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NEARLY ANTIPODAL CHROMATIC NUMBER acd'(F,)
OF THE PATH P,

SRINIVASA RAO KoLA, PRATIMA PANIGRAHI, Kharagpur

(Received September 22, 2007, revised December 4, 2007)

Abstract. Chartrand et al. (2004) have given an upper bound for the nearly antipodal

chromatic number ac’(Py,) as (”;2) +2 for n > 9 and have found the exact value of ac’(Py)

for n = 5,6,7,8. Here we determine the exact values of ac’(Py) for n > 8. They are
2p2 — 6p + 8 for n = 2p and 2p2 —4p + 6 for n = 2p + 1. The exact value of the radio
antipodal number ac(Py,) for the path P, of order n has been determined by Khennoufa
and Togni in 2005 as 2p> —2p+ 3 for n = 2p+ 1 and 2p* — 4p+ 5 for n = 2p. Although the
value of ac(Pp) determined there is correct, we found a mistake in the proof of the lower
bound when n = 2p (Theorem 6). However, we give an easy observation which proves this
lower bound.
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MSC 2010: 05C78, 05C12, 05C15

1. INTRODUCTION

Let G be a connected graph. For any positive integer k, a radio k-coloring of
G is an assignment f of colors (positive integers) to the vertices of G such that
|f(u) — f(v)] = 1+ k — d(u,v) for every two distinct vertices u,v of G. The span
rex(f) of a radio k-coloring f of G is the maximum color assigned to a vertex of G.
The radio k-chromatic number rcg(G) of G is the minimum span of all radio k-
colorings of G. If rci(f) = reg(G) for some radio k-coloring f of G then we say that
f is a minimal radio k-coloring. The radio 1-chromatic number r¢; (G) is then the
chromatic number x(G). If diamG = d, the radio d-coloring of G is referred to as
the radio coloring of G, and the radio d-chromatic number rcq(G) is called the radio
number of G that was introduced in [1]. The radio (d—1)-coloring of G is referred to
as the radio antipodal coloring of G and the radio (d — 1)-chromatic number ac(G) is
called the radio antipodal chromatic number or simply the antipodal number of G.
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The radio (d — 2)-coloring is known as the nearly antipodal coloring of G and the
radio (d—2) coloring number is called the nearly antipodal chromatic number ac' (G)
of G. The radio k-coloring of a graph was defined by Chartrand et al. in [3], [4]. The
radio antipodal coloring for graphs was first studied by Chartrand et al. [2], [3].
Kchikech et al. [7] have given the exact values of the radio k-chromatic number of
P, for k > n, which are (n—1)k—3n(n—2)+1if nis even and (n—1)k—1(n—1)>+2
if n is odd. Liu and Zhu [6] determined the exact value of the radio (n — 1)-coloring

number (radio number) as given below.

Theorem 1.1 ([6]). For any integer n > 3,

2% +3 if n=2p+1,

rcin—1)(Pn) =
(-1 (Fn) {2p2—2p+2 if n=2p.

Next we define the symbols €;,2 < j < n, which are used in the sequel.

Definition 1.2. For any radio k-coloring f of a path P, and an ordering
Z1,%9,...,&, of vertices of P, with f(z;) < f(zit1), 1 < ¢ < n — 1, we define
gj = (f(z;) — flxjm1)) — A+ k —d(zj,zi-1)), 2 < j < n. It is clear from the
definition of a radio k-coloring that ¢; > 0,2 < j < n.

Khennoufa and Togni [5] determined the exact value of the radio antipodal number
for the path P, as given below.

Theorem 1.3 ([5]). For any integer n > 5,

P, 2% —2p+3 if n=2p+1,
ac =
2p% —4p+5 if n=2p.

Although the value of ac(P,) determined in [5] is correct, we found a mistake in
the proof of the lower bound when n = 2p (Theorem 6 of [5]). In Theorem 6 of [5],
the inequality rcop_1(Pop) < ac(Pap) + (2p — 1) — €3 — €951 is incorrect, because
from Lemma 2 of [5] one gets rcop—1(f') < regp—2(f)+(2p—1) —e3 —e9p—1, where f
is a radio k-coloring of P, and f’ is a radio k’-coloring of P,,, k' > k, with reg (') <
rex(f) + (n — DK — k) = > min(k — k,e;), I = {i1,i2,...,55} C {2,3,...,n}
such that ¢;49 > i; +1, 1 %Elj < s — 1. Since regp—1(Pop) < regp—1(f'), we get
reop—1(Pap) < regp_2(f) +(2p — 1) —e3 —e9p—1. We have ac(Pop) < regp—2(f). The
number rcg,_o(f) cannot be replaced by ac(Psp) unless f is a minimal coloring. If
we assume (or know) that f is a minimal coloring then there is no need of proving
this theorem.

The observation below establishes the lower bound of ac(Psp,) (Theorem 6 of [5]).
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Observation 1.4. For n = 2p, the lower bound of the antipodal number of P,
may be proved as follows. We know that rci,(P,,) = rci(P,—1) for any positive integer
k. So ac(Pap) = rcn—o(Pp=2p) = rCn—2(Pr_1=2(p—1)41) = 2(p— 1)243 =2p? —4p+5
due to Liu and Zhu [6].

Chartrand et al. [4] have given an upper bound for the radio k-chromatic number
when 1 < k < n — 3 as follows.

Theorem 1.5 ([4]). For 1 < k< n—3,

LK +2k+1)  if K is odd,
TCk(Pn) g 1 . .
5(k? + 2k + 2) if k is even.

Chartrand et al. [4] have also given a lower bound for the same number. However,
from Theorem 1.3, we get the following improved lower bound for rci(P,), 1 < k <
n— 3.

Theorem 1.6 ([7]). For 1 < k< n—3,

(k2 4+ 5) if k is odd,

reg(Py) =
e(Fn) { (k2 4 6) if k is even.

NI= N—

Chartrand et al. [4] have further improved the upper bound for the particular case
k=mn—3 (ie. for ac'(P,)) as (";2) + 2 for n > 9 and have given the exact values of
ac' (P,) for n = 5,6,7,8 as 5,7,11, 16, respectively. In this paper we give the exact
value of the nearly antipodal chromatic number of P, for n > 8. And consequently,
the lower bound of the radio k-chromatic number of P, for 5 < k < n — 4 is also
improved.

2. UPPER BOUND
Now we give an upper bound for ac’(P,) by defining radio (n — 3)-colorings of P,.
Theorem 2.1. For any integer n > 8,

2p% —6p+ 8 if n = 2p,
ac' (P, g{

2% —4p + 6 if n=2p+1.

Proof. Let P, be the path a; as ...ay.
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Case I In this case we take n = 2p. Define a map f as

flar) =p—

flap—1-i) =2p —1—|—z(2p 3) for 0<i<p-3,
f(a,) =2p* —6p+38,
flapt1) =1,

flazp—1-5) =p 1+J(2p 3) for 0<j<p-—3,
flagp) = 2p~ — 7p+ 10.

Observe that a, gets the maximum color, i.e. 2p? —6p+8. Here the distance condition
is verified only for vertices of the form a,_1—; and asp—1-;, 0 < 4,5 < p— 3 as the
other conditions can be checked easily.

For 0 < 4,5 <p—3, [flazp—1-5) — flap—1-3)| = lp+1+752p—3) - (2p -1+
i(2p — 3))|—|(J )(21? 3)—(p—-2)zp-2+(G—-i)=1+@2p-3)—(2p—1-
j=p—-1-4)=1+Mn-3)-(2p-1-j—(p—1-4)if j <i. Forj—i=1,

(G=1)(2p=3)—(p—2)| =p—1=p-2+(j—i) =1+(n—3)—(2p—1—-j—(p—1-1)).
For j—i>2[J—-i2p—3)-(p-2)23p—-4>2p-52p-2+(—1i) =
1+(n=-3)—2p—-1—47—(p—1-1)).

Therefore the above mapping f is a radio (n—3)-coloring and ac’(P,) < 2p*>—6p+8
for n = 2p.

Case II. In this case we take n = 2p + 1. Define a map g as

glar) =p+1,
glaz) = 2p® = 5p +7,
glas4i) =3p+14+i(2p—1), 0<i<p—4,
glaps;) =1+7(2p—1), 0<j <1,
9(aps2) = 2p* — 4p + 6,
g(apiatr) =4p+1(2p—1), 0<I<p—4,
glaoptm) =p+m2p—1), 0<m < 1L

Observe that a,io gets the maximum color, i.e. 2p? — 4p + 6. Here the distance
condition is verified only for vertices of the form asy; and apy34;, 0 < i,l <p—4 as
the other cases can be checked easily. For 0 < i,] < p —4, |g(apysyr) — g(asyi)| =
[4p+12p—1)—Bp+1+i2p-1)=[l-)2p-1)+p-1Zp-1-(—i)=
1+2p—2)— (p+3+1—(3+i)) =1+ (n—3)—(p+3+1—(3+1)) ifl > i. Fori—1l =1,
[I=9)2p—1)+p—1|=p=p—1—(I—i) = 1+(n—3)— (p+3+1—(3+1)). Fori—1 > 2,
|(1—i)(2p—1)+p—1| = 3p—1> 2p—5 > p—1—(I—i) = 1+ (n—3)— (p+3+1—(3+1)).

Therefore the above mapping g is a radio (n—3)-coloring and ac’(P,,) < 2p?—4p+6
forn=2p+1.
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Example 2.2. Here we illustrate Theorem 2.1 by giving an example of nearly
antipodal colorings of P, for n = 8,11, 12.

ai az as aq as ae az as

O O

3 12 7 16 1 10 ) 14
ay az as a4 as ag az as ag Ay 011

6 32 16 25 1 10 36 20 29 ) 14
az as a4 as ae ar as ag aip  an ai2
38 29 20 11 44 1 34 25 16 7 40

ay
O
5

3. LOWER BOUND

Here we first give a result of Liu and Zhu [6] and also a detailed proof of this which
will be useful in deriving some more results in the sequel.

Theorem 3.1 [6]. For any radio k-coloring f of a path P,,: a1 as as ...an—1 an,

> d(wi, i) < {

2% —1 if n=2p,

P 22 +2p—1 if n=2p+1,
where x1,%2,%3,...,Tn_1,%, Is an ordering of vertices of P, such that f(z;) <
f(xiJrl), 1 < ) < n—1.

Proof. Letx; = as@), 1 <i<n. Then o is a permutation of {1,2,3,...,n}.

Note that d(x;,z;—1) is equal to either o(i) — o(i — 1) or o(i — 1) — o(¢), whichever
n

is positive. Replacing each term d(z;,2;—1) in Y d(z;,2;—1) by the corresponding

=2

o(i)—o(i—1)or o(i—1) —o(i), whichever is positive, we obtain a summation whose
entries are +j for j € {1,2,3,...,n}. Altogether there are 2(n—1) terms of the form
n

+j in the summation Y d(z;,2;—1), half of them positive and half negative. To
i=2
maximize the summation i d(x;,x;—1), one needs to minimize the absolute values
for negative terms while Irg)?imizing the values of positive terms. It is easy to verify
that the following are the only possibilities achieving the maximum summation.
For n = 2p: In the summation Zn: d(x;,x;—1) each of {1,2,3,...,p — 1} occurs
twice with a negative sign, each of 41[;24— 2,p+3,...,2p} occurs twice with a positive

sign, p occurs once as negative and p + 1 occurs once as positive. Since p and p + 1
occur only once in the summation, we get {f(z1), f(z2p)} = {f(ap), f(ap+1)}-
Forn=2p+1:
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(i)

Each of the numbers {p+2,p+3,p+4,...,2p+ 1} occurs twice with a positive
sign, each of {1,2,3,...,p — 1} occurs twice with a negative sign, and each of
p and p + 1 occurs once as negative. Since both p and p + 1 occur only once in
the summation, we get {f(z1), f(x2p)} = {f(ap), f(ap+1)}-

Each of the numbers {p+3,p+4,...,2p+ 1} occurs twice with a positive sign,
each of {1,2,3,...,p} occurs twice with a negative sign, and each of p + 1 and
p + 2 occurs once as positive. Since both p and p + 2 occur only once in the

summation, we get {f(z1), f(z2p)} = {f(ap+1), flaps2)}.

Next we give the possibilities of having the distance summation 2p% —2 and 2p? —3

when n = 2p is any radio k-coloring of P,.

Lemma 3.2. For any radio k-coloring of P,,, the following are the only possibilities

n
for the sum Y d(z;,2;—1) to be 2p?> — 2 when n = 2p.

(i)

i=2
In the summation each of {1,2,3,...,p — 1} occurs twice with a negative sign,
each of {p+1,p+3,...,2p} occurs twice with a positive sign, p occurs once as

negative and p + 2 occurs once as positive. Since both p and p + 2 occur only
once in the summation, we get {f(x1), f(x2p)} = {f(ap), f(ap+2)}.

In the summation each of {1,2,3,...,p—2,p} occurs twice with a negative sign,
each of {p+2,p+3,...,2p} occurs twice with a positive sign, p— 1 occurs once
as negative and p + 1 occurs once as positive. Since both p— 1 and p+ 1 occur
only once in the summation, we get {f(z1), f(z2p)} = {f(ap-1), f(ap+1)}-

Proof. Follows from the proof of Theorem 3.1. (I

Lemma 3.3. For any radio k-coloring of P,,, the following are the only possibilities

for the sum Y d(z;,2;—1) to be 2p?> — 3 when n = 2p.

(i)

(i)

(iii)

82

=2
In the summation each of {1,2,3,...,p — 1} occurs twice with a negative sign,

each of {p+ 1,p+2,p+4,...,2p} occurs twice with a positive sign, p occurs
once as negative and p+ 3 occurs once as positive. Since both p and p+ 3 occur
only once in the summation, we get {f(z1), f(z2p)} = {f(ap), flap+s)}.

In the summation each of {1,2,3,...,p—3,p—1,p} occurs twice with a negative
sign, each of {p+2,p+3,...,2p} occurs twice with a positive sign, p — 2 occurs
once as negative and p + 1 occurs once as positive. Since both p —2 and p + 1
occur only once in the summation, we get { f(x1), f(x2p)} = {f(ap—2), f(ap+1)}-
In the summation each of {1,2,3,...,p—2,p} occurs twice with a negative sign,
each of {p+1,p+3,...,2p} occurs twice with a positive sign, p— 1 occurs once
as negative and p + 2 occurs once as positive. Since both p — 1 and p + 2 occur
only once in the summation, we get {f(z1), f(z2p)} = {f(ap-1), f(ap+2)}.



(iv) In the summation each of {1+ 2+ ...+ p — 2} occurs twice with a negative
sign, each of {p +2 +p+ 3+ ...+ 2p} occurs twice with a positive sign, p
and p — 1 occur once with negative sign and p + 1 occurs as +(p + 1) and
—(p+1). Since both p and p — 1 occur only once in the summation, we get

{f(21), f(22p)} = {f(ap), fap-1)}-

Proof. Follows from the proof of Theorem 3.1. U

Lemma 3.4. Let k be an even integer and n = k+ 2 = 2p, n > 8. Let f be a
minimal radio k-coloring of P, and let ©1, x2, T3, ..., T, be as in Definition 1.2.

7 n
Then Y d(x;,z;41) =2p*> — 1 and Y &; = 2.
=2

i=2
Proof. For any path P, and a radio k-coloring g we have

m

(1) 9(ym) = (m =D)L+ k) =Y dlysyi1) + Y e +1

i=2 i=2
where y1, Y2, Y3, ..., Ym is an ordering of vertices of P, such that g(y;) < g(yit1),
m
1 < i < m. Equation (1) is true because g(ym) = >.(9(yi) — 9(yi—1)) + g(y1) =

1—2

Y (k+1—d(yi,yi1) te)+1=m—-1)(1+k) - Z d(yi, yi-1) + Efri- L.
i=2
Since f is a minimal radio k-coloring of Py.o, f(xn) = ac(P,) = 2p —4p+5

by Theorem 1.3. By Theorem 3.1, the maximum possible value of E d(xi,xi—q) is

i=2
2p? — 1. Then from equation (1) we have the following possibilities:
k+2 k42
I Z d($i7$i+1) = 2]02 — 1 and E € = 2.
=2 i=2
k42 fto
(I1) > d(zi,xi11) = 2}72 —2and > g =1
’L 2 7, 2

(I1II) Z d(xi, zi+1) = 2p* — 3 and E g; =0.

Next we prove that (II) and (III) cénnot occur. Let Pp: a1 ag ... ap Gpy1 - .. A2p—1
azp. Consider the coloring f of the first 2p — 1 vertices of P,. Let azp = x; and
e = (f(zj41) — f(zj=1)) — (1 + k — d(xj—1,2j41)). Liu and Zhu [6] have given a
minimal radio k-coloring of Pyp_1y41 = Pop—1 = Pryo—1 = Prta whose summation
of distances is equal to 2(p—1)?+2(p—1) — 2 and summation of &;’s is equal to 0 with
the span reg(Pey1) = 2(p—1)2 +3 = 2p? —4p+5 = rei(f). So, from Theorem 3.1,
we have the following two possibilities for the coloring f of P, \ {ag}.

k+2
0 (X d@iai1)) = (@@ 2,-1) + dlwg2501)) = dl@j-n,w01) = 20— D2 +
i=2 ris
2(p—1) — 1 and ( > 61') —(ej+ejq1—€) =1

=2
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k42
i) (X daowin) = (e, 2j0) +d(rg,a500)) = g, 500) = 2p — 17 +
. k42
2(p—1)—2 and ( > si) —(¢j+¢€j41—¢€)=0.

=2
Suppose f satisfies case II. Here E d(z;,z;_1) = 2p?> — 2. Then the coloring

f of the vertices P, \ {ag,} is elther of type (i) or of type (ii). Suppose it is of
type (i). Then d(z;,zj41) + d(zj,xj-1) — d(zj—1,2zj41) = 2p — 1. Let z;_1 = a,,
Tjt1 = as, 1 < 7,5 < 2p. Since x; = agp, we have d(zj,z;41) + d(zj,zj-1) —
d(zj_1,zj41) = 2(2p r)or2(2p—s) = 2d(x;j,xj+1) or 2d(xj,x] 1). Now d(xj, zj4+1)
or 2d(xj,xj_1) = (2p — 1) which is not possible because 1 5(2p — 1) is not an integer.
Suppose the colormg f of the vertices P, \ {agp} is of type (ii). Then d(z;,z;4+1) +
d(zj,zj—1) — d(xj_1,2j4+1) = 2p. Similarly to the above, we get d(x;,x;—1) or

k+2
d(zj,zj11) =p. So xj_1 or Tj41 = ap. Since Y & =1, wehavee; + ¢4 —e = 1.
i=2
k+2
Since ¢; and ;41 appear in the summation ) ¢;, we get €; + ;41 = 1. Similarly,
i=2
if we consider the coloring f of the vertices P, \ {a1 = x; (say)}, then x;_1 or
k+2

Tig1 =apyr and g;+ 641 =1. As Y g; =1, wehavel=j+1landeg =¢;41 =1
i=2

orj=I0+1ande; =¢ 41 =1. Thatis, |f(a1) — f(agp) =1+ k—d(ai,as)+1=

1= |f(ap) — flapt1)| =1, which is not possible because k > 6

Suppose f satisfies case III. Here Z d(zi,xi—1) = 2p?> — 3. By Lemma 3.3,
=2

[F(ap-2), F(aps)} = {0,267 — 4p+ 5} or {f(ap), flapsa)} = {0,257 — 4p+ 5} or
{F(ap1)> flaps2)} or {f(ap), F(ap-1)} = {0,257 — 4p+5}. The coloring of P\ {as}
is either of type (i) or of type (ii). Suppose it is of type (i). That is, the dis-
tance summation is 2(p — 1) 4+ 2(p — 1) — 1. So by Theorem 3.1, either of the sets
{f(ap), fap+1)}, {f(apt1), flapt2)} is equal to {0,2p® —4p+ 5}, which is not poss-
ible because to repeat the color 0 (or 2p? — 4p + 5) its distance from the previous 0
(or 2p? — 4p + 5) color must be at least 2p — 1. Suppose the coloring P, \ {a1} is of
type (ii). Then d(x;, z;—1) + d(x;, z141) — d(x)—1,2141) = 2p — 1 = 2d(x;,x;—1) or
d(z1,2141) = 2p — 1 = d(2y,21-1) or d(z;, 7141) = 2(2p — 1), which is not possible.

Theorem 3.5. For any integer n > 8§,

2% —6p+ 8 if n = 2p,
ac' (P, >{

2% —4p+ 6 if n=2p+1.

Proof. Casel. koddand n=%k+3=2p.
Let f be any radio k-coloring of the path P,: a1 a2 a3 ... ap—1 an=gp with span
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2p® — 6p + 7. Let 21,29, 23,...,2,_1,2, be the ordering of the vertices such that
f(z;) < f(zig1), 1 < i< n—1. Consider the coloring f of the first 2(p — 1) vertices
of P,. Liu and Zhu [6] have given a minimal radio k-coloring of Py 1—_9(,—1) with
2(p—1) 2(p—1)
S d(zi,wio1) = 2(p— 1) — 1 and E g; = 0 (where the span is 2(p — 1)? —
i=2
2(p— 1) +2 = 2p?> — 6p + 6). If the span of the coloring f of P, \ {agp—1,az2,} is
2p% — 6p + 7, then from Theorem 3.1 we have the following two possibilities for the
coloring f of P, \ {agp—1,a2p}:

2p=Y) 2(p—1)
() Y di,zia)=2p—-1)%-1and Y &=1,
=2 i=2

2(p=1) 2(p=1)
(ii) Z d(xi,z;-1) =2(p—1)? — 2 and E g; =0.

=2
Then by Theorem 3.1 and Lemma 3.2,

{f(ap-1), f(ap)} or {f(ap-1), flap+1)} or {f(ap—2), flap-1)}

) ={0,2p* — 6p + T}

Similarly, if we consider the coloring f of P, \ {a1, a2} and if the span of the coloring
of P, \ {a1,az2} is 2p? — 6p + 7, we get

{fapt1), flapr2)} or {f(aps1), flaprs)} or {f(ap), flapi2)}
(4) >
={0,2p° — 6p+ 7}.
Equations (2) and (3) lead to a contradiction because the color 0 or 2p? — 6p + 7 can
be repeated only if its distance is at least 2p — 2. Suppose the span of the coloring
of P, \ {a1,az2} is 2p? — 6p + 6 and the span of the coloring of P, \ {asp—1, a2}
is 2p® — 6p + 7. If the span of the coloring of P, \ {a1,az2} is 2p? — 6p + 6, then
{f(aps1), f(aps2)} = {0,2p? —6p+6}. If the span of the coloring of P, \ {az,—1, a2y}
is 202 — 6p-+7, then { f(ap_1), flap)} o1 {flap1), Flaps)} or {f(ap-2), Flap1)} =
{0, 2p®—6p+ T}, which is not possible as the colors 2p? —6p+6 and 2p* —6p+7 are at
least 2p — 3 apart and the color 0 can be repeated if its distance from the previous 0
color is at least 2p—2. Similarly we get a contradiction when the span of the coloring
of P, \ {a1,az2} is 2p* — 6p + 7 and the span of the coloring of P, \ {azp—1,a2,} is
2p? — 6p + 6.

CaseIl. kevenand n=k+3=2p+ 1.

Let f be any radio k-coloring of the path P,: aj a2 as ... apn—1 ap=2p+1 with
span 2p® — 4p + 5. Let =1, 22, 23,...,%n_1,2, be the ordering of the vertices such
that f(x;) < f(zit1), 1 < ¢ < n—1. Consider the coloring of the first 2p vertices
of P,. Then by Lemma 3.4, this coloring has the sum of distances equal to 2p? — 1
and the sum of ¢;’s is equal to 2. So by Theorem 3.1 we have {f(ap), f(ap+1)} =
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{0,2p* — 4p + 5}. Similarly, if we consider the coloring of P, \ {a;} then we get
{f(ap+1), f(aps2)} = {0,2p? — 4p + 5}. This is a contradiction.
From Theorem 2.1 and Theorem 3.5 we summarize the main result of this paper.

Theorem 3.6. For any integer n > 8,

2% —6p+8 if n = 2p,
ac (P, :{

2% —4p + 6 if n=2p+1.

Observation 3.7. For any positive integers m and n with m < n one gets that
reg(Pm) < reg(P,). Therefore by Theorem 3.6 we have for n = k + ¢, i > 4, that
ren—i(Pn—iy+3) Is 2p? —6p+8 for (n—i)+3 = 2p and 2p*>—4p+6 for (n—i)+3 = 2p+1.
Since (n — i) + 3 < n, we get the following lower bound for rci(P,) with n =k + 1,
1> 4:

2% —6p+8 if n=2p—3+1,

reg(Pp) =
(Fn) {2p2—4p+6 if n=2p—2+1.
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