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DIFFERENTIAL EQUATIONS
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Abstract. We establish some new oscillation criteria for the second order neutral delay
differential equation

[r(t)|[x(t) + p(t)x[τ (t)]]′|α−1[x(t) + p(t)x[τ (t)]]′]′ + q(t)f(x[σ(t)]) = 0.

The obtained results supplement those of Dzurina and Stavroulakis, Sun and Meng, Xu
and Meng, Baculíková and Lacková. We also make a slight improvement of one assumption
in the paper of Xu and Meng.
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1. Introduction

In this paper we deal with the oscillation of the second order neutral delay differ-

ential equation

(E+) [r(t)|[x(t) + p(t)x[τ(t)]]′|α−1[x(t) + p(t)x[τ(t)]]′]′ + q(t)f(x[σ(t)]) = 0,

where α > 0 is a constant, p, q ∈ C[t0,∞), f ∈ C(R,R).

We suppose throughout the paper that the following hypotheses hold:

(H1) q(t) > 0, q(t) = 0 only at isolated points, 0 6 p(t) 6 1, p(t) 6≡ 1 on any (T,∞);

(H2) r(t) ∈ C1[t0,∞), r(t) > 0, R(t) :=

∫ t

t0

r−1/α(s) ds → ∞ as t → ∞;
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(H3)
f(x)

|x|α−1x
> β > 0 for x 6= 0;

(H4) σ(t) ∈ C1[t0,∞), σ(t) 6 t, σ′(t) > 0, lim
t→∞

σ(t) = ∞;

(H5) τ(t) ∈ C1[t0,∞), τ(t) 6 t, lim
t→∞

τ(t) = ∞.

By a solution of Eq. (E+) we mean a function x(t) ∈ C1[Tx,∞), Tx > t0, such

that z(t) = x(t) + p(t)x[τ(t)] has the property r(t)
∣

∣z′(t)
∣

∣

α−1
z′(t) ∈ C1[Tx,∞) and

x(t) satisfies (E+) on [Tx,∞). We consider only those solutions x(t) of (E+) which

satisfy sup{|x(t)| : t 6 T } > 0 for all T > Tx. We assume that (E+) possesses such

a solution. A nontrivial solution of (E+) is said to be oscillatory if it has arbitrarily

large zeros; otherwise it is called nonoscillatory. Equation (E+) is oscillatory if all

of its solutions are oscillatory.

The oscillatory properties of the corresponding linear equation

(r(t)y′)′ + q(t)y[τ(t)] = 0

have been extended to (E+) with p(t) ≡ 0 and f(x) = x by Mirzov [11], [12], [13],

Elbert [5], [6], Kusano et al. [8], [9], Chern et al. [3], Agarwal et al. [1].

Dzurina and Stavroulakis [4] generalized these oscillatory criteria to a particular

case of (E+) when p(t) ≡ 0, f(x) = |x|α−1x, namely

(∗) (r(t)|u′(t)|α−1u′(t))′ + q(t)|u[τ(t)]|α−1u[τ(t)] = 0.

In [4], Eq. (∗) was studied in two separate cases under the assumptions 0 < α < 1

and α > 1, respectively. Sun and Meng in [14] presented a technique that offers a

perfect result for all α > 0.

Baculíková and Lacková [2] have studied a particular case of (E+) of the form

[r(t)|[x(t) + p(t)x(τ(t))]′|α−1[x(t) + p(t)x(τ(t))]′]′ + q(t)|x[σ(t)]|α−1x[σ(t)] = 0.

Their oscillatory condition obtained by using the integral averaging method requires

the restriction α > 1. The technique presented in this paper allows us to drop this

restriction.

The main aim of this paper is to extend the integral averaging technique to (E+)

in order to obtain new oscillatory criteria for the general equation (E+).
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2. Main results

We need the following lemma.

Lemma 2.1 (See [7]). If A and B are nonnegative constants, then

F (A, B) = Aλ − λABλ−1 + (λ − 1)Bλ > 0, λ > 1

and the equality holds if and only if A = B.

P r o o f. Note that if A = 0 then F (A, B) = (λ − 1)Bλ > 0. For A > 0 we have

F (A, B) = Aλ[1 − λCλ−1 + (λ − 1)Cλ],

where C = B/A. Using standard methods of Calculus one can easily verify that

f(C) = 1 − λCλ−1 + (λ − 1)Cλ > 0.

The proof is complete. �

We will use a “modified” integral averaging method. Let us consider a function

H(t, s) satisfying the following conditions:

(i) H(t, s) > 0 for t > s > t0,

(ii) H(t, t) = 0 and ∂H(t, s)/∂s < 0.

Denote for t > s > t0

Q(t, s) = H−α(t, s)
(

ασ′(s)H(t, s) + R[σ(s)]r1/α[σ(s)] ·
∂H(t, s)

∂s

)α+1

.

Theorem 2.1. If

lim sup
t→∞

1

H(t, t1)

∫ t

t1

[

H(t, s)Rα[σ(s)]βq(s)(1 − p[σ(s)])α(1)

−
Q(t, s)

(α + 1)α+1R[σ(s)]r1/α[σ(s)][σ′(s)]α

]

ds = ∞,

then Eq. (E+) is oscillatory.

P r o o f. Assume to the contrary that x(t) is a nonoscillatory solution of Eq.

(E+). We may assume that x(t) > 0. The case of x(t) < 0 can be proved by the

same arguments. Set

z(t) = x(t) + p(t)x[τ(t)].

33



Then z(t) > x(t) > 0 and

[r(t)|z′(t)
∣

∣

α−1
z′(t)]′ = −q(t)f(x[σ(t)]) 6 0.

There are two possibilities for z′(t):

(i) z′(t) > 0,

(ii) z′(t) < 0 for t > t1 > t0.

The condition (ii) implies that for some positive constantM and for all t > t1 > t0

r(t)|z′(t)|α−1z′(t) 6 −M < 0.

Thus

−z′(t) >

( M

r(t)

)1/α

.

Integrating the above inequality from t1 to t, we obtain

z(t) 6 z(t1) − M1/α(R(t) − R(t1)).

Letting t → ∞ in the above inequality and using (H2), we get z(t) → −∞. This

contradiction proves that (i) holds.

For the case (i), we obtain

(2) x(t) = z(t) − p(t)x[τ(t)] > z(t) − p(t)z[τ(t)] > (1 − p(t))z(t).

Combining the above inequality and (H3) with Eq. (E
+), we have

(3) [r(t)(z′(t))α]′ + βq(t)(1 − p[σ(t)])αzα[σ(t)] 6 0

and

[r(t)(z′(t))α]′ 6 0.

Therefore

r(t)(z′(t))α 6 r[σ(t)](z′[σ(t)])α,

which implies that

(4)
z′[σ(t)]

z′(t)
>

( r(t)

r[σ(t)]

)1/α

.

Define

(5) w(t) = Rα[σ(t)]
r(t)(z′(t))α

zα[σ(t)]
> 0

for t > t1.
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Differentiating w(t), we obtain

w′(t) = αRα−1[σ(t)]
σ′(t)r(t)

(

z′(t)
)α

r1/α[σ(t)]zα[σ(t)]
+ Rα[σ(t)]

[

r(t)
(

z′(t)
)α]

′

zα[σ(t)]
(6)

− αRα[σ(t)]
r(t)

(

z′(t)
)α

z′[σ(t)]σ′(t)

zα+1[σ(t)]
.

Using (3), (4) and (5), we have

w′(t) 6
ασ′(t)

R[σ(t)]r1/α[σ(t)]
w(t) − Rα[σ(t)]βq(t)

(

1 − p[σ(t)]
)α

−
ασ′(t)

R[σ(t)]r1/α[σ(t)]
·
Rα+1[σ(t)]r(α+1)/α(t)

(

z′(t)
)α+1

zα+1[σ(t)]
,

w′(t) 6
ασ′(t)

R[σ(t)]r1/α[σ(t)]
w(t) −

ασ′(t)

R[σ(t)]r1/α[σ(t)]
w(α+1)/α(t)

− Rα[σ(t)]βq(t)
(

1 − p[σ(t)]
)α

.

Multiplying this inequality with H(t, s) > 0 and then integrating from t1 to t we

have

∫ t

t1

H(t, s)Rα[σ(s)]βq(s)
(

1 − p[σ(s)]
)α

ds 6

∫ t

t1

H(t, s)
ασ′(s)

R[σ(s)]r1/α[σ(s)]
w(s) ds

−

∫ t

t1

H(t, s)
ασ′(s)

R[σ(s)]r1/α[σ(s)]
w(α+1)/α(s) ds −

∫ t

t1

H(t, s)w′(s) ds.

Now integrating (by parts) from t1 to t we arrive at

∫ t

t1

H(t, s)Rα[σ(s)]βq(s)
(

1 − p[σ(s)]
)α

ds(7)

6 H(t, t1)w(t1) +

∫ t

t1

ασ′(s)H(t, s)

R[σ(s)]r1/α[σ(s)]

×
[

w(s)
(

1 +
R[σ(s)]r1/α[σ(s)]

ασ′(s)H(t, s)
·
∂H(t, s)

∂s

)

− w(α+1)/α(s)
]

ds.

Set A = w(s) and

B =
[ 1

λ

(

1 +
R[σ(s)]r1/α[σ(s)]

ασ′(s)H(t, s)
·
∂H(t, s)

∂s

)]1/(λ−1)

,

where λ = (α + 1)/α > 1. Then

(8) (λ − 1)Bλ =
(ασ′(s)H(t, s) + R[σ(s)]r1/α[σ(s)]∂H(t, s)/∂s)α+1

α(α + 1)α+1Hα+1(t, s)[σ′(s)]α+1
.
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Applying Lemma 2.1 to (7) and using (8) and the definition of the function Q(t, s),

we conclude that

1

H(t, t1)

∫ t

t1

[

H(t, s)Rα[σ(s)]βq(s)
(

1 − p[σ(s)]
)α

−
Q(t, s)

(α + 1)α+1R[σ(s)]r1/α[σ(s)][σ′(s)]α

]

ds 6 w(t1).

Letting t → ∞ we get a contradiction with (1), since the left hand side of the previous

inequality tends to ∞. This completes the proof of Theorem 2.1. �

3. Concluding remarks

R em a r k 1. Note that if p(t) ≡ 1 then (1) is never fulfilled. This is due to

the fact that (2) gives in this case only x(t) > 0 and our arguments of the proof of

Theorem 2.1 fail. So condition (H1) must hold and this assumption has to be added

also to Theorem 1 in [15].

Setting H(t, s) = (t − s)n, n being a positive integer, Theorem 2.1 reduces to

Theorem 3.1. If

lim sup
t→∞

1

(t − t1)n

∫ t

t1

[

(t − s)nRα[σ(s)]βq(s)
(

1 − p[σ(s)]
)α

−
Q(t, s)

(α + 1)α+1R[σ(s)]r1/α[σ(s)][σ′(s)]α

]

ds = ∞,

where

Q(t, s) = (t − s)n
(

ασ′(s) −
nR[σ(s)]r1/α[σ(s)]

t − s

)α+1

,

then Eq. (E+) is oscillatory.

For the particular case of (E+), namely for

(9) [|x′(t)|α−1x′(t)]′ + +q(t)|x[σ(t)]|α−1x[σ(t)] = 0,

we have
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Corollary 3.1. If

lim sup
t→∞

1

(t − t1)n

∫ t

t1

(t − s)n

×
[

[σ(s)]αq(s) −
( α

α + 1

)α+1 σ′(s)

σ(s)

(

1 −
nσ(s)

α(t − s)σ′(s)

)α+1]

ds = ∞

then the equation (9) is oscillatory.

Recently, W.T.Li [Theorem 2.2 in [10]] presented the following oscillatory criterion

for

(10) [r(t)|x′(t)|α−1x′(t)]′ + q(t)|x[σ(t)]|α−1x[σ(t)] = 0.

Denote
∂H

∂s
= −h2(t, s)

√

H(t, s).

Theorem 3.2. If there exists a positive nondecreasing function ̺(t) ∈ C1[t0,∞)

such that

(11) lim sup
t→∞

∫ t

t1

[

H(s, t1)q(s) −
r[σ(s)]̺(s)

(

h2(s, t1) + ̺′(s)
̺(s)

√

H(s, t1)
)α+1

(α + 1)α+1(σ′(s))α[H(s, t1)](α−1)/2

]

ds > 0

and

(12) lim sup
t→∞

∫ t

t1

[

H(t, s)q(s) −
r[σ(s)]̺(s)

(

h2(t, s) + ̺′(s)
̺(s)

√

H(t, s)
)α+1

(α + 1)α+1(σ′(s))α[H(t, s)](α−1)/2

]

ds > 0,

then the equation (10) is oscillatory.

On the other hand, Theorem 2.1 for (10) reduces to

Corollary 3.2. If

lim sup
t→∞

1

H(t, t1)

∫ t

t1

[

H(t, s)Rα[σ(s)]q(s)(13)

−
(ασ′(s)H(t, s) + R[σ(s)]r1/α[σ(s)] · ∂H(t, s)/∂s)α+1

(α + 1)α+1Hα(t, s)R[σ(s)]r1/α[σ(s)][σ′(s)]α

]

ds = ∞,

then the equation (10) is oscillatory.

Corollary 3.2 supplements Theorem 3.2 and reduces the conditions (11) and (12)

to one condition (13).
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