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Abstract. It is known that, under very general conditions, Blaschke products generate
branched covering surfaces of the Riemann sphere. We are presenting here a method of
finding fundamental domains of such coverings and we are studying the corresponding
groups of covering transformations.
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1. Introduction

Every finite or infinite sequence (ak), ak ∈ D := {z ∈ C ; |z| < 1} defines a

Blaschke product

(1.1) w = B(z) =

n6∞∏

k=1

bk(z),

where

(1.2) bk(z) =
āk

|ak|

ak − z

1 − ākz
.

It is known (see for example [8]) that if n = ∞ then the condition
∞∑

n=1
(1−|an|) <∞ is

sufficient for the product (1) to converge uniformly on compact subsets of C\(E∪A),

where E is the set of cluster points of zeros ak of B, E ⊂ ∂D, and A = {z ∈ C ; z =

1/āk, k = 1, 2, 3, . . .}. We have studied in [3] and [4] Blaschke products for which E

is a generalized Cantor set (see [7]). The word generalized used here has the meaning
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that we allow more liberty of choice for the open arcs to be removed. In particular

we allow some of them to have common ends and therefore the corresponding closed

interval between them to be a unique point. In other words, E is allowed to have

isolated points. We will also allow E to have only isolated points or to be the empty

set. Obviously, in this last case B is a finite Blaschke product. The statements which

follow in the subsequent sections do not depend on what type of generalized Cantor

set is E.

We have shown (see [3] and [4]) that for a Blaschke product whose cluster set E of

zeros is a generalized Cantor set (for more about this concept, see for example [6]),

there is a partition of W = Ĉ \ E into regions (fundamental “domains”) Ωk which

are mapped continuously and bijectively by B onto Ĉ. The mapping is conformal

in the interior of every Ωk. The local injectivity of B is violated just on a set of

points (branch points) which is finite in the case of a finite Blaschke product, and

which has its cluster points in E in the case of an infinite Blaschke product. These

properties define (W,B) as a (branched) covering surface of Ĉ (see [2]). The regions

Ωk accumulate at every point eiα ∈ E.

For a Blaschke product of order n, there are exactly n regions Ωk. When B(z) =

[ā/|a| · (a− z)/(1 − āz)]n, these are regions bounded by the arcs

{
z = zk(λ) ; zk(λ) =

ωkλ− r

ωkλr − 1
eiθ, λ > 0

}
, k = 0, 1, 2, . . . , n− 1,

where a = reiθ and ωk are the roots of order n of unity.

Since zk(λ) are Moebius transformations and λ varies in an interval, these regions

are bounded by arcs of a circle or by lines, as can be seen in Figures 1 and 2, where

a = 0.5 and a = 0.8 respectively. We notice how some of the regions get smaller as

a becomes closer to the unit circle.

Moreover, we have found that the invariants of B, i.e. the mappings Uk : Ĉ −→ Ĉ

with the property that B ◦ Uk = B, are Moebius transformations of the form

Uk(z) =
a(1 − ωk) − (|a|2 − ωk)z

1 − |a|2ωk − ā (1 − ωk)z
.

They form a cyclic group of order n with respect to composition, where Uk ◦ Uk′ =

Uk+k′ (mod n). In particular, Uk ◦ Un−k = U0, where U0(z) = z. In this case Uk are

cyclically permuting the regions Ωk in the sense that every Ωk′ is mapped conformally

onto an Ωk+k′ (mod n). Indeed, it can be easily checked that

Uk(zk′(λ)) = zk+k′ (mod n)(λ) for every k, k′ ∈ {0, 1, . . . , n− 1}.

This means that for every k′ ∈ {0, 1, . . . , n − 1} the arcs {z ; z = zk′(λ), λ > 0}

and {z ; z = zk′+1 (mod n)(λ), λ > 0} are mapped bijectively by Uk onto the arcs
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{z ; z = zk+k′ (mod n)(λ), λ > 0} and {z ; z = zk+k′+1 (mod n)(λ), λ > 0} respectively.

Then, by the conformal correspondence theorem (see [8], page 154), the domain

Ωk′ bounded by the first two arcs is mapped by Uk conformally onto the domain

Ωk+k′ (mod n) bounded by the other two arcs.

We can say even more, namely that all Uk have the fixed points a and 1/ā. More-

over, for every z ∈ Ĉ and every k = 0, 1, 2, . . . , n − 1, we have Uk(1/z) = 1/Uk(z);

in particular, all Uk map ∂D onto ∂D. As a consequence, every z ∈ Ĉ has exactly n

pre-images by B, if we consider that a and 1/ā are values taken with multiplicity n

(indeed, they belong to every one of the n fundamental domains Ωk).

We were trying to draw similar conclusions for Blaschke products of a more general

form.

The technique of simultaneous continuation, which has been described in [3], al-

lowed us to prove the existence of fundamental domains Ωk for any Blaschke product

whose cluster set of zeros E is a generalized Cantor set.

Let us repeat here the main features of the technique. If B is a Blaschke product

of degree n, then there are exactly n distinct solutions eiαk of the equation B(z) = 1.

They determine a partition of ∂D into n half-open arcs Γk. Let b1, b2, . . . , bq be the

solutions of the equation B′(z) = 0 situated in D and let wj = B(bj), j = 1, 2, . . . , q.

We might have wj = wj′ even if bj 6= bj′ In particular, wj = 0 for all multiple zeros

aj of B, for which we have obviously B
′(aj) = 0.

We connect w = 1 and all the points wj by a polygonal line η with no self-

intersection, then we perform continuations γk over η from every point eiαk . The

arcs γk and Γk determine a partition of D into sets Ak whose interiors are mapped

conformally by B onto slit unit discs. The fundamental domains Ωk are Ak ∪ Âk,

where Âk is symmetric to Ak with respect to the unit circle.
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The case of an infinite Blaschke product is reduced to the finite case by using an

exhaustion sequence of C \ E.

Figure 3 above exhibits computer generated fundamental domains for the Blaschke

product defined by the triple zero 0.4+0.3i and the double zero 0.5−0.6i. In Figure 4

we added the triple zero 0.9−0.2i in order to show that, due to its closeness to the unit

circle, the addition of this zero affects in a visible way only the domain containing it.

This and the previous examples might contribute to a better understanding of the

geometry of infinite Blaschke product mappings.
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2. Invariants of B on ∂D

We introduce the notation needed in order to account for all the removed open

arcs. At every stage m we remove 2m−1 open arcs.

Let us put all these arcs in a sequence

In = {z = eiθ ; θn < θ < θ′n}, n = 1, 2, . . .

and set

E = ∂D \
∞⋃

n=1

In.

We have also

∂D \ E =

∞⋃

n=1

In.

176



For every such removed open arc there are infinitely many disjoint half-open sub-arcs

(see [3]):

Γnj = {z = eiθ ; αn,j 6 θ < αn,j+1}, j ∈ Z, lim
j→+∞

αn,j = θ′n, lim
j→−∞

αn,j = θn.

The sub-arcs Γn,j are mapped by B continuously and bijectively onto the unit circle

in the w-plane with B(eiαn,j ) = 1.

If B is a finite Blaschke product of order n, then E = ∅ and ∂D is the disjoint

union of exactly n arcs Γk which are mapped by B continuously and bijectively onto

∂D (see [5]). Let us denote by Ψn,j the inverse mappings of B|Γn,j
and associate

with every bijection χ : N
∗ × Z −→ N

∗ × Z a mapping Uχ : ∂D \ E −→ ∂D \ E

defined in the following way. If (n′, j′) = χ(n, j), then for every Γn,j we set

(2.1) Uχ|Γn,j
= Ψn′,j′ ◦ Ψ−1

n,j |Γn,j
.

It can be easily checked that for every Γn,j,

(2.2) B ◦ Uχ|Γn,j
(eiθ) = B(Ψn′,j′(Ψ

−1
n,j(e

iθ))) = Ψ−1
n,j(e

iθ) = B(eiθ).

Therefore

(2.3) B ◦ Uχ = B on ∂D \ E.

We notice that Uχ are continuous functions in every Γn,j, but they may fail to be

continuous at the points eiαn,j if the images by Uχ of Γn,j−1 and Γn,j are not adjacent

arcs. On the other hand, all Uχk
with χk of the form χk(n, j) = (n, j + k), k ∈ Z,

are continuous in every In. Our purpose is to extend analytically Uχ, therefore we

will deal in the next section only with functions of the type Uχk
. Nonetheless, the

following theorem may be of some interest.

Theorem 1. The set of mappings {Uχ} is a group with respect to composition.

If B is a Blaschke product of degree n, then Uχ realizes a permutation of the n half-

open arcs and {Uχk
} is a cyclic subgroup of order n. Moreover, in the infinite case,

{Uχk
; χk(n, j) = (n′, j + k)} are infinite cyclic subgroups for every given bijection

n→ n′ of N∗. Here k varies in Z.

P r o o f. Indeed, with (n′, j′) = χ(n, j) and (n′′, j′′) = χ′(n′, j′), there is χ′′ such

that (n′′, j′′) = χ′ ◦ χ(n, j) = χ′′(n, j); therefore

Uχ′′ |Γn,j
= Ψn′′,j′′ ◦ Ψ−1

n,j |Γn,j
= Ψn′′,j′′ ◦ Ψ−1

n′,j′ |Γn′,j′
◦ Ψn′,j′ ◦ Ψ−1

n,j|Γn,j

= Uχ′ |Γn′,j′
◦ Uχ|Γn,j

.
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In other words,

(2.4) Uχ′ ◦ Uχ = Uχ′◦χ.

In particular, if χ0 is the identity mapping, then

(2.5) Uχ ◦ Uχ0
= Uχ0

◦ Uχ = Uχ

for every χ, i.e. Uχ0
is the identity element of the group.

If χk(n, j) = (n, j + k), then χk′ ◦ χk(n, j) = (n, j + k + k′) = χk+k′ (n, j), hence

Uχk
◦ Uχk′

= Uχk+k′
k ∈ Z.

3. Analytic extensions of the functions Uχk

Theorem 6 of [6] can be easily extended to the case when E is a generalized Cantor

set. More exactly, we have

Theorem 2. Let K be a compact subset of ∂D\E (in the topology of ∂D). Then

there is a neighborhood V of K (in C) such that every function Uχk
can be extended

analytically to V . The extended functions still verify the identity B ◦ Uχk
= B.

P r o o f. For every z ∈W , the derivative of B is given by

(3.1) B′(z) = −B(z)

∞∑

n=1

1 − |an|2

(an − z)(1 − ānz)
.

If ζ = eiθ ∈ ∂D \E, then (an − ζ)(1− ānζ) = −ζ(an − ζ)(ān − ζ) = −ζ|an − ζ|2 and

|B(ζ)| = 1. Thus

(3.2) |B′(ζ)| =

∞∑

n=1

1 − |an|2

|an − ζ|2
> 0.

Consequently, the local inverse theorem (see [1], p. 131) can be applied at the point

ζ and we conclude that there is a neighborhood Vζ of ζ, Vζ ⊂W such that B maps

Vζ conformally onto a domain Wζ from the w-plane. Therefore, there is an analytic

local inverse ϕζ : Wζ → Vζ of B. On the other hand, there is a couple (n, j) such that

ζ ∈ Γn,j . On Γn,j the inverse of B is Ψn,j , in other words ϕζ is an analytic extension

of Ψn,j|Vζ∩Γn,j
. There is a finite covering {Vζ1

, Vζ2
, . . . , Vζp

} of K and Ψn,j|Vζ∩Γn,j

can be extended analytically in each of them, therefore it can be extended analytically
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in a neighborhood of K. The same is true for Uχk
defined by the formula (2.1). Let

us denote by ϕn the analytic extension of Uχk
|In
in a neighborhood in C of K ∩ In

and let ϕK be defined on K by ϕK(z) = ϕn(z) for every n, where z ∈ K ∩ In.

Then ϕK is an analytic extension of Uχk
in a neighborhood V of K and for every

ζ ∈ Γn,j ⊂ K ∩ In we have

(3.3) B(ϕK(ζ)) = B(Uχk
(ζ)) = B(ζ).

By virtue of the functional relations theorem (see [1], p. 288), the identity (3.3) is

true in V . �

4. The covering transformations of (W,B)

For simplicity of notation, we drop in this section the subscript k in χk. The

analytic functions ϕχ extending Uχ|Γn,j
are defined in a neighborhood of every arc

Γn,j . Let us denote by γn,j the arcs obtained as in [3] by simultaneous continuation

and let An,j be the sets bounded by Γn,j + γn,j − γn,j+1 to which the arcs Γn,j and

γn,j , considered as point sets, are added. If Ân,j is symmetric to An,j with respect

to the unit circle, we denote Ωn,j = An,j ∪ Ân,j . Let Dn,j be the interior of Ωn,j .

Theorem 3. The functions ϕχ can be extended analytically to W . The extended

functions verify the identity B ◦ ϕχ = B, therefore they are cover transformations

of (W,B). Moreover, they are the only cover transformations of (W,B) and they

represent conformally every Dn,j on a Dn,j′ .

P r o o f. We extend first ϕχ to every An,j in the following way. Given arbitrary

ε > 0, we denote Oε =
⋃
D(bk, ε), where D(bk, ε) are open discs of radius ε centered

at every branch point of (W,B).

Let us denote by HD the set of branch points of (W,B) situated in D. It is known

(see [3]) that all the points of HD belong to the arcs γn,j and HD ∩K is a finite set

for every compact set K ⊂ Ĉ \ E. Every set An,j \ Oε is compact, and therefore it

can be covered by a finite number q = q(n, j) of open discs V1, V2, . . . , Vq in which B

is injective. For z ∈ Vr, let ϕn,j,r(z) = B−1|An′,j′
(B(z)), where (n′, j′) = χ(n, j). It

is obvious that if z ∈ Vr ∩ Vr′ , then ϕn,j,r(z) = ϕn,j,r′(z); therefore there is a unique

analytic function ϕn,j defined in V =
q⋃

r=1
Vr, which coincides with ϕn,j,r in every Vr.

As z ∈ V implies z ∈ Vr for some r, we have

(4.1) B ◦ ϕn,j(z) = B ◦ ϕn,j,r(z) = B ◦B−1|An′,j′
(B(z)) = B(z).
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Since ε is arbitrary, ϕn,j are in fact defined on An,j \ HD and B ◦ ϕn,j(z) = B(z)

for every (n, j) ∈ N
∗ × Z. The functions ϕn,j are analytic continuations in An,j of

the functions Uχ from Section 2, since they are defined by a formula similar to (2.1).

Consequently, if Uχ are continuous in In and V, V
′ are neighborhoods of An,j and

An,j+1 respectively, then ϕn,j(z) = ϕn,j+1(z) for z ∈ V ∩ V ′. Consequently, there is

a unique function ϕχ defined on
∞⋃

j=−∞

An,j such that

(4.2) B ◦ ϕχ(z) = B(z).

This happens for sure if χ(n, j) = (n, j + k), k ∈ Z. We can extend ϕχ by symmetry

to Ĉ \ E and it will continue to verify the identity (4.2).

Let us suppose now that U is an arbitrary covering transformation of (W,B) over

C, i.e. an analytic function U : W −→W such that

(4.3) B(U(z)) = B(z) for every z ∈ W.

In particular, the identity (4.3) is true for |z| = 1, z /∈ E. It is known that |B(z)| = 1

if and only if |z| = 1 and z /∈ E. Therefore |B(U(z))| = 1 if and only if |U(z)| = 1

and U(z) /∈ E. Consequently |U(z)| = 1 if and only if |z| = 1.

On the other hand, with the notation of Section 2, B(U(z)) = 1 if and only if z =

eiαn,j . Therefore, if αn,j is given, then U(eiαn,j ) = eiαn′,j′ for some (n′, j′) ∈ N
∗ × Z.

We cannot have (n′, j′) = (n, j), since covering transformations have no fixed points.

Therefore U realizes a permutation of the points eiαn,j , hence of the arcs Γn,j . Since

U is continuous on ∂D \ E, the permutation must be a cyclic one. Then

(4.4) B|Γn′,j′
(U |Γn,j

(z)) = B|Γn,j(z)

and therefore

(4.5) U |Γn,j
(z) = B−1|Γn′,j′

(B|Γn,j(z)).

In other words,

(4.6) U |Γn,j
(z) = ϕn,j |Γn,j

(z).

By virtue of the functional relations theorem (see [1], p. 288), we have that U(z) =

ϕχ(z) throughout W for χ(n, j) = (n′, j′).

This theorem tells us that the set G = {ϕχ} of conformal self-mappings of W

represents the whole group of cover transformations of (W,B) over C.

Obviously, this is true for every type of Blaschke product, regardless of whether

it is finite or infinite. �
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In the first case G is a finite cyclic group. In the infinite case, with E discrete, the

groupG is finitely generated and has a finite number of infinite cyclic subgroups. The

fundamental domains of G are the domains Ωn,j previously described. Obviously,

Ωn,j are not uniquely determined, since they all depend on the initial choice of the

arcs Γn,j , as well as on the arcs γn,j.

If we start with an equation of the form B(z) = λ, |λ| = 1 instead of B(z) = 1, we

might arrive at different domains Ω′

n,j and different mappings ψn,j between them,

generating invariants for B. However, assuming that for some corresponding half-

open arcs Γ′

n′,j′ in this new situation we have Γ′

n′,j′ ∩ Γn,j 6= ∅, and having in view

the way ϕn,j and ψn′,j′ have been constructed, they must coincide on Γ′

n′,j′ ∩ Γn,j ,

and then, by virtue of the functional relations, they coincide throughout W .

Consequently, the cover transformations of (W,B) are independent (as they should

be!) of the construction we used. Moreover, we can reformulate the final result in

[3] as follows:

Theorem 4. Suppose that B is an infinite Blaschke product whose cluster point

set E of zeros is a generalized Cantor set. Then B generates a branched covering

surface (W,B) of the Riemann sphere, where W = C \E. The fundamental domains

of the group of covering transformations of (W,B) over Ĉ accumulate at every point

of E, i.e. for every ζ ∈ E and every neighborhood Vζ of ζ there are infinitely many

sets Ωn,j ⊂ Vζ which are mapped by B continuously and bijectively onto Ĉ. The

mappings are conformal in the interior of every Ωn,j . Moreover, if K ⊂ C \ E

is a compact set, then there is a finite covering of K with sets Ωn,j, hence every

w = B(z), z ∈ K has a finite number of pre-images by B.

The novelty here resides in the fact that it is transparent how these cover trans-

formations intrinsically depend on B. The question arises whether this property is

specific to Blaschke products and if not, what other classes of non-univalent functions

may display something similar. It would be also interesting to characterize proper

subgroups of the group G when E is a Cantor set.

A c k n ow l e d g em e n t s. The authors wish to express their gratitude to all the

computer science colleagues who helped generate and handle computer graphics for

this paper; particularly to Sasha Costin, Florin Muscutariu and Anders Hedin.

They would like also to thank the referees who made valuable suggestions.

181



References

[1] L.V.Ahlfors: Complex Analysis. International Series in Pure and Applied Mathematics,
Mc Graw-Hill Company, Düsseldorf, 1979.

[2] L.V.Ahlfors, L. Sario: Riemann Surfaces. Princeton University Press, Princeton N.J.,
1960.

[3] I. Barza, D.Ghisa: The Geometry of Blaschke Product Mappings (H.G.W.Begehr,
A.O.Celebi, R. P.Gilbert, eds.). Further Progress in Analysis, World Scientific, 2008.

[4] I. Barza, D.Ghisa: Blaschke Self-Mappings of the Real Projective Plane. The Procedings
of the 6-th Congress of Romanian Mathematiciens, Bucharest, 2007.

[5] G.Cassier, I. Chalendar: The group of invariants of a finite Blaschke product. Complex
Variables, Theory Appl. 42 (2000), 193–206.

[6] T.Cao-Huu, D.Ghisa: Invariants of infinite Blaschke products. Matematica 45 (2007),
1–8.

[7] C.Constantinescu, et al.: Integration Theory, Vol. 1. John Wiley & Sons, New York,
1985.

[8] J.B.Garnett: Bounded Analytic Functions. Academic Press, New York, 1981.

Authors’ addresses: Ilie Barza, Department of Mathematics, Karlstad University,
SE-65188, Karlstad, Sweden, e-mail: ilie.barza@kau.se; Dorin Ghisa, Department of
Mathematics, Glendon College, Toronto, Canada, e-mail: dghisa@yorku.ca.

182


		webmaster@dml.cz
	2020-07-01T17:14:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




