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Abstract. In this paper a new class of fuzzy topological spaces called pairwise ordered
fuzzy extremally disconnected spaces is introduced. Tietze extension theorem for pairwise
ordered fuzzy extremally disconnected spaces has been discussed as in the paper of Kubiak
(1987) besides proving several other propositions and lemmas.
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1. Introduction and preliminaries

The fuzzy concept has invaded almost all branches of Mathematics since the in-

troduction of the concept by Zadeh [11]. Fuzzy sets have applications in many fields

such as information [8] and control [9]. The theory of fuzzy topological spaces was

introduced and developed by Chang [5] and since then various notions in classical

topology have been extended to fuzzy topological spaces [2], [3], [4]. A new class of

fuzzy topological spaces called pairwise ordered fuzzy extremally disconnected spaces

is introduced in this paper by using the concepts of fuzzy extremally disconnected

space [1], fuzzy open sets [4], ordered fuzzy topology [7] and fuzzy bitopology [6].

Some interesting properties and characterizations are studied. Tietze extension the-

orem for pairwise ordered fuzzy extremally disconnected spaces has been discussed

as in [10] besides proving several other propositions and lemmas.

Definition 1 [5]. Let f : (X, T ) → (Y, S) be a mapping from a fuzzy topological

space X to another fuzzy topological space Y . A mapping f is called
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(a) a fuzzy continuous mapping [1] if f−1(λ) ∈ T for each λ ∈ S or equivalently

f−1(µ) is a fuzzy closed subset of X for each fuzzy closed set µ of Y .

(b) a fuzzy open (fuzzy closed) mapping [1] if f(λ) is a fuzzy open (fuzzy closed)

subset of X for each fuzzy open (fuzzy closed) set λ of X .

Definition 2 [7]. A fuzzy set λ in (X, T ) is called increasing (decreasing) if

λ(x) 6 λ(y)(λ(x) > λ(y)) whenever x 6 y in (X, T ) and x, y ∈ X .

Definition 3 [7]. An ordered set on which a fuzzy topology is given is called an

ordered fuzzy topological space.

Definition 4 [6]. A fuzzy bitopological space is a triple (X, T1, T2) where X is

a set and T1, T2 are any two fuzzy topologies on X .

2. Pairwise ordered fuzzy extremally disconnected spaces

In this section the concept of a pairwise ordered fuzzy extremally disconnected

space is introduced. Its characterizations and properties are studied.

Definition 5. Let λ be any fuzzy set in the ordered fuzzy topological space

(X, T, 6). Then we define

I(λ) = increasing fuzzy closure of λ =
∧

{µ : µ is a fuzzy closed increasing set and

µ > λ};

D(λ) = decreasing fuzzy closure of λ =
∧

{µ : µ is a fuzzy closed decreasing set

and µ > λ};

I0(λ) = increasing fuzzy interior of λ =
∨

{µ : µ is a fuzzy open increasing set and

µ 6 λ};

D0(λ) = decreasing fuzzy interior of λ =
∨

{µ : µ is a fuzzy open decreasing set

and µ 6 λ}.

Clearly, I(λ)(D(λ)) is the smallest fuzzy closed increasing (decreasing) set contain-

ing λ and I0(λ)(D0(λ)) is the largest fuzzy open increasing (decreasing) set contained

in λ.

Proposition 1. For any fuzzy subset λ of an ordered fuzzy topological space

(X, T, 6), the following identities hold:

(a) 1 − I(λ) = D0(1 − λ),

(b) 1 − D(λ) = I0(1 − λ),

(c) 1 − I0(λ) = D(1 − λ),

(d) 1 − D0(λ) = I(1 − λ).
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Definition 6. Let (X, T1, T2, 6) be an ordered fuzzy bitopological space. Let

λ be any T1-fuzzy open increasing (decreasing) set. If IT2
(λ)(DT2

(λ)) is T2-fuzzy

open increasing (decreasing) set then (X, T1, T2, 6) is said to be T1-upper (T1-lower)

fuzzy extremally disconnected. Similarly we can define the T2-upper (T2-lower) fuzzy

extremally disconnected space. A fuzzy topological space (X, T1, T2, 6) is said to be

pairwise upper fuzzy extremally disconnected if it is both T1-upper fuzzy extremally

disconnected and T2-upper fuzzy extremally disconnected. Similarly we can define

the pairwise lower fuzzy extremally disconnected space. A fuzzy topological space

(X, T1, T2, 6) is said to be pairwise ordered fuzzy extremally disconnected if it is both

pairwise upper fuzzy extremally disconnected and pairwise lower fuzzy extremally

disconnected.

E x am p l e 1. Let X = {a, b, c}, T1 = {0, 1, λ1, λ2) and T2 = {0, 1, µ1, µ2), where

λ1 : X → [0, 1] is such that

λ1(a) = 3/4, λ1(b) = 1/2, λ1(c) = 1/4,

λ2(a) = 0, λ2(b) = 1/4, λ2(c) = 1/4,

and µ1 : X → [0, 1] is such that

µ1(a) = 1, µ1(b) = 9/10, µ1(c) = 8/10,

µ2(a) = 0, µ2(b) = 7/10, µ2(c) = 8/10.

Clearly, λ1 is a T1-fuzzy open decreasing set and DT2
(λ1) = 1 is a T2-fuzzy open

decreasing set, µ2 is a T2-fuzzy open decreasing set and DT1
(µ2) = 1 is a T1-fuzzy

open decreasing set. Hence (X, T1, T2, 6) is a pairwise lower fuzzy extremally dis-

connected space. Similarly we can prove that (X, T1, T2, 6) is a pairwise upper fuzzy

extremally disconnected space. Therefore (X, T1, T2, 6) is a pairwise ordered fuzzy

extremally disconnected space.

Proposition 2. For an ordered fuzzy bitopological space (X, T1, T2, 6), the fol-

lowing assertions are equivalent.

(a) (X, T1, T2, 6) is pairwise upper fuzzy extremally disconnected.

(b) For each T1-fuzzy closed decreasing set λ, D0
T2

(λ) is T2-fuzzy closed decreasing.

Similarly, for each T2-fuzzy closed decreasing set λ, D0
T1

(λ) is T1-fuzzy closed

decreasing.

(c) For each T1-fuzzy open increasing set λ we have IT2
(λ) + DT2

(1 − IT2
(λ)) = 1.

Similarly, for each T2-fuzzy open increasing set λ we have IT1
(λ) + DT1

(1 −

IT1
(λ)) = 1.
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(d) For each pair of a T1-fuzzy open increasing set λ and a T1-fuzzy open decreasing

set µ with IT2
(λ) + µ = 1 we have IT2

(λ) + DT2
(µ) = 1. Similarly, for each pair

of a T2-fuzzy open increasing set λ and a T2-fuzzy open decreasing set µ with

IT1
(λ) + µ = 1 we have IT1

(λ) + DT1
(µ) = 1.

P r o o f. (a) ⇒ (b). Let λ be any T1-fuzzy closed decreasing set. We claim that

D0
T2

(λ) is a T2-fuzzy closed decreasing set. Now, 1 − λ is T1-fuzzy open increasing

and so by assumption (a), IT2
(1− λ) is T2-fuzzy open increasing. That is, D

0
T2

(λ) is

T2-fuzzy closed decreasing.

(b) ⇒ (c). Let λ be any T1-fuzzy open increasing set. Then

(1) 1 − IT2
(λ) = D0

T2
(1 − λ).

Consider IT2
(λ)+DT2

(1−IT2
(λ)) = IT2

(λ)+DT2
(D0

T2
(1−λ)). As λ is T1-fuzzy open

increasing, 1− λ is T1-fuzzy closed decreasing and by assumption (b), D
0
T2

(1 − λ) is

T2-fuzzy closed decreasing. Therefore, DT2
(D0

T2
(1 − λ)) = D0

T2
(1 − λ). Now,

IT2
(λ) + DT2

(D0
T2

(1 − λ)) = IT2
(λ) + D0

T2
(1 − λ) = IT2

(λ) + 1 − IT2
(λ) = 1.

That is, IT2
(λ) + DT2

(1 − IT2
(λ)) = 1.

(c) ⇒ (d). Let λ be any T1-fuzzy open increasing set and µ any T2-fuzzy open

decreasing set such that

(2) IT2
(λ) + µ = 1.

By assumption (c),

(3) IT2
(λ) + DT2

(1 − IT2
(λ)) = 1 = IT2

(λ) + µ.

That is, µ = DT2
(1 − IT2

(λ)). Since µ = 1 − IT2
(λ) (by (2)), we have

(4) DT2
(µ) = DT2

(1 − IT2
(λ)).

From (3) and (4) we obtain IT2
(λ) + DT2

(µ) = 1.

(d) ⇒ (a). Let λ be any T1-fuzzy open increasing set. Put µ = 1 − IT2
(λ).

Clearly, µ is T2-fuzzy open decreasing and from the construction of µ it follows

that IT2
(λ) + µ = 1. By assumption (d), we have IT2

(λ) + DT2
(µ) = 1 and so

IT2
(λ) = 1 − DT2

(µ) is T2-fuzzy open increasing. Therefore (X, T1, T2, 6) is upper

T1-fuzzy extremally disconnected. Similarly we can prove that (X, T1, T2, 6) is upper

T1-fuzzy extremally disconnected. Hence the Proposition.
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Proposition 3. Let (X, T1, T2, 6) be an ordered fuzzy bitopological space. Then

(X, T1, T2, 6) is a pairwise ordered fuzzy extremally disconnected space if and only

if for a T1-fuzzy decreasing open set λ and a T2-fuzzy decreasing closed set µ such

that λ 6 µ, we have DT1
(λ) 6 D0

T1
(µ).

P r o o f. Suppose (X, T1, T2, 6) is an upper pairwise fuzzy extremally discon-

nected space. Let λ be any T1-fuzzy open decreasing set, µ be any T2-fuzzy closed

decreasing set such that λ 6 µ. Then by (b) of Proposition 2, D0
T1

(µ) is T1-fuzzy

closed decreasing. Also, since λ is T1-fuzzy open decreasing and λ 6 µ, it follows

that λ 6 D0
T1

(µ). Again, since D0
T1

(µ) is T1-fuzzy closed decreasing, it follows that

DT1
(λ) 6 D0

T1
(µ). To prove the converse, let µ be any T2-fuzzy closed decreasing

set. By Definition 5, D0
T1

(µ) is T1-fuzzy open decreasing and it is also clear that

D0
T1

(µ) 6 µ. Therefore it follows by assumption that DT1
(D0

T1
(µ)) 6 D0

T1
(µ). This

implies that D0
T1

(µ) is T1-fuzzy closed decreasing. Hence, by (b) of Proposition 2, it

follows that (X, T1, T2, 6) is upper T1-fuzzy extremally disconnected. Similarly we

can prove also the other cases.

N o t a t i o n. An ordered fuzzy set which is both fuzzy decreasing (increasing)

open and closed is called a fuzzy decreasing (increasing) clopen set.

R em a r k 1. Let (X, T1, T2, 6) be a pairwise upper fuzzy extremally disconnected

space. Let {λi, 1 − µi : i ∈ N} be a collection such that λi’s are T1-fuzzy open

decreasing sets, µi’s are T2-fuzzy closed decreasing sets and let λ, 1 − µ be T1-fuzzy

open decreasing and T2-fuzzy open increasing sets, respectively. If λi 6 λ 6 µj

and λi 6 µ 6 µj for all i, j ∈ N, then there exists a T1- and T2-fuzzy clopen

decreasing set γ such that DT1
(λi) 6 γ 6 D0

T1
(µj) for all i, j ∈ N. By Proposition 3,

DT1
(λi) 6 DT1

(λ) ∧ D0
T1

(µ) 6 D0
T1

(µj) (i, j ∈ N). Put γ = DT1
(λ) ∧ D0

T1
(µ). Now,

γ satisfies the required condition.

Proposition 4. Let (X, T1, T2, 6) be a pairwise ordered fuzzy extremally dis-

connected space. Let {λq}q∈Q and {µq}q∈Q be monotone increasing collections of

T1-fuzzy open decreasing sets and T2-fuzzy closed decreasing sets of (X, T1, T2, 6),

respectively, and suppose that λq1
6 µq2

whenever q1 < q2 (Q is the set of rational

numbers). Then there exists a monotone increasing collection {γq}q∈Q of T1- and

T2-fuzzy clopen decreasing subsets of (X, T1, T2, 6) such that DT1
(λq1

) 6 γq2
and

γq1
6 D0

T1
(µq2

) whenever q1 < q2.

P r o o f. Let us arrange the rational numbers into a sequence {qn} without

repetitions. For every n > 2, we define inductively a collection {γqi
: 1 6 i < n} ⊂ IX
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such that

(Sn)
DT1

(λq) 6 γqi
if q < qi,

γqi
6 D0

T1
(µq) if qi < q,

for all i < n.

By Proposition 3, the countable collections {DT1
(λq)} and {D0

T1
(µq)} satisfy

DT1
(λq1

) 6 D0
T1

(µq2
) if q1 < q2. By Remark 1, there exists a T1- and T2-fuzzy

clopen decreasing set δ1 such that DT1
(λq1

) 6 δ1 6 D0
T1

(µq2
). Setting γq1

= δ1

we get (S2). Assume that T1-fuzzy sets γqi
are already defined for i < n and sat-

isfy (Sn). Define Σ =
∨

{γqi
: i < n, qi < qn} ∨ λqn

and Φ =
∧

{γqj
: j < n,

qj > qn} ∧ µqn
. Then we have that DT1

(γqi
) 6 DT1

(Σ) 6 D0
T1

(γqj
) and DT1

(γqi
) 6

D0
T1

(Φ) 6 D0
T1

(γqj
) whenever qi < qn < qj (i, j < n) as well as λq 6 DT1

(Σ) 6 µq′

and λq 6 D0
T1

(Φ) 6 µq′ whenever q < qn < q′. This shows that the countable collec-

tions {γqi
: i < n, qi < qn} ∪ {λq : q < qn} and {γqj

: j < n, qj > qn} ∪ {µq : q > qn}

together with Σ and Φ fulfil all conditions of Remark 1. Hence, there exists a T1- and

T2-fuzzy clopen decreasing set δn such that DT1
(δn) 6 µq if qn < q, λq 6 D0

T1
(δn) if

q < qn, DT1
(γqi

) 6 D0
T1

(δn) if qi < qn, DT1
(δn) 6 D0

T1
(γqj

) if qn < qj , where 1 6 i,

j 6 n−1. Now setting γqn
= δn we obtain T1-fuzzy sets γq1

, γq2
, . . . , γqn

that satisfy

(Sn+1). Therefore the collection {γqi
: i = 1, 2, . . .} has the required property. This

completes the proof. �

Definition 7. Let (X, T1, T2, 6) and (Y, S1, S2, 6) be ordered fuzzy bitopological

spaces. A mapping f : (X, T1, T2, 6) → (Y, S1, S2, 6) is called increasing (decreasing)

T1-fuzzy continuous if f−1(λ) is a T1-fuzzy open increasing (decreasing) subset of

(X, T1, T2, 6) for every S1- or S2-fuzzy open subset λ of (Y, S1, S2, 6). If f is both

increasing and decreasing T1-fuzzy continuous, then it is called ordered T1-fuzzy

continuous.

Definition 8. Let (X, T1, T2, 6) be an ordered fuzzy bitopological space. A func-

tion f : X → R(I) is called lower (upper) T1-fuzzy continuous if f−1(Rt)(f
−1(Lt))

is increasing or decreasing T1-fuzzy open for each t ∈ R. Similarly we can define a

lower and upper T1-fuzzy continuous function.

Lemma 1. Let (X, T1, T2, 6) be an ordered fuzzy bitopological space, let λ ∈ IX ,

and let

f : X → R(I) be such that f(x)(t) =











1 if t < 0,

λ(x) if 0 6 t 6 1,

0 if t > 1,
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for all x ∈ X . Then f is lower (upper) T1-fuzzy continuous iff λ is a T1-fuzzy open

(closed) increasing or decreasing set.

Definition 9. The characteristic function of λ ∈ IX is the map χλ : X → [0, 1]

defined by χλ(x) = (λ(x)), x ∈ X .

Proposition 5. Let (X, T1, T2, 6) be an ordered fuzzy bitopological space, and

let λ ∈ IX . Then χλ is lower (upper) T1-fuzzy continuous iff λ is a T1-fuzzy open

(closed) increasing or decreasing set.

P r o o f. The proof follows from Lemma 1. �

Proposition 6. Let (X, T1, T2 6) be an ordered fuzzy bitopological space. Then

the following statements are equivalent.

(a) (X, T1, T2, 6) is pairwise ordered fuzzy extremally disconnected.

(b) If g, h : X → R(I), g is lower T1-fuzzy continuous, h is upper T2-fuzzy contin-

uous and g 6 h, then there exists an increasing T1- and T2-fuzzy continuous

function f : (X, T1, T2, 6) → R(I) such that g 6 f 6 h.

(c) If 1−λ is T2-fuzzy open increasing and µ is T1-fuzzy open decreasing such that

µ 6 λ, then there exists an increasing T1- and T2-fuzzy continuous function

f : (X, T1, T2, 6) → [0, 1] such that µ 6 (1 − L1)f 6 R0f 6 λ.

P r o o f. (a) ⇒ (b). Define Hr = Lrh and Gr = (1 − Rr)g, r ∈ Q. Thus we

have two monotone increasing families of, respectively, T1-fuzzy open decreasing and

T2-fuzzy closed decreasing subsets of (X, T1, T2, 6). Moreover, Hr 6 Gs if r < s. By

Proposition 4, there exists a monotone increasing family {Fr}r∈Q of T1-and T2-fuzzy

clopen decreasing sets of (X, T1, T2, 6) such that DT1
(Hr) 6 Fs and Fr 6 D0

T1
(Gs)

whenever r < s. Letting Vt =
∧

r<t

(1 − Fr) for all t ∈ R, we define a monotone

decreasing family {Vt : t ∈ R} ⊂ IX . Moreover, we have IT1
(Vt) 6 I0

T1
(V s) whenever

s < t.

One can easily prove that f is well defined and it is the required extension by

making use of Theorem 3.7 of Kubiak (1987) [10], of the concepts of ordered fuzzy

topology and fuzzy bitopology.

(b)⇒ (c). Suppose 1−λ is a T2-fuzzy open increasing set and µ is a T1-fuzzy open

decreasing set, µ 6 λ. Then χµ 6 χλ and χµ, χλ are lower T1- and upper T2-fuzzy

continuous functions, respectively. Hence by (b), there exists an increasing T1- and

T2-fuzzy continuous function f : (X, T, 6) → R(I) such that χµ 6 f 6 χλ. Clearly,

f(x) ∈ [0, 1] for all x ∈ X and µ = (1 − L1)χµ 6 (1 − L1)f 6 R0f 6 R0χλ = λ.

(c) ⇒ (a). This follows from Proposition 3 and the fact that (1 − L1)f and R0f

are T1-fuzzy closed decreasing and T2 fuzzy open decreasing sets, respectively.
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N o t e 1. Propositions 2 to 5 and Remark 1 can be discussed also for other cases.

3. Tietze extension theorem for pairwise ordered fuzzy

extremally disconnected spaces

In this section, Tietze extension theorem for pairwise ordered fuzzy extremally

disconnected spaces is studied.

Proposition 7 (Tietze Extension Theorem). Let (X, T1, T2, 6) be a pairwise or-

dered fuzzy extremally disconnected space. Let A ∈ X such that χA is T1-fuzzy

open increasing and T2-fuzzy open increasing set and let f : (A, T1/A, T2/A, 6) → I

be an increasing T1- and T2-fuzzy continuous and isotone function. Then f admits

an extension F : (X, T1, T2, 6) → I with all its properties preserved if f satisfies the

following # property:

(#) [λ] < [µ] ⇒ f−1{χ[[0],[λ]]} < f−1{χ[[µ],[1]]},

where δ < θ ⇔ DT2
f(δ) ∧ IT2

L(σ)(θ) = 0 and

[[λ1], [λ2]] = {[µ] ∈ I(L) : [λ1] 6 [µ] 6 [λ2]}.

P r o o f. Define g, h : X → [0, 1] by

g(x) =

{

f(x) if x ∈ A,

[λ0] if x /∈ A;

h(x) =

{

f(x) if x ∈ A,

[λ1] if x /∈ A

where [λ0] is the equivalence class [10] determined by λ0 : R → I such that

λ0(t) =

{

1 if t < 0,

0 if t > 0,

[λ1] is the equivalence class [10] determined by λ1 : R → I such that

λ1(t) =

{

1 if t < 1,

0 if t > 1,

g is lower T1-fuzzy continuous, h is upper T2-fuzzy continuous and g 6 h. Hence

by Proposition 6 there exists an increasing T1- and T2-fuzzy continuous function

F : (X, T1, T2, 6) → [0, 1] such that g(x) 6 F (x)) 6 h(x) for all x ∈ X . Hence for

all x ∈ A we have g(x) 6 f(x)) 6 h(x), so that F is the required extension of f over

X . Moreover, F is isotone as f satisfies the # property. Hence the theorem.
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