Let $\tilde{x} \in I$ be an equilibrium of this equation. Suppose also that
(i) F is a nondecreasing function in each of its arguments.
(ii) F satisfies the negative feedback property

$$
(x-\tilde{x})[F(x, x, \ldots, x)-x]<0 \quad \text { for all } x \in I-\{\tilde{x}\} .
$$

Then the equilibrium point \tilde{x} is a global attractor.
The following lemma is an extension of that obtained in [16], [22] which is needed here.

Lemma 4. Suppose that $b_{j}(j=0,1, \ldots, k)$ are real numbers such that $\sum_{j=0}^{k}\left|b_{j}\right| \neq$ 0 and $\sigma_{j}(j=0,1, \ldots, k)$ are positive integers. Then the equation $\sum_{j=0}^{k}\left|b_{j}\right| x^{-\sigma_{j}}=1$ has a unique solution in $x \in(0, \infty)$.

Theorem 5. If all roots of the polynomial equation (6) lie in the open unit disk $|\lambda|<1$, then

$$
\begin{equation*}
\sum_{j=0}^{k}\left|b_{j}\right|<1 . \tag{12}
\end{equation*}
$$

Proof. Assume that μ is a nonzero root of the equation (6) satisfying $|\mu|<1$. Let us write $\mu=r \exp (\mathrm{i} \theta), \mathrm{i}=\sqrt{-1}$ and then write (7) in the form

$$
\begin{equation*}
\sum_{j=0}^{k} b_{j} r^{-j-1} \cos (j+1) \theta=1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k} b_{j} r^{-j-1} \sin (j+1) \theta=0 \tag{14}
\end{equation*}
$$

Let us now discuss the following cases:
Case 1. If $b_{j}>0(j=0,1, \ldots, k)$, then by virtue of Lemma 4 we see that the equation $\sum_{j=0}^{k} b_{j} \varrho_{1}^{-j-1}=1$ has a unique solution $\varrho_{1} \in(0, \infty)$. Thus, $(r, \theta)=\left(\varrho_{1}, n \pi\right)$ where $n=0,2,4, \ldots$ is a solution of the equations (13), (14). This implies that $\varrho_{1}=r=|\mu|<1$. But then we get

$$
1=\sum_{j=0}^{k} b_{j} \varrho_{1}^{-j-1}>\sum_{j=0}^{k}\left|b_{j}\right| .
$$

Case 2. If $b_{j}<0(j=0,2,4, \ldots)$ and $b_{j}>0(j=1,3,5, \ldots)$, then by virtue of Lemma 4 we see that the equation $\sum_{j=0}^{k}\left|b_{j}\right| \varrho_{2}^{-j-1}=1$ has a unique solution $\varrho_{2} \in$ $(0, \infty)$. Thus, $(r, \theta)=\left(\varrho_{2}, n \pi\right)$ where $n=1,3,5, \ldots$ is a solution of the equations (13), (14). This implies that $\varrho_{2}=r=|\mu|<1$. But then we get

$$
1=\sum_{j=0}^{k}\left|b_{j}\right| \varrho_{2}^{-j-1}>\sum_{j=0}^{k}\left|b_{j}\right| .
$$

Thus, the proof of Theorem 5 is completed.

Theorem 6. Let $\left\{x_{n}\right\}_{n=-k}^{\infty}$ be a positive solution of the difference equation (1) such that for some $n_{0} \geqslant 0$,

$$
\begin{align*}
\text { either } & x_{n} \geqslant \tilde{x}_{1} \quad \text { for all } n \geqslant n_{0} \tag{15}\\
\text { or } & x_{n} \leqslant \tilde{x}_{1} \quad \text { for all } n \geqslant n_{0} . \tag{16}
\end{align*}
$$

Then $\left\{x_{n}\right\}$ converges to the equilibrium point \tilde{x}_{1} as $n \rightarrow \infty$.
Proof. Assume that (15) holds. The case when (16) holds is similar and will be omitted. Then for $n \geqslant n_{0}+k$ we deduce that

$$
\begin{aligned}
x_{n+1} & =\left(A+\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right) / \sum_{i=0}^{k} \beta_{i} x_{n-i} \\
& =\left[\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right]\left[\left(1+\frac{A}{\sum_{i=0}^{k} \alpha_{i} x_{n-i}}\right) / \sum_{i=0}^{k} \beta_{i} x_{n-i}\right] \\
& \leqslant\left[\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right] \frac{\left[1+\left(A / \tilde{a} \tilde{x}_{1}\right)\right]}{\tilde{b} \tilde{x}_{1}}=\left[\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right] \frac{\left(A+\tilde{a} \tilde{x}_{1}\right)}{\tilde{a} \tilde{b} \tilde{x}_{1}^{2}} .
\end{aligned}
$$

With the aid of (2) the last inequality becomes

$$
x_{n+1} \leqslant\left[\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right] \frac{\left(A+\tilde{a} \tilde{x}_{1}\right)}{\tilde{b} \tilde{x}_{1}}\left(\frac{1}{\tilde{a} \tilde{x}_{1}}\right) \leqslant \sum_{i=0}^{k} \alpha_{i} x_{n-i} / \tilde{a}
$$

and so

$$
\begin{equation*}
x_{n+1} \leqslant \max _{0 \leqslant i \leqslant k}\left\{x_{n-i}\right\} \quad \text { for } n \geqslant n_{0}+k . \tag{17}
\end{equation*}
$$

Set

$$
\begin{equation*}
y_{n}=\max _{0 \leqslant i \leqslant k}\left\{x_{n-i}\right\} \quad \text { for } n \geqslant n_{0}+k . \tag{18}
\end{equation*}
$$

Then clearly

$$
\begin{equation*}
y_{n} \geqslant x_{n+1} \geqslant \tilde{x}_{1} \quad \text { for } n \geqslant n_{0}+k . \tag{19}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
y_{n+1} \leqslant y_{n} \quad \text { for } n \geqslant n_{0}+k \tag{20}
\end{equation*}
$$

We have

$$
y_{n+1}=\max _{0 \leqslant i \leqslant k}\left\{x_{n+1-i}\right\}=\max \left\{x_{n+1}, \max _{0 \leqslant i \leqslant k-1}\left\{x_{n-i}\right\}\right\} \leqslant \max \left\{x_{n+1}, y_{n}\right\}=y_{n} .
$$

From (19) and (20) it follows that the sequence $\left\{y_{n}\right\}$ is convergent and that

$$
\begin{equation*}
y=\lim _{n \rightarrow \infty} y_{n} \geqslant \tilde{x}_{1} . \tag{21}
\end{equation*}
$$

To complete the proof, it suffices to prove that $y \leqslant \tilde{x}_{1}$. To this end, we note that

$$
x_{n+1} \leqslant\left(A+\sum_{i=0}^{k} \alpha_{i} x_{n-i}\right) / \tilde{b} \tilde{x}_{1} \leqslant\left(A+\tilde{a} y_{n}\right) / \tilde{b} \tilde{x}_{1}
$$

From this and by using (20) we obtain

$$
x_{n+i} \leqslant\left(A+\tilde{a} y_{n+i-1}\right) / \tilde{b} \tilde{x}_{1} \leqslant\left(A+\tilde{a} y_{n}\right) / \tilde{b} \tilde{x}_{1} \quad \text { for } i=1, \ldots, k+1 .
$$

Then

$$
\begin{equation*}
y_{n+k+1}=\max _{1 \leqslant i \leqslant k+1}\left\{x_{n+i}\right\} \leqslant\left(A+\tilde{a} y_{n}\right) / \tilde{b} \tilde{x}_{1} \tag{22}
\end{equation*}
$$

and letting $n \longrightarrow \infty$, we have

$$
y \leqslant \frac{A+\tilde{a} y}{\tilde{b} \tilde{x}_{1}}
$$

Consequently, we obtain

$$
\begin{equation*}
y\left(1-\frac{\tilde{a}}{\tilde{b} \tilde{x}_{1}}\right) \leqslant \frac{A}{\tilde{b} \tilde{x}_{1}} . \tag{23}
\end{equation*}
$$

From (2) and (23) we deduce that

$$
\frac{y}{\tilde{x}_{1}}\left(\frac{\tilde{b} \tilde{x}_{1}-\tilde{a}}{\tilde{b}}\right) \leqslant\left(\frac{\tilde{b} \tilde{x}_{1}-\tilde{a}}{\tilde{b}}\right) .
$$

Since $\tilde{x}_{1}>\tilde{a} / \tilde{b}$, the term in the two brackets is positive. Thus, we have $y \leqslant \tilde{x}_{1}$. Therefore, we have $\lim _{n \rightarrow \infty} y_{n}=\tilde{x}_{1}$ and with help of (19) we obtain $\lim _{n \rightarrow \infty} x_{n}=\tilde{x}_{1}$. The proof of Theorem 6 is completed.

Theorem 7. If $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is a positive solution of Eq. (1) which is monotonic increasing, then it is bounded and persists.

Proof. Let $\left\{x_{n}\right\}_{n=-k}^{\infty}$ be a positive solution of the difference equation (1). It follows from Eq. (1) that

$$
x_{n+1}=\left(A+\alpha_{0} x_{n}+\alpha_{1} x_{n-1}+\ldots+\alpha_{k} x_{n-k}\right) /\left(\beta_{0} x_{n}+\beta_{1} x_{n-1}+\ldots+\beta_{k} x_{n-k}\right) .
$$

Since $\beta_{0} x_{n}<\beta_{0} x_{n}+\beta_{1} x_{n-1}+\ldots+\beta_{k} x_{n-k}$, we have

$$
A /\left(\beta_{0} x_{n}+\beta_{1} x_{n-1}+\ldots+\beta_{k} x_{n-k}\right)<A /\left(\beta_{0} x_{n}\right)
$$

and also we note that

$$
\left(\alpha_{0} x_{n}\right) /\left(\beta_{0} x_{n}+\beta_{1} x_{n-1}+\ldots+\beta_{k} x_{n-k}\right)<\frac{\alpha_{0}}{\beta_{0}}
$$

Similarly, we can show that

$$
\left(\alpha_{1} x_{n-1}\right) /\left(\beta_{0} x_{n}+\beta_{1} x_{n-1}+\ldots+\beta_{k} x_{n-k}\right)<\frac{\alpha_{1}}{\beta_{1}}
$$

and so on. Now, we deduce that

$$
\begin{equation*}
x_{n+1} \leqslant \frac{A}{\beta_{0} x_{n}}+\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{i}}, \quad n \geqslant 0 . \tag{24}
\end{equation*}
$$

Since the sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is positive and monotonic increasing, we have $x_{n+1} \geqslant$ x_{n} and hence (24) can be rewritten in the form

$$
x_{n}^{2}-x_{n} \sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{i}} \leqslant \frac{A}{\beta_{0}} .
$$

Consequently, we have

$$
\left(x_{n}-\frac{1}{2} \sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{i}}\right)^{2} \leqslant \frac{1}{4}\left(\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{i}}\right)^{2}+\frac{A}{\beta_{0}} .
$$

From this we deduce that

$$
\begin{equation*}
x_{n} \leqslant \frac{1}{2}\left[\left(\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{i}}\right)+\sqrt{\left(\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{i}}\right)^{2}+\frac{4 A}{\beta_{0}}}\right]=M, \tag{25}
\end{equation*}
$$

where M is a positive constant. On the other hand, the change of variables $x_{n}=1 / z_{n}$ transforms the equation (1) to

$$
\begin{equation*}
\frac{1}{z_{n+1}}=\left(A+\sum_{i=0}^{k} \frac{\alpha_{i}}{z_{n-i}}\right) / \sum_{i=0}^{k} \frac{\beta_{i}}{z_{n-i}} . \tag{26}
\end{equation*}
$$

Consequently, we get

$$
\begin{aligned}
z_{n+1}= & \beta_{0} z_{n-1} \ldots z_{n-k}+\beta_{1} z_{n} z_{n-2} \ldots z_{n-k}+\ldots+\beta_{k} z_{n} z_{n-1} \ldots z_{n-k+1} \\
& \times\left(A z_{n} z_{n-1} \ldots z_{n-k}+\alpha_{0} z_{n-1} \ldots z_{n-k}\right. \\
& \left.+\alpha_{1} z_{n} z_{n-2} \ldots z_{n-k}+\ldots+\alpha_{k} z_{n} z_{n-1} \ldots z_{n-k+1}\right)^{-1}
\end{aligned}
$$

from which we deduce that

$$
\alpha_{0} z_{n-1} \ldots z_{n-k}<A z_{n} z_{n-1} \ldots z_{n-k}+\alpha_{0} z_{n-1} \ldots z_{n-k}+\ldots+\alpha_{k} z_{n} z_{n-1} \ldots z_{n-k+1}
$$

and hence

$$
\begin{aligned}
& \beta_{0} z_{n-1} \ldots z_{n-k} \\
& \quad \times\left(A z_{n} z_{n-1} \ldots z_{n-k}+\alpha_{0} z_{n-1} \ldots z_{n-k}+\ldots+\alpha_{k} z_{n} z_{n-1} \ldots z_{n-k+1}\right)^{-1}<\frac{\beta_{0}}{\alpha_{0}} .
\end{aligned}
$$

Similarly, we see that

$$
\begin{aligned}
& \beta_{1} z_{n} z_{n-2} \ldots z_{n-k} \\
& \quad \times\left(A z_{n} z_{n-1} \ldots z_{n-k}+\alpha_{0} z_{n-1} \ldots z_{n-k}+\ldots+\alpha_{k} z_{n} z_{n-1} \ldots z_{n-k+1}\right)^{-1}<\frac{\beta_{1}}{\alpha_{1}},
\end{aligned}
$$

and so on. Now, we deduce that

$$
z_{n+1} \leqslant \sum_{i=0}^{k} \frac{\beta_{i}}{\alpha_{i}}=H, \quad \text { for all } n \geqslant 0
$$

Thus, we obtain

$$
\begin{equation*}
x_{n}=\frac{1}{z_{n}} \geqslant \frac{1}{H}=m, \tag{27}
\end{equation*}
$$

where H and m are positive constants. From (25) and (27) we get

$$
m \leqslant x_{n} \leqslant M
$$

Therefore, the solution of the difference equation (1) is bounded and persists. The proof of Theorem 7 is completed.

Theorem 8. The positive equilibrium points $\tilde{x}_{1,2}$ of the difference equation (1) are globally asymptotically stable.

Proof. The linearized equation (4) with the equation (5) can be written in the form

$$
y_{n+1}+\sum_{j=0}^{k} \frac{\beta_{j} \tilde{x}_{i}-\alpha_{j}}{\tilde{b} \tilde{x}_{i}} y_{n-j}=0 \quad(i=1,2),
$$

and its characteristic equation is

$$
\lambda^{n+1}+\sum_{j=0}^{k} \frac{\beta_{j} \tilde{x}_{i}-\alpha_{j}}{\tilde{b} \tilde{x}_{i}} \lambda^{n-j}=0 \quad(i=1,2) .
$$

Now, we discuss the following cases:
C ase 1. Since $\tilde{x}_{1}>\tilde{a} / \tilde{b}$, we have

$$
\sum_{j=0}^{\infty}\left|\frac{\beta_{j} \tilde{x}_{1}-\alpha_{j}}{\tilde{b} \tilde{x}_{1}}\right|=\sum_{j=0}^{\infty} \frac{\beta_{j} \tilde{x}_{1}-\alpha_{j}}{\tilde{b} \tilde{x}_{1}}=\frac{\tilde{b} \tilde{x}_{1}-\tilde{a}}{\tilde{b} \tilde{x}_{1}}=\frac{\sqrt{\tilde{a}^{2}+4 A \tilde{b}}-\tilde{a}}{\sqrt{\tilde{a}^{2}+4 A \tilde{b}}+\tilde{a}}<1 .
$$

Case 2. Since $\tilde{x}_{2}<\tilde{a} / \tilde{b}$, we have

$$
\sum_{j=0}^{\infty}\left|\frac{\beta_{j} \tilde{x}_{2}-\alpha_{j}}{\tilde{b} \tilde{x}_{2}}\right|=\sum_{j=0}^{\infty} \frac{\alpha_{j}-\beta_{j} \tilde{x}_{2}}{\tilde{b} \tilde{x}_{2}}=\frac{\tilde{a}-\tilde{b} \tilde{x}_{2}}{\tilde{b} \tilde{x}_{2}}=\frac{\tilde{a}-\sqrt{\tilde{a}^{2}+4 A \tilde{b}}}{\tilde{a}+\sqrt{\tilde{a}^{2}+4 A \tilde{b}}}<1 .
$$

Applying Theorem 1 we deduce that the equilibrium points $\tilde{x}_{1,2}$ are locally asymptotically stable. It remains to prove that $\tilde{x}_{1,2}$ are global attractors. To this end, we apply Theorem 3 to the function $F\left(u_{0}, u_{1}, \ldots, u_{k}\right)$ given by the formula (3) as follows: The function $F:(0, \infty)^{k+1} \longrightarrow(0, \infty)$ given by (3) is continuous and nondecreasing in each of its arguments. In addition, we deduce for $x \in(0, \infty)$ that

$$
\begin{aligned}
{[F(x, x, \ldots, x)-x] } & \left(x-\tilde{x}_{1}\right)=\left[\frac{A+\tilde{a} x}{\tilde{b} x}-x\right]\left(x-\tilde{x}_{1}\right) \\
& =-\left(\frac{\tilde{b} x^{2}-\tilde{a} x-A}{\tilde{b} x}\right)\left(x-\tilde{x}_{1}\right)=-\frac{\left(x-\tilde{x}_{1}\right)^{2}\left(x-\tilde{x}_{2}\right)}{x}<0
\end{aligned}
$$

for all $x>\tilde{x}_{2}$. Thus, the conditions of Theorem 3 are satisfied. This proves that the equilibrium point \tilde{x}_{1} is a global attractor. Similarly, we can show that

$$
[F(x, x, \ldots, x)-x]\left(x-\tilde{x}_{2}\right)=-\frac{\left(x-\tilde{x}_{1}\right)\left(x-\tilde{x}_{2}\right)^{2}}{x}<0
$$

for all $x>\tilde{x}_{1}$. This proves that the equilibrium point \tilde{x}_{2} is a global attractor. Now, we have shown that the equilibrium points $\tilde{x}=\widetilde{x}_{1,2}$ are global attractors. The proof of Theorem 8 is completed.

Theorem 9. A necessary and sufficient condition for the difference equation (1) to have a positive prime period two solution is that the inequality

$$
\begin{equation*}
A(\tilde{b}-\bar{b})^{2}-\bar{a}(\tilde{a}+\bar{a})(\tilde{b}-\bar{b})<\bar{b} \bar{a}^{2} \tag{28}
\end{equation*}
$$

is valid, provided $\bar{a}<0$ and $\bar{b}>0$.
Proof. First, suppose that there exists a positive prime period two solution

$$
\ldots, P, Q, P, Q, \ldots
$$

of the difference equation (1). We shall prove that the condition (28) holds. It follows from the difference equation (1) that if k is even, then $x_{n}=x_{n-k}$ and we have

$$
P=\frac{A+\alpha_{0} Q+\alpha_{1} P+\alpha_{2} Q+\alpha_{3} P+\ldots+\alpha_{k} Q}{\beta_{0} Q+\beta_{1} P+\beta_{2} Q+\beta_{3} P+\ldots+\beta_{k} Q}
$$

and

$$
Q=\frac{A+\alpha_{0} P+\alpha_{1} Q+\alpha_{2} P+\alpha_{3} Q+\ldots+\alpha_{k} P}{\beta_{0} P+\beta_{1} Q+\beta_{2} P+\beta_{3} Q+\ldots+\beta_{k} P}
$$

while if k is odd, then $x_{n+1}=x_{n-k}$ and we have

$$
P=\frac{A+\alpha_{0} Q+\alpha_{1} P+\alpha_{2} Q+\alpha_{3} P+\ldots+\alpha_{k} P}{\beta_{0} Q+\beta_{1} P+\beta_{2} Q+\beta_{3} P+\ldots+\beta_{k} P}
$$

and

$$
Q=\frac{A+\alpha_{0} P+\alpha_{1} Q+\alpha_{2} P+\alpha_{3} Q+\ldots+\alpha_{k} Q}{\beta_{0} P+\beta_{1} Q+\beta_{2} P+\beta_{3} Q+\ldots+\beta_{k} Q} .
$$

Now, we discuss the case when k is even (and in a similar way we can discuss the case when k is odd which is omitted here). Consequently, we obtain

$$
\begin{equation*}
A+\alpha_{0} Q+\alpha_{1} P+\alpha_{2} Q+\ldots+\alpha_{k} Q=\beta_{0} P Q+\beta_{1} P^{2}+\beta_{2} P Q+\ldots+\beta_{k} P Q \tag{29}
\end{equation*}
$$

and
(30) $A+\alpha_{0} P+\alpha_{1} Q+\alpha_{2} P+\ldots+\alpha_{k} P=\beta_{0} P Q+\beta_{1} Q^{2}+\beta_{2} P Q+\ldots+\beta_{k} P Q$.

By subtracting, we deduce after some reduction that

$$
\begin{equation*}
P+Q=\frac{-\bar{a}}{\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}} \tag{31}
\end{equation*}
$$

while by adding we obtain

$$
\begin{equation*}
P Q=\frac{A\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)-\bar{a}\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)}{\bar{b}\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}, \tag{32}
\end{equation*}
$$

where $\beta_{i}>0, \bar{a}<0$ and $\bar{b}>0$. Assume that P and Q are two positive distinct real roots of the quadratic equation

$$
\begin{equation*}
t^{2}-(P+Q) t+P Q=0 \tag{33}
\end{equation*}
$$

We deduce that

$$
\begin{align*}
& \left(\frac{-\bar{a}}{\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}}\right)^{2} \tag{34}\\
& \quad>4 \frac{A\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)-\bar{a}\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)}{\bar{b}\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)} .
\end{align*}
$$

From (34), we obtain

$$
A(\tilde{b}-\bar{b})^{2}-(\tilde{a}+\bar{a})(\tilde{b}-\bar{b}) \bar{a}<\bar{b} \bar{a}^{2},
$$

and hence the condition (28) is valid. Conversely, suppose that the condition (28) is valid. Then we deduce immediately from (28) that the inequality (34) holds. Consequently, there exist two positive distinct real numbers P and Q such that

$$
\begin{equation*}
P=\frac{-\bar{a}}{2\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}-\frac{1}{2} \sqrt{T_{1}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{-\bar{a}}{2\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}+\frac{1}{2} \sqrt{T_{1}}, \tag{36}
\end{equation*}
$$

where $T_{1}>0$ is given by the formula

$$
\begin{align*}
T_{1}= & \left(\frac{-\bar{a}}{\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}}\right)^{2} \tag{37}\\
& -4 \frac{A\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)-\bar{a}\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)}{\bar{b}\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)} .
\end{align*}
$$

Thus, P and Q represent two positive distinct real roots of the quadratic equation (33). Now, we are going to prove that P and Q are positive solutions of prime period two for the difference equation (1). To this end, we assume that

$$
x_{-k}=P, x_{-k+1}=Q, \ldots, x_{-1}=Q, \quad \text { and } \quad x_{0}=P .
$$

We wish to show that

$$
x_{1}=Q \quad \text { and } \quad x_{2}=P .
$$

To this end, we deduce from the difference equation (1) that

$$
\begin{align*}
x_{1} & =\frac{A+\alpha_{0} x_{0}+\alpha_{1} x_{-1}+\ldots+\alpha_{k} x_{-k}}{\beta_{0} x_{0}+\beta_{1} x_{-1}+\ldots+\beta_{k} x_{-k}} \tag{38}\\
& =\frac{A+P\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)+Q\left(\alpha_{1}+\alpha_{3}+\ldots+\alpha_{k-1}\right)}{P\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right)+Q\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)} .
\end{align*}
$$

Multiplying the denominator and numerator of (38) by $\gamma=-\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right) / \bar{a}$ and using (35)-(37) we obtain
(39) $x_{1}=\frac{2 A \gamma+\left[1+\sqrt{K_{1}}\right]\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)}{\left[1+\sqrt{K_{1}}\right]\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right)+\left[1-\sqrt{K_{1}}\right]\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}$

$$
\begin{aligned}
&+\frac{\left[1-\sqrt{K_{1}}\right]\left(\alpha_{1}+\alpha_{3}+\ldots+\alpha_{k-1}\right)}{\left[1+\sqrt{K_{1}}\right]\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right)+\left[1-\sqrt{K_{1}}\right]\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)} \\
&= {\left[\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)+\left(\alpha_{1}+\alpha_{3}+\ldots+\alpha_{k-1}\right)+2 A \gamma\right.} \\
& {\left[\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right)+\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)\right]+\bar{b} \sqrt{K_{1}} } \\
&+\frac{\left[\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)-\left(\alpha_{1}+\alpha_{3}+\ldots+\alpha_{k-1}\right)\right] \sqrt{K_{1}}}{\left[\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right)+\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)\right]+\bar{b} \sqrt{K_{1}}} \\
&= \frac{[\tilde{a}+2 A \gamma]+\bar{a} \sqrt{K_{1}}}{\tilde{b}+\bar{b} \sqrt{K_{1}}},
\end{aligned}
$$

where

$$
\begin{equation*}
K_{1}=1-\left[\frac{A(\tilde{b}-\bar{b})^{2}-\bar{a}(\tilde{a}+\bar{a})(\tilde{b}-\bar{b})}{\bar{b} \bar{a}^{2}}\right], \tag{40}
\end{equation*}
$$

and from the condition (28) we deduce that $K_{1}>0$. Multiplying the denominator and numerator of (39) by

$$
\tilde{b}-\bar{b} \sqrt{K_{1}},
$$

we have

$$
x_{1}=\frac{\tilde{b}[\tilde{a}+2 A \gamma]-\bar{b} \bar{a} K_{1}}{\tilde{b}^{2}-\bar{b}^{2} K_{1}}+\frac{[\tilde{b} \bar{a}-\tilde{a} \bar{b}+-2 A \bar{b} \gamma] \sqrt{K_{1}}}{\tilde{b}^{2}-\bar{b}^{2} K_{1}}
$$

After some reduction, we deduce that

$$
\begin{aligned}
x_{1} & =\frac{\left(1+\sqrt{K_{1}}\right) T_{2}}{2 \gamma T_{2}}=\frac{-\bar{a}\left(1+\sqrt{K_{1}}\right)}{2\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)} \\
& =\frac{-\bar{a}}{2\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}+\frac{1}{2} \sqrt{T_{1}}=Q,
\end{aligned}
$$

where

$$
\begin{aligned}
T_{2}= & 2\left(\alpha_{1}+\alpha_{3}+\ldots+\alpha_{k-1}\right)\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right) \\
& -2\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)-\frac{2 A \bar{b}\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}{B+\bar{a}} .
\end{aligned}
$$

Similarly, we can show that

$$
\begin{aligned}
x_{2} & =\frac{A+\alpha_{0} x_{1}+\alpha_{1} x_{0}+\ldots+\alpha_{k} x_{-(k-1)}}{\beta_{0} x_{1}+\beta_{1} x_{0}+\ldots+\beta_{k} x_{-(k-1)}} \\
& =\frac{A+Q\left(\alpha_{0}+\alpha_{2}+\ldots+\alpha_{k}\right)+P\left(\alpha_{1}+\alpha_{3}+\ldots+\alpha_{k-1}\right)}{Q\left(\beta_{0}+\beta_{2}+\ldots+\beta_{k}\right)+P\left(\beta_{1}+\beta_{3}+\ldots+\beta_{k-1}\right)}=P .
\end{aligned}
$$

By using the mathematical induction, we have

$$
x_{n}=P \quad \text { and } \quad x_{n+1}=Q \quad \text { for all } n \geqslant-k .
$$

Thus the difference eqution (1) has a positive prime period two solution

$$
\ldots, P, Q, P, Q, \ldots
$$

The proof of Theorem 9 is completed.
Acknowledgement. The authors would like to express their deep thanks to the referee for his interesting suggestions and comments on this paper.

References

[1] M. T. Aboutaleb, M.A.El-Sayed, A.E.Hamza: Stability of the recursive sequence $x_{n+1}=\left(\alpha-\beta x_{n}\right) /\left(\gamma+x_{n-1}\right)$. J. Math. Anal. Appl. 261 (2001), 126-133.
[2] R. Agarwal: Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker, New York, 1992.
[3] A.M. Amleh, E. A. Grove, G.Ladas, D. A. Georgiou: On the recursive sequence $x_{n+1}=$ $\alpha+\left(x_{n-1} / x_{n}\right)$. J. Math. Anal. Appl. 233 (1999), 790-798.
[4] R. De Vault, W. Kosmala, G. Ladas, S. W. Schultz: Global behavior of $y_{n+1}=\left(p+y_{n-k}\right) /$ $\left(q y_{n}+y_{n-k}\right)$. Nonlinear Analysis 47 (2001), 4743-4751.
[5] R. De Vault, G. Ladas, S. W. Schultz: On the recursive sequence $x_{n+1}=A / x_{n}+1 / x_{n-2}$. Proc. Amer. Math. Soc. 126 (1998), 3257-3261.
[6] R. De Vault, S. W. Schultz: On the dynamics of $x_{n+1}=\left(\beta x_{n}+\gamma x_{n-1}\right) /\left(B x_{n}+D x_{n-2}\right)$. Comm. Appl. Nonlinear Analysis 12 (2005), 35-39.
[7] H. El-Metwally, E. A. Grove, G. Ladas: A global convergence result with applications to periodic solutions. J. Math. Anal. Appl. 245 (2000), 161-170.
[8] H. El-Metwally, G. Ladas, E. A. Grove, H. D. Voulov: On the global attractivity and the periodic character of some difference equations. J. Difference Equ. Appl. 7 (2001), 837-850.
[9] H. M. EL-Owaidy, A. M. Ahmed, M. S. Mousa: On asymptotic behavior of the difference equation $x_{n+1}=\alpha+\left(x_{n-1}^{p} / x_{n}^{p}\right)$. J. Appl. Math. \& Comput. 12 (2003), 31-37.
[10] H. M. EL-Owaidy, A. M. Ahmed, Z. Elsady: Global attractivity of the recursive sequence $x_{n+1}=\left(\alpha-\beta x_{n-k}\right) /\left(\gamma+x_{n}\right)$. J. Appl. Math. \& Comput. 16 (2004), 243-249.
[11] G. Karakostas: Convergence of a difference equation via the full limiting sequences method. Diff. Equations and Dynamical. System 1 (1993), 289-294.
[12] G. Karakostas, S. Stević: On the recursive sequences $x_{n+1}=A+f\left(x_{n}, \ldots, x_{n-k+1}\right) /$ x_{n-1}. Commun. Appl. Nonlin. Anal. 11 (2004), 87-99.
[13] V. L. Kocic, G. Ladas: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993.
[14] M. R.S. Kulenovic, G. Ladas: Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures. Chapman \& Hall/CRC Press, 2002.
[15] M.R.S. Kulenovic, G.Ladas, W.S. Sizer: On the recursive sequence $x_{n+1}=\left(\alpha x_{n}+\right.$ $\left.\beta x_{n-1}\right) /\left(\gamma x_{n}+\delta x_{n-1}\right)$. Math. Sci. Res. Hot-Line 2 (1998), 1-16.
[16] S. A. Kuruklis: The asymptotic stability of $x_{n+1}-a x_{n}+b x_{n-k}=0$. J. Math. Anal. Appl. 188 (1994), 719-731.
[17] G. Ladas, C. H. Gibbons, M. R.S. Kulenovic, H. D. Voulov: On the trichotomy character of $x_{n+1}=\left(\alpha+\beta x_{n}+\gamma x_{n-1}\right) /\left(A+x_{n}\right)$. J. Difference Equations and Appl. 8 (2002), 75-92.
[18] G. Ladas, C. H. Gibbons, M. R.S. Kulenovic: On the dynamics of $x_{n+1}=\left(\alpha+\beta x_{n}+\right.$ $\left.\gamma x_{n-1}\right) /\left(A+B x_{n}\right)$. Proceeding of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000, Taylor and Francis, London (2002), 141-158.
[19] G. Ladas, E. Camouzis, H. D. Voulov: On the dynamic of $x_{n+1}=\left(\alpha+\gamma x_{n-1}+\delta x_{n-2}\right) /$ $\left(A+x_{n-2}\right)$. J. Difference Equ. Appl. 9 (2003), 731-738.
[20] G. Ladas: On the recursive sequence $x_{n+1}=\left(\alpha+\beta x_{n}+\gamma x_{n-1}\right) /\left(A+B x_{n}+C x_{n-1}\right)$. J. Difference Equ. Appl. 1 (1995), 317-321.
[21] W. T. Li, H. R. Sun: Global attractivity in a rational recursive sequence. Dyn. Syst. Appl. 11 (2002), 339-346.
[22] Yi-Zhong Lin: Common domain of asymptotic stability of a family of difference equations. Appl. Math. E-Notes 1 (2001), 31-33.
[23] S. Stević: On the recursive sequences $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$. Taiwanese J. Math. 6 (2002), 405-414.
[24] S. Stević: On the recursive sequences $x_{n+1}=g\left(x_{n}, x_{n-1}\right) /\left(A+x_{n}\right)$. Appl. Math. Letter 15 (2002), 305-308.
[25] S. Stević: On the recursive sequences $x_{n+1}=\alpha+\left(x_{n-1}^{p} / x_{n}^{p}\right)$. J. Appl. Math. Comput. 18 (2005), 229-234.
[26] E.M.E.Zayed, M.A.El-Moneam: On the rational recursive sequence $x_{n+1}=$ $\left(D+\alpha x_{n}+\beta x_{n-1}+\gamma x_{n-2}\right) /\left(A x_{n}+B x_{n-1}+C x_{n-2}\right)$. Commun. Appl. Nonlin. Anal. 12 (2005), 15-28.
[27] E.M.E.Zayed, M.A.El-Moneam: On the rational recursive sequence $x_{n+1}=$ $\left(\alpha x_{n}+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}\right) /\left(A x_{n}+B x_{n-1}+C x_{n-2}+D x_{n-3}\right)$. J. Appl. Math. Comput. 22 (2006), 247-262.

Authors' addresses: E. M. E. Zayed, Mathematics Department, Faculty of Science, Taif University, El-Taif, Hawai, P.O. Box 888, Kingdom of Saudi Arabia, e-mail: emezayed @hotmail.com; M.A.El-Moneam, Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt, e-mail: mabdelmeneam2004@yahoo.com.

