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1. Introduction

The necessity of studying uncertain differential equations is due to the fact that

these equations are a useful mathematical tool in modelling many processes of the

real world [7], [8].

A natural generalization of these equations are the uncertain impulsive ordinary

differential equations or uncertain impulsive differential-difference equations. These

equations may be used for mathematical simulation of processes and phenomena

which are subject to short-term perturbations during their evolution. The duration

of the perturbations is negligible in comparison with the duration of the process

considered, therefore it can be considered instantaneous. In [1], [2], [3], [12], for

instance, the reader can find some fundamental results on the theory of impulsive

systems.

The applications of uncertain impulsive differential equations to mathematical

simulation request finding some criteria for stability of their solutions. One of the

most important parts of the qualitative theory of differential equations is the theory
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of stability of the invariant manifolds. The main results related to the study of the

existence and stability of invariant manifolds for uncertain impulsive differential and

integro-differential equations can be found in [9], [10], [11].

The main purpose of this paper is to derive “easily verifiable” sufficient conditions

for the stability of moving invariant manifolds for a class of uncertain impulsive

differential-difference equations. The paper is organized as follows. In Section 2 we

give some preliminaries and main definitions. In Section 3 we investigate the stability

of moving invariant manifolds. By means of piecewise continuous auxiliary functions

which are analogues of the classical Lyapunov’s functions sufficient conditions are

obtained. The main idea comes from the works of Lakshmikantham, Leela and

Martynyuk for stability of uncertain differential systems and moving invariant sets

as the parametric changes [4], [5] and from the works [1], [7], [8]. The investigations

are carried out also by using a comparison principle which permits us to reduce the

study of impulsive differential-difference equations to the study of a scalar differential

equation. The results we obtain generalize those in [6], [13].

2. Statement of the problem. Preliminary notes

Let Rn be the n-dimensional Euclidean space with elements x = col (x1, x2, . . . , xn)

and norm | · | =
( n

∑

k=1

x2
k

)1/2

, let Ω be a domain in R
n containing the origin, R =

(−∞,∞), R+ = [0,∞), h > 0, ϕ0 ∈ C[[t0 − h, t0],R
n], S̺ = {x ∈ R

n : |x| = ̺},

B̺ = {x ∈ R
n : |x| < ̺}, ̺ > 0.

We will consider the system of uncertain impulsive differential-difference equations

(1)











ẋ(t) = f(t, x(t), x(t − h), λ), t 6= τk, t > t0,

x(t) = ϕ0(t), t ∈ [t0 − h, t0],

∆x(τk) = Ik(x(τk), λ), τk > t0, k = 1, 2, . . . ,

where

i) t0 ∈ R, f ∈ C[(t0,∞)×Ω×Ω×R
d,Rn] and λ ∈ R

d is an uncertain parameter;

ii) t0 = τ0 < τ1 < . . . < τk < . . ., lim
k→∞

τk = ∞;

iii) ∆x(τk) = x(τk + 0) − x(τk), k = 1, 2, . . .;

iv) Ik ∈ C[Ω × R
d,Rn], k = 1, 2, . . ..

We introduce the following notation: x(t) = x(t; t0, ϕ0) is the solution of the

problem (1); J+(t0, ϕ0) is the maximal interval of type [t0, β) in which the solution

x(t) = x(t; t0, ϕ0) is defined; ‖ϕ‖ = sup
t∈[t0−h,t0]

|ϕ(t)| is the norm of a function ϕ ∈

C[[t0 − h, t0],R
n].

The solutions x(t) of the problems in the form (1) are piecewise continuous func-

tions with discontinuities of the first kind at the points τk > t0, k = 1, 2, . . .. At
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these points the solutions x(t) are continuous from the left, that is, at the moments

of impulse effects τ ′ks the following relations are valid:

x(τk − 0) = x(τk), x(τk + 0) = x(τk) + Ik(x(τk), λ), k = 1, 2, . . . .

If for some positive integer j we have τk < τj + h < τk+1, k = 0, 1, 2, . . ., then in the

interval [τj + h, τk+1] the solution of problem (1) coincides with the solution of the

problem
{

ẏ(t) = f(t, y(t), x(t− h+ 0), λ),

y(τj + h) = x(τj + h),

and if τj + h = τk for j = 0, 1, 2, . . ., k = 1, 2, . . ., then in the interval [τj + h, τk+1]

the solution x(t) coincides with the solution of the problem

{

ẏ(t) = f(t, y(t), x(t− h+ 0), λ),

y(τj + h) = x(τj + h) + Ik(x(τj + h), λ).

If the point x(τk)+Ik(x(τk), λ) /∈ Ω, then the solution of problem (1) is not defined

for t > τk.

For existence and uniqueness results of (1) see [2], [3].

Consider the following sets:

Gk = {(t, x) ∈ [t0,∞) × Ω: τk < t < τk+1}, k = 0, 1, 2, . . . , G =

∞
⋃

k=0

Gk;

Wk = {(t, u) ∈ R
2
+ : τk < t < τk+1}, k = 0, 1, 2, . . . ;

K = {a ∈ C[R+,R+] : a is strictly increasing in R+, and a(0) = 0};

PC[R+,R
n] = {x : R+ → R

n, x is a piecewise continuous function with disconti-

nuities of the first kind at τk, k = 1, 2, . . . and x(τk − 0) = x(τk)};

V0 = {V ∈ C[G,R+], V (t, 0) = 0, t ∈ [t0,∞) is locally Lipschitz in x ∈ R
n on

each of the sets Gk, and lim
(t,x)→(τk,x0)
(t,x)∈Gk+1

V (t, x) = V (τk + 0, x0)}.

Let V ∈ V0. For x ∈ PC(R+,Ω) and t ∈ [t0,∞), t 6= τk, k = 1, 2, . . . we define

D−V (t, x(t)) = lim
δ→0−

inf δ−1{V (t+ δ, x(t) + δf(t, x(t), x(t− h), λ)) − V (t, x(t))}.

Our aim is to reduce the study of the system (1) to the study of a simple scalar

impulsive differential equation with impulses at fixed moments and an uncertain

parameter.

For convenience, let us state the following hypotheses.

69



(A0) w : R
3
+ → R+ is continuous on (τk, τk+1] × R

2
+, τk < τk+1, lim

k→∞

τk = ∞,

w(t, 0, 0) = 0, the limits

w(τk + 0, u0, µ)= lim
(t,u,µ)→(τk ,u0,µ)

(t,u)∈Wk+1

w(t, u, µ)

exist and are finite, ψk ∈ C[R2
+,R], ψk(u, µ), k = 0, 1, 2, . . . are nondecreasing in

u for µ ∈ R+, and r(t; t0, u0) is the maximal solution of the impulsive differential

equation

(2)











u̇ = w(t, u, µ), t 6= τk, t > t0,

∆u(τk) = u(τk + 0) − u(τk − 0) = ψk(u(τk), µ), k = 1, 2, . . . ,

u(t0 + 0) = u0, t0 ∈ R+,

existing on [t0,∞).

(A1) V ∈ V0 and for t > t0, x ∈ E0, we have

D−V (t, x(t)) 6 w(t, V (t, x(t)), µ), t 6= τk, k = 0, 1, 2, . . .

(D−V (t, x(t)) > w(t, V (t, x(t)), µ), t 6= τk, k = 0, 1, 2, . . .)

where

E0 = {x ∈ PC[R+,Ω]: V (s, x(s)) 6 V (t, x(t)), t− h 6 s 6 t, t ∈ [t0,∞)}

and

V (t, x(t) + Ik(x(t), λ)) 6 ψk(V (t, x(t)), µ), t = τk, k = 1, 2, . . . ,

(V (t, x(t) + Ik(x(t), λ)) > ψk(V (t, x(t)), µ), t = τk, k = 1, 2, . . .).

Theorem 1. Assume that conditions (A0) and (A1) are satisfied.

Then if x(t) = x(t; t0, ϕ0) is any solution of (1) existing on [t0,∞), we have

V (t, x(t)) 6 r(t; t0, u0), t > t0 provided V (t0 + 0, ϕ0) 6 u0

or

V (t, x(t)) > r(t; t0, u0), t > t0 provided V (t0 + 0, ϕ0) > u0.

P r o o f. The proof of Theorem 1 is analogous to the proof of Lemma 2 in [12].

Now we present definitions which are borrowed from [10] and concern the invari-

ance and stability of moving invariant manifolds of systems (1) and (2).
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Definition 1 [10]. Let rk = rk(λ) > 0, k = 0, 1, 2, . . .. Then we say that the

manifold M , where

M =

∞
⋃

k=1

Mk, Mk = {x ∈ R
n : (t, x) ∈ Gk, |x| = rk}, k = 0, 1, 2, . . . ,

is:

1. invariant and uniformly stable (US) with respect to (1) if

i) ‖ϕ0‖ = r0 ⇒ |x(t)| = rk, t ∈ (τk, τk+1], k = 0, 1, 2, . . .,

ii) given ε > 0 and t0 ∈ R+, there exists δ = δ(ε) > 0 such that

r0 − δ < ‖ϕ0‖ < r0 + δ ⇒ rk − ε < |x(t)| < rk + ε, t ∈ (τk, τk+1], k = 0, 1, 2, . . . ;

2. invariant and uniformly asymptotically stable (UAS) with respect to (1) if M is

(US) and there exist δ0 > 0 and T = T (ε) > 0 such that if t0 +T ∈ (τl, τl+1] for

some l = 0, 1, 2, . . ., then

r0 − δ < ‖ϕ0‖ < r0 + δ ⇒ rl − ε < |x(t)| < rl + ε, t ∈ (t0 + T, τl+1].

If

rk − ε < |x(t)| < rk + ε, t ∈ (τk, τk+1], k > l + 1,

and t0 + T = τp + 0 for some p = 1, 2, . . . , then

r0 − δ < ‖ϕ0‖ < r0 + δ ⇒ rk − ε < |x(t)| < rk + ε, t ∈ (τk, τk+1], k > p,

where x(t) = x(t; t0, ϕ0) is a solution of (1) on J
+(t0, ϕ0).

Definition 2 [10]. Let Rk = Rk(µ) > 0, k = 0, 1, 2, . . .. Then we say that the

manifold

u =
∞
⋃

k=1

uk, uk = {u ∈ R+ : (t, u) ∈ Wk, u = Rk}, k = 0, 1, 2, . . . ,

is:

1. invariant and uniformly stable (US) with respect to (2) if

i) u0 = R0 ⇒ Rk = u(t), t ∈ (τk, τk+1], k = 0, 1, 2, . . .,

ii) given ε > 0 and t0 ∈ R+ there exists δ = δ(ε) > 0 such that

R0 − δ < u0 < R0 + δ ⇒ Rk − ε < u(t) < Rk + ε, t ∈ (τk, τk+1], k = 0, 1, 2, . . . ;
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2. invariant and uniformly asymptotically stable (UAS) with respect to (2) if there

exist δ0 > 0 and T = T (ε) > 0 such that if t0 + T ∈ (τl, τl+1] for some

l = 0, 1, 2, . . . then

R0 − δ < u0 < R0 + δ ⇒ Rl − ε < u(t) < Rl + ε, t ∈ (t0 + T, τl+1].

If

Rk − ε < u(t) < Rk + ε, t ∈ (τk, τk+1], k > l + 1

and t0 + T = τp + 0 for some p = 1, 2, . . . , then

R0 − δ < u0 < R0 + δ ⇒ Rk − ε < u(t) < Rk + ε, t ∈ (τk, τk+1], k > p,

where u(t) = u(t; t0, u0) is a solution of (2).

We define, for simplicity, the sets

E
(k)
1 = {x; x ∈ E0, x(t) ∈ Ω \Brk

}, k = 0, 1, 2, . . . ,

E
(k)
2 = {x; x ∈ E0, x(t) ∈ Brk

∪ Srk
}, k = 0, 1, 2, . . . .

3. Main result

Theorem 2. Assume:

(H0) For each λ ∈ R
d there exist a sequence {rk}

∞

k=1, rk = rk(λ) such that rk(λ) >

0 and rk(λ) → 0 as |λ| → 0, and rk(λ) → ∞ as |λ| → ∞ for each k = 0, 1, 2, . . ..

(H1) There exist functions V ∈ V0 and a, b ∈ K such that

b(|x|) 6 V (t, x) for t 6= τk, x ∈ E
(k)
1

and

V (t, x) 6 a(|x|) for t 6= τk, x ∈ E
(k)
2 , k = 0, 1, 2, . . . .

(H2)

D−V (t, x) 6 w(t, V (t, x), rk) for t 6= τk, x ∈ E
(k)
1

and

D−V (t, x) > w(t, V (t, x), rk) for t 6= τk, x ∈ E
(k)
2 , k = 0, 1, 2, . . . .

(H3)

V (τk + 0, x(τk) + Ik(x(τk), λ)) 6 ψk(V (τk, x(τk)), µ) for x ∈ E
(k)
1
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and

V (τk + 0, x(τk) + Ik(x(τk), λ)) > ψk(V (τk, x(τk)), µ) for x ∈ E
(k)
2 , k = 0, 1, 2, . . . .

(H4) For each sequence {rk}
∞

k=0, rk = rk(λ) > 0, there exists a sequence {Rk}
∞

k=0

such that Rk = R(rk) > 0 with Rk → 0 as rk → 0 and Rk → ∞ as rk → ∞,

k = 0, 1, 2, . . ., and u = R, R =
∞
⋃

k=0

Rk is invariant and (UAS) relative to (2).

Then if for any rk > 0, a(rk) = b(rk) = R(rk), the manifold M =
∞
⋃

k=1

Mk is

invariant and (UAS) relative to (1).

P r o o f. Assume that condition (H4) is fulfilled for some {rk}
∞

k=0, rk = rk(λ) >

0. First we shall prove that the manifold M is invariant with respect to (1).

If not, there would exists a solution of (1) with ‖ϕ0‖ = r0 and t2 > t1 > t0 such

that the following two cases may occur:

C a s e 1. If t1 ∈ (τk, τk+1] and t2 ∈ (τl, τl+1], k > l, then |x(t1)| = rk, |x(t2)| > rl,

x ∈ E0 is such that x(t) ∈ Ω \ Brσ
, t ∈ [t1, t2], where σ = k if l = k, or σ =

k, k + 1, . . . , l if l > k.

From (H1) and (H2) for V (t, x(t)) it follows that

D−V (t, x(t)) 6 w(t, u(t; t1, V (t1, x(t1))), rσ) if t ∈ [t1, t2] \ {τσ ∈ [t1, t2]},

V (τσ + 0, x(τσ) + Iσ(x(τσ), λ)) 6 ψσ(V (τσ , x(τσ)), rσ) for τσ ∈ [t1, t2].

Using the comparison Theorem 1 we have

V (t, x(t)) 6 u(t; t1, V (t1, x(t1))), t1 6 t 6 t2,

hence

b(rσ) < b(|x(t2)|) 6 V (t2, x(t2)) 6 u(t2; t1, a(|x(t1)|))

= u(t2; t1, a(rσ)) = b(rσ) = a(rσ) = Rσ, σ = k, k + 1, . . . , l,

which is a contradiction.

C a s e 2. If t1 ∈ (τk, τk+1] and t2 ∈ (τl, τl+1], k > l, then |x(t1)| = rk, |x(t2)| < rl,

x ∈ E0 is such that x(t) ∈ Brσ
∪ Srσ

, t ∈ [t1, t2], where σ = k if l = k, and

σ = k, k + 1, . . . , l if l > k.

From (H1) and (H2) it follows that

D−V (t, x(t)) > w(t, u(t : t1, V (t1, x(t1))), rσ) if t ∈ [t1, t2] \ {τσ ∈ [t1, t2]},

V (τσ + 0, x(τσ) + Iσ(x(τσ), λ)) > ψσ(V (τσ, x(τσ)), rσ) for τσ ∈ [t1, t2],
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where u(t, t1, V (t1, x(t1))) is the solution of (2) through (t1, V (t1, x(t1)) or

V (t, x(t)) > u(t; t1, V (t1, x(t1))), t1 6 t 6 t2.

Similarly we obtain

a(rσ) > a(|x(t2)|) > V (t2, x(t2)) > u(t2, t1, b(|x(t1)|))

= u(t2, t1, b(rσ)) = b(rσ) = a(rσ) = Rσ, σ = k, k + 1, . . . , l,

which also is a contradiction.

Let us fix ε > 0 and let t0 ∈ R+ be given. Suppose that u = R is (US). Then

since a(rk) = b(rk) = Rk, k = 1, 2, . . ., given a(rk − ε), b(rk + ε), there exist ε1 > 0,

δ1 > 0, δ > 0 such that

Rk + δ1 = a(rk + δ) < b(rk + ε) = Rk + ε1, k = 0, 1, 2, . . .

and

Rk − ε1 = a(rk − ε) < b(rk − δ) = Rk − δ1, k = 0, 1, 2, . . . .

If R0 − δ1 < u0 < R0 + δ1 then Rk − ε1 < u(t) < Rk + ε1, t > t0, k = 0, 1, 2, . . .

where u(t) is a solution of (2). We claim that with this δ > 0 the manifold M is

(US), that is

r0 − δ < ‖ϕ0‖ < r0 + δ ⇒ rk − ε < |x(t)| < rk + ε, t > t0, k = 1, 2, . . . .

If this were not true, there would exist a solution x(t) of (1) with r0 − δ < |x0| <

r0 + δ and t2 > t > t1 such that either

(a) |x(t2)| = rl + ε, |x(t1)| = rk + δ and x ∈ E0 is such that x(t) ∈ Ω \Brσ
∪ Srσ

,

t ∈ [t1, t2], t1 ∈ (τk, τk+1], t2 ∈ (τl, τl+1], l > k, σ = k, k + 1, . . . , l, or

(b) |x(t2)| = rl −ε, |x(t1)| = rk −δ and x ∈ E0 is such that x(t) ∈ Brσ
, t ∈ [t1, t2],

t1 ∈ (τk, τk+1], t2 ∈ (τl, τl+1], l > k, σ = k, k + 1, . . . , l.

Consider (a). As before, we have

V (t, x(t)) 6 u(t; t1, V (t1, x(t1))), t ∈ [t1, t2]

and therefore, we arrive at the contradiction

b(rσ + ε) = b(|x(t2)|) 6 V (t2, x(t2)) 6 u(t2; t1, a(rσ + δ)) < b(rσ + ε),

σ = k, k + 1, . . . , l.
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Similarly, in case (b) we first get

V (t, x(t)) > u(t, t1, V (t1, x(t1))), t ∈ [t1, t2],

and then it follows that

a(rσ − ε) = a(|x(t2)|) > V (t2, x(t2)) > u(t2; t1, a(rσ − δ)) > a(̺σ − ε),

σ = k, k + 1, . . . , l, which is a contradiction. Hence M is (US).

To prove that the set M is (UAS) with respect to (1), let us first fix εk = rk,

k = 1, 2, . . ., and let δk = δ(rk) so that we obtain

b(rk − δk) < u0 < a(rk + δ) ⇒ 0 < u(t) < b(2rk), t > t0, k = 0, 1, 2, . . . ,

and

r0 − δ0 < ‖ϕ0‖ < r0 + δ0 ⇒ 0 < |x(t)| < 2rk, t > t0, k = 0, 1, 2, . . . .

Assume that u = R is (UAS) and let δ = δ(ε) be the same number corresponding

to ε when u is (US) with respect to (2). Then for given b(rk + δ), a(rk − δ) there

exists T = T (ε) > 0 such that

i) if t0 + T ∈ (τl, τl+1] for some l = 1, 2, . . ., then

b(r0 − δ0) < u0 < a(r0 + δ0) ⇒ a(rl − δ) < u(t) < b(rl + δ), t ∈ (t0 + T, τl+1]

and

a(rk − δ) < u(t) < b(rk + δ), t ∈ (τk, τk+1], k > l + 1,

ii) if t0 + T = τp for some p = 1, 2, . . ., then

b(r0 − δ0) < u0 < a(r0 + δ0) ⇒ a(rk − δ) < u(t) < b(rk + δ), t ∈ (τk, τk+1], k > p.

SinceM is (US), it is enough to show that there exists t∗ ∈ (τq , τq+1] ⊂ (t0, t0 +T )

satisfying rq − δ < |x(t∗)| < rq + δ. If t∗ does not exists, then for t0 + T ∈ (τl, τl+1]

we have either

(c) x ∈ E0 is such that x(t) ∈ Ω \Brσ+δ for all t ∈ [t0, t0 + T ] \ {τσ ∈ (t0, t0 + T ],

σ = 1, 2, . . . , l} or

(d) x ∈ E0 is such that x(t) ∈ Brσ+δ∪Srσ+δ for all t ∈ [t0, t0+T ]\{τσ ∈ (t0, t0+T ],

σ = 1, 2, . . . , l}.

In case (c), we have

b(rσ + δ) 6 V (t0 + T, x(t0 + T )) 6 u(t0 + T ; t0, a(rσ + δ0)) < b(rσ + δ)
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for σ = 0, 1, 2, . . . , l, which is a contraction. Similarly, in case (d), it follows that

a(rσ − δ) > V (t0 + T, x(t0 + T )) > u(t0 + T ; t0, b(rσ − δ0)) > a(rσ − δ)

for σ = 1, 2, . . . , l, which is again a contraction. Hence there exists t∗ ∈ [t0, t0 + T ]

satisfying rq − δ < |x(t∗)| < rq + δ and the proof of Theorem 2 is complete.

R em a r k 1. Note that the main result of the paper follows from an estimate of

Lyapunov functions on the minimal class E0 in assumption (A1). This class depends

on the choice of the functions w0(t, v, µ), and ψ0
k(v, µ), k = 1, 2, . . .. Special cases of

these choices are considered in [4], [5].
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