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Abstract. With the aid of the notion of weighted sharing and pseudo sharing of sets we
prove three uniqueness results on meromorphic functions sharing three sets, all of which
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1. Introduction and main results

In this paper by meromorphic functions we will always mean meromorphic func-

tions in the complex plane. We adopt the standard notation in the Nevanlinna theory

of meromorphic functions as explained in [8]. It will be convenient to let E denote

any set of positive real numbers of finite linear measure, not necessarily the same at

each occurrence. For a nonconstant meromorphic function h we denote by T (r, h)

the Nevanlinna characteristic of h and by S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r → ∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite

complex number. We say that f and g share a CM, provided that f − a and g − a

have the same zeros with the same multiplicities. Similarly, we say that f and g

share a IM, provided that f −a and g−a have the same zeros ignoring multiplicities.

In addition we say that f and g share ∞ CM if 1/f and 1/g share 0 CM, and we

say that f and g share ∞ IM if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃

a∈S

{z : f(z)−a = 0},

where each zero is counted according to its multiplicity. If we do not count the
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multiplicity the set
⋃

a∈S

{z : f(z) − a = 0} is denoted by Ef (S). If Ef (S) = Eg(S)

we say that f and g share the set S CM. On the other hand, if Ef (S) = Eg(S), we

say that f and g share the set S IM.

Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by Em)(a; f)

the set of all a-points of f with multiplicities not exceeding m, where an a-point is

counted according to its multiplicity. If E∞)(a; f)=E∞)(a; g) for some a ∈ C∪{∞},

we say that f , g share the value a CM. For a set S of distinct elements of C we define

Em)(S, f) =
⋃

a∈S

Em)(a, f).

The uniqueness problem for entire or meromorphic functions sharing sets was

initiated by a famous question of F.Gross in [7]. In 1976 he posed the following

question:

Q u e s t i o n A. Can one find two finite sets Sj (j = 1, 2) such that any two non-

constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be

identical?

In [7], Gross said that if the answer of Question A is affirmative it would be

interesting to know how large both sets would have to be?

In 1994, H. X.Yi posed the following question for meromorphic functions.

Q u e s t i o n B [19]. Can one find three finite sets Sj (j = 1, 2, 3) such that any

two non-constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for

j = 1, 2, 3 must be identical?

In 1994 Yi [19] gave an affirmative answer to Question B and proved that there

exist three finite sets S1 (with 7 elements), S2 (with 2 elements) and S3 (with 1

element) such that any two non-constant meromorphic functions f and g satisfying

Ef (Sj) = Eg(Sj) for j = 1, 2, 3 must be identical.

Gradually the research on Question A corresponding to meromorphic functions as

well as Question B gained pace and today it has become one of the most prominent

branches of the uniqueness theory. Among a number of situations depending on the

nature and the number of shared sets, the uniqueness of two meromorphic functions

was studied by many authors. Especially during the last few years a considerable

amount of work has been done to investigate the possible answer to Question B.

(cf. [1], [2]–[5], [6], [9], [13], [16], [17], [18], [19], [20], [21], [23]). In 2001 the idea of

gradation of sharing known as weighted sharing was introduced in [11], [12] which

measures how close a shared value is to being shared CM or to being shared IM. In

the following definition we explain the notion.

Definition 1.1 [11], [12]. Let k be a nonnegative integer or infinity. For a ∈ C∪

{∞} we denote byEk(a; f) the set of all a-points of f , where an a-point of multiplicity

m is counted m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we

say that f, g share the value a with weight k.
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We write f , g share (a, k) meaning that f , g share the value a with weight k.

Clearly, if f , g share (a, k) then f, g share (a, p) for any integer p, 0 6 p < k. Also

we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞),

respectively.

Definition 1.2 [11]. Let S be a set of distinct elements of C ∪ {∞} and k a

nonnegative integer or ∞. We denote by Ef (S, k) the set
⋃

a∈S

Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

Recently the present author [1] has provided the affirmative answer to Question B

by applying the notion of weighted sharing. He has proved that if two non constant

meromorphic functions share one set S1 (containing 1 element) CM, and two other

sets S2 (containing 1 element) and S3 (containing 4 elements) with finite weight,

then f ≡ g with some restriction on the ramification index of f and g at ∞. In

this paper, by using the idea of weighted sharing, we will investigate the possible

answer to Question B where solely the set sharing of the meromorphic functions will

be given as in the follows.

(1.1) P (w) = awn − n(n − 1)w2 + 2n(n − 2)bw − (n − 1)(n − 2)b2

where n > 3 is an integer and a and b are two nonzero complex numbers satisfying

abn−2 6= 2. We claim that the polynomial P (w) has only simple zeros.

In fact we consider the rational function

(1.2) R(w) =
awn

n(n − 1)(w − α1)(w − α2)
,

where α1 and α2 are two distinct roots of

n(n − 1)w2 − 2n(n − 2)bw + (n − 1)(n − 2)b2 = 0.

From (1.2) we have

(1.3) R′(w) =
(n − 2)awn−1 (w − b)2

n(n − 1) (w − α1)2 (w − α2)2
.

From (1.3) we know that w = 0 is a root with multiplicity n of the equation R(w) = 0

and w = b is a root with multiplicity 3 of the equation R(w) − c = 0, where c =
1
2abn−2.

Then

(1.4) R(w) − c =
a(w − b)3 Qn−3(w)

n(n − 1)(w − α1)(w − α2)
,

where Qn−3(w) is a polynomial of degree n − 3.
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Moreover, from (1.1) and (1.2) we have

(1.5) R(w) − 1 =
P (w)

n(n − 1)(w − α1)(w − α2)
.

Noting that c = 1
2abn−2 6= 1, from (1.3) and (1.5) we obtain that

P (w) = awn − n(n − 1)w2 − 2n(n − 2)bw + (n − 1)(n − 2)b2

has only simple zeros.

In 2003, Lin and Yi proved the following result which answered Question B and

improved the corresponding theorem in [19].

Theorem A [16]. Let S1 = {0}, S2 = {∞} and S3 = {w | P (w) = 0}, where

P (w) is given by (1.1) and n > 5. Suppose that f and g are two non-constant

meromorphic functions satisfying Ef (Sj ,∞) = Eg(Sj ,∞) (j = 1, 2, 3). Then f ≡ g.

In [16], Yi and Lin made the following remark.

R em a r k 1.1. If the condition Ef (S2,∞) = Eg(S2,∞) is replaced by a weaker

condition Ef (S2, 0) = Eg(S2, 0) the conclusion of Theorem A remains true.

In this paper, we will prove the following three theorems which improve Theo-

rem A.

Theorem 1.1. Let S1, S2 and S3 be defined as in Theorem A and n > 5. Suppose

that f and g are two non-constant meromorphic functions satisfying Ef (S1, 4) =

Eg(S1, 4), Ef (S2, 0) = Eg(S2, 0) and E5)(S3, f) = E5)(S3, g). Then f ≡ g.

Theorem 1.2. Let S1, S2 and S3 be defined as in Theorem A and n > 5. Suppose

that f and g are two non-constant meromorphic functions satisfying Ef (S1,∞) =

Eg(S1,∞), Ef (S2, 0) = Eg(S2, 0) and E4)(S3, f) = E4)(S3, g). Then f ≡ g.

Theorem 1.3. Let S1, S2 and S3 be defined as in Theorem A and n > 5. Suppose

that f and g are two non-constant meromorphic functions satisfying Ef (S1, 2) =

Eg(S1, 2), Ef (S2, 0) = Eg(S2, 0) and E6)(S3, f) = E6)(S3, g). Then f ≡ g.

We also need the following definitions.

Definition 1.3 [10]. For a ∈ C∪{∞} we denote by N(r, a; f |= 1) the counting

function of simple a-points of f . For a positive integerm we denote byN(r, a; f |6 m)

(N(r, a; f |> m)) the counting function of those a points of f whose multiplici-

ties are not greater(less) than m where each a point is counted according to its
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multiplicity; denote by N(r, a; f |< m) (N(r, a; f |> m)) the counting function

of those a-points of f whose multiplicities are less (greater) than m; denote by

N(r, a; f |6 m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) the reduced

forms of N(r, a; f |6 m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m),

respectively.

Definition 1.4 [1]. We denote by N(r, a; f |= k) the reduced counting function

of those a-points of f whose multiplicity is exactly k, where k > 2 is an integer.

Definition 1.5. Let f and g be two non-constant meromorphic functions such

that f and g share a value a IM where a ∈ C ∪ {∞}. Let z0 be an a-point of f

with multiplicity p, an a-point of g with multiplicity q. We denote by NL(r, a; f)

(NL(r, a; g)) the counting function of those a-points of f and g where p > q (q > p),

each a-point being counted only once.

Definition 1.6. Let f and g be two non-constant meromorphic functions and

m be a positive integer such that Em)(a; f) = Em)(a; g) where a ∈ C ∪ {∞}. Let z0

be an a-point of f with multiplicity p > 0, an a-point of g with multiplicity q > 0.

We denote by N
m)
L (r, a; f) (N

m)
L (r, a; g)) the counting function of those a-points of

f and g where p > q (q > p), each a-point is counted only once.

Definition 1.7. For a positive integer p we denote Np(r, a; f) = N(r, a; f) +

N(r, a; f |> 2) + . . . + N(r, a; f |> p). Clearly N(r, a; f) = N1(r, a; f).

Definition 1.8. Let m be a positive integer. Also let z0 be a zero of f(z)− a of

multiplicity p and a zero of g(z)−a of multiplicity q. We denote by Nf>m+1(r, a; f |

g 6= a) (Ng>m+1(r, a; g | f 6= a)) the reduced counting functions of those a-points of

f and g for which p > m + 1 and q = 0 (q > m + 1 and p = 0).

Definition 1.9 [11], [12]. Let f , g share (a, 0). We denote by N∗(r, a; f, g) the

reduced counting function of those a-points of f whose multiplicities differ from the

multiplicities of the corresponding a-points of g.

R em a r k 1.2. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) + NL(r, a; g).

If Em)(a; f) = Em)(a; g), then N∗(r, a; f, g) = N
m)
L (r, a; f) + N

m)
L (r, a; g) +

Nf>m+1(r, a; f | g 6= a) + Ng>m+1(r, a; g | f 6= a).

Definition 1.10 [14]. Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b)

the counting function of those a-points of f , counted according to their multiplicity,

which are b-points of g.

Definition 1.11 [14]. Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f |

g 6= b1, b2, . . . , bq) the counting function of those a-points of f , counted according to

their multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F

and G be two non-constant meromorphic functions defined in C. Henceforth we will

denote by H , Φ and V the following three functions:

H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G − 1

)

,

Φ =
F ′

F − 1
−

G′

G − 1

and

V =
( F ′

F − 1
−

F ′

F

)

−
( G′

G − 1
−

G′

G

)

=
F ′

F (F − 1)
−

G′

G(G − 1)
.

Lemma 2.1 [15]. For Em)(1; F ) = Em)(1; G) and H 6≡ 0 we have

N(r, 1; F |= 1) = N(r, 1; G |= 1) 6 N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2. If N(r, 0; f (k) | f 6= 0) denotes the counting function of those zeros

of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its

multiplicity, then

N(r, 0; f (k) | f 6= 0) 6 kN(r,∞; f) + Nk(r, 0; f) + S(r, f).

P r o o f. By the first fundamental theorem and Milloux theorem ([see [8], Theo-

rem 3.1]) we get

N(r, 0; f (k) | f 6= 0) 6 N
(

r, 0;
f (k)

f

)

6 N
(

r,∞;
f (k)

f

)

+ m
(

r,
f (k)

f

)

+ O(1)

6 N(r, 0; f |< k) + kN(r, 0; f |> k) + kN(r,∞; f) + S(r, f)

= Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

�

Lemma 2.3. Let F and G be two meromorphic functions such that Em)(1; F ) =

Em)(1; G), where 1 6 m < ∞. Then

N(r, 1; F ) + N(r, 1; G) − N(r, 1; F |= 1) +
(m

2
−

1

2

)

{

NF>m+1(r, 1; F | G 6= 1)
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+NG>m+1(r, 1; G | F 6= 1)
}

+
(

m −
1

2

)

{N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)}

6
1

2
[N(r, 1; F ) + N(r, 1; G)] .

P r o o f. Since Em)(1; F ) = Em)(1; G), we note that common zeros of F − 1 and

G− 1 upto multiplicity m are the same. Let z0 be a 1-point of F with multiplicity p

and a 1-point of G with multiplicity q. If p = m + 1 the possible values of q are (i)

q = m + 1, (ii) q > m + 2, (iii) q = 0. Similarly, when p = m + 2 the possible values

of q are (i) q = m + 1, (ii) q = m + 2, (iii) q > m + 3, (iv) q = 0. If p > m + 3 we

can similarly find the possible values of q. Now the lemma follows from the above

explanation. �

Let f and g be two non-constant meromorphic functions and

(2.1) F = R(f), G = R(g),

where R(w) is given by (1.2). From (1.2) and (2.1) it is clear that

(2.2) T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r, G) + S(r, g).

�

Lemma 2.4. Let F , G be given by (2.1) and let ω1, ω2 . . . ωn be the roots of

P (w) = 0.

If Em)(1; F ) = Em)(1; G), where 1 6 m < ∞, then

(i) NF>m+1(r, 1; F | G 6= 1) 6 m−1[N(r, 0; f)+N(r,∞; f)−N⊗(r, 0; f ′)]+S(r, f)

(ii) NG>m+1(r, 1; G | F 6= 1) 6 m−1[N(r, 0; g)+ N(r,∞; g)−N⊗(r, 0; g′)] + S(r, g),

where N⊗(r, 0; f ′) = N(r, 0; f ′ | f 6= 0, ω1, ω2 . . . ωn). N⊗(r, 0; g′) is defined similarly.

P r o o f. We prove (i) since (ii) can be proved in a similar way. Using Lemma 2.2

we get from (1.5) and (2.1) that

NF>m+1(r, 1; F | G 6= 1) 6 N(r, 1; F |> m + 1)

6
1

m

(

N(r, 1; F ) − N(r, 1; F )
)

6
1

m

[ n
∑

j=1

(

N(r, ωj ; f) − N(r, ωj ; f)
)

]

6
1

m
(N(r, 0; f ′ | f 6= 0) − N⊗(r, 0; f ′))

6
1

m
[N(r, 0; f) + N(r,∞; f) − N⊗(r, 0; f ′)] + S(r, f).

�
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Lemma 2.5. Let F , G be given by (2.1) and let ω1, ω2, . . . , ωn be the roots of

P (w) = 0. If Em)(1; F ) = Em)(1; G), where 1 6 m < ∞, then

(i) NF>m+1(r, 1; F | G 6= 1) + NL(r, 1; F ) 6 m−1[N(r, 0; f) + N(r,∞; f) −

N⊗(r, 0; f ′)] + S(r, f),

(ii) NG>m+1(r, 1; G | F 6= 1) + NL(r, 1; G) 6 m−1[N(r, 0; g) + N(r,∞; g) −

N⊗(r, 0; g′)] + S(r, g).

P r o o f. We prove (i) since (ii) can be proved in a similar way.

Since NF>m+1(r, 1; F | G 6= 1)+NL(r, 1; F ) 6 N(r, 1; F |> m+1) the lemma can

be proved following the line of proof of Lemma 2.4. �

Lemma 2.6. Let F and G be given by (2.1) and assume f , g share (0, 0) and 0

is not a Picard exceptional value of f and g. Then Φ ≡ 0 implies F ≡ G.

P r o o f. Suppose Φ ≡ 0. Then by integration we obtain

F − 1 = C(G − 1).

It is clear that if z0 is a zero of f then it is a zero of g. So from (1.2) and (2.1) it

follows that F (z0) = 0 and G(z0) = 0. So C = 1 and hence F ≡ G. �

Lemma 2.7. Let F , G be given by (2.1) and let H 6≡ 0. If Em)(1; F ) = Em)(1; G)

and f , g share (∞, k) and (0, p), where 1 6 m < ∞ and 0 6 p < ∞, then

[np + n − 1]N(r, 0; f |> p + 1) = [np + n − 1]N(r, 0; g |> p + 1)

6 N
m)
L (r, 1; F ) + N

m)
L (r, 1; G) + NF>m+1(r, 1; F | G 6= 1)

+ NG>m+1(r, 1; G | F 6= 1) + N∗(r,∞; f, g) + N(r, α1; f)

+ N(r, α2; f) + N(r, α1; g) + N(r, α2; g)

+ S(r, f) + S(r, g).

P r o o f. Suppose 0 is a Picard exceptional value of f and g. Then the lemma

follows immediately.

Next suppose 0 is not a Picard exceptional value of f and g. Since H 6≡ 0 by

Lemma 2.6 we can deduce Φ 6≡ 0. Let z0 be a zero of f with multiplicity q and a

zero of g with multiplicity r. From (1.2) and (2.1) we know that z0 is a zero of F

with multiplicity nq and a zero of G with multiplicity nr. Since f , g share (0; p), it

follows that F , G share (0; np) and so a zero of F with multiplicity q (> np + 1) is

a zero of G of multiplicity r (> np + 1) and vice versa. We note that F and G have
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no zero of multiplicity t where np < t < n(p + 1). So it is clear from the definition

of Φ that z0 is a zero of Φ with multiplicity at least n(p + 1) − 1. So we have

[np + n − 1]N(r, 0; f |> p + 1) = [np + n − 1]N(r, 0; g |> p + 1)

= [np + n − 1]N (r, 0; F |> n(p + 1))

6 N(r, 0; Φ)

6 N(r,∞; Φ) + S(r, f) + S(r, g)

6 N∗(r,∞; f, g) + N(r, α1; f) + N(r, α2; f)

+ N(r, α1; g) + N(r, α2; g) + N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)

+ NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)

+ S(r, f) + S(r, g).

�

Lemma 2.8. Let F and G be given by (2.1) and assume f , g share (∞, 0) and

∞ is not a Picard exceptional value of f and g. Then V ≡ 0 implies F ≡ G.

P r o o f. Suppose

V ≡ 0.

Then by integration we obtain

1 −
1

F
= A

(

1 −
1

G

)

.

It is clear that if z0 is a pole of f then it is a pole of g. Hence from the definition of

F and G we have 1/F (z0) = 0 and 1/G(z0) = 0. So A = 1 and hence F ≡ G. �

Lemma 2.9. Let F , G be given by (2.1) and letH 6≡ 0. If Em)(1; F ) = Em)(1; G),

f , g share (∞, k) and (0, p), where 1 6 m < ∞, 0 6 k < ∞, then

[(n − 2)k + n − 3)]N(r,∞; f |> k + 1)

= [(n − 2)k + n − 3)]N(r,∞; g |> k + 1)

6 N∗(r, 0; f, g) + N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)

+ NF>m+1(r, 1; F | G 6= 1)

+ NG>m+1(r, 1; G | F 6= 1) + S(r, f) + S(r, g).

P r o o f. Suppose ∞ is a Picard exceptional value of f and g. Then the lemma

follows immediately.
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Next suppose ∞ is not a Picard exceptional value of f and g. Since H 6≡ 0, from

Lemma 2.8 we have V 6≡ 0. We suppose that z0 is a pole of f with multiplicity q

and a pole of g with multiplicity r. From (1.2) and (2.1) we know that z0 is a pole

of f with multiplicity (n − 2)q and a pole of g with multiplicity (n − 2)r. Noting

that f , g share (∞; k) from the definition of V it is clear that z0 is a zero of V with

multiplicity at least (n − 2)(k + 1) − 1. So from the definition of V we have

[(n − 2)k + n − 3]N(r,∞; f |> k + 1)

= [(n − 2)k + n − 3]N(r,∞; g |> k + 1)

6 N(r, 0; V ) 6 N(r,∞; V ) + S(r, f) + S(r, g)

6 N∗(r, 0; f, g) + N
m)
L (r, 1; F ) + N

m)
L (r, 1; G) + NF>m+1(r, 1; F | G 6= 1)

+ NG>m+1(r, 1; G | F 6= 1) + S(r, f) + S(r, g).

�

Lemma 2.10. Let F , G be given by (2.1) and let H 6≡ 0. If Em)(1; F ) =

Em)(1; G) and f , g share (∞, 0) and (0, p), where 1 6 m < ∞, 0 6 p < ∞ then

[m(n − 3) − 2]N(r,∞; f) 6 (m + 2)N(r, 0; f) + S(r, f) + S(r, g).

P r o o f. First we note that since f , g share (0, p) they share (0, 0). So using

Lemma 2.5, we obtain from Lemma 2.9 with k = 0 that

(n − 3)N(r,∞; f)

6 N(r, 0; f) + N
m)
L (r, 1; F ) + N

m)
L (r, 1; G) + NF>m+1(r, 1; F | G 6= 1)

+ NG>m+1(r, 1; G | F 6= 1) + S(r, f) + S(r, g)

6 N(r, 0; f) +
1

m

[

N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g)
]

+ S(r, f) + S(r, g)

6
m + 2

m
N(r, 0; f) +

2

m
N(r,∞; f) + S(r, f) + S(r, g).

Now the lemma follows. �

Lemma 2.11. Let F , G be given by (2.1) and let H 6≡ 0. If Em)(1; F ) =

Em)(1; G) and f , g share (∞, 0) and (0,∞), where 1 6 m < ∞, then

[m(n − 3) − 2]N(r,∞; f) 6 2N(r, 0; f) + S(r, f) + S(r, g).
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P r o o f. Since f , g share (0,∞), we observe that N∗(r, 0; f, g) = 0. So using

Lemma 2.5, we obtain from Lemma 2.9 with k = 0 that

(n − 3)N(r,∞; f) 6 N
m)
L (r, 1; F ) + N

m)
L (r, 1; G) + NF>m+1(r, 1; F | G 6= 1)

+ NG>m+1(r, 1; G | F 6= 1) + S(r, f) + S(r, g)

6
1

m

[

N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g)
]

+ S(r, f) + S(r, g)

6
2

m
N(r, 0; f) +

2

m
N(r,∞; f) + S(r, f) + S(r, g).

Now the lemma follows. �

Lemma 2.12. Let F , G be given by (2.1) and let H 6≡ 0. If Em)(1; F ) =

Em)(1; G) and f , g share (∞, k), (0, p) where 1 6 m < ∞, then

N(r, 1; F |= 1) 6 N∗(r, 0; f, g) + N∗(r,∞; f, g) + N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)

+ NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)

+ N(r, b; f) + N(r.b; g) + N0(r, 0; f ′) + N0(r, 0; g′),

where N0(r, 0; f ′) denotes the reduced counting function corresponding to the zeros

of f ′ which are not the zeros of f(f−b) and F−1, andN0(r, 0; g′) is defined similarly.

P r o o f. From (1.2) and (2.1) we have

F ′ =
(n − 2)afn−1(f − b)2f ′

n(n − 1)(f − α1)2(f − α2)2
,(2.3)

G′ =
(n − 2)agn−1(g − b)2g′

n(n − 1)(g − α1)2(g − α2)2
.(2.4)

It is obvious that the simple zeros of f −α1 and f −α2 are the simple poles of F , the

simple zeros of g − α1 and g −α2 are the simple poles of G. It can be easily verified

that the simple zeros of f − α1, f − α2, g − α1 and g − α2 are not the poles of H .

We note that the multiple zeros of f −α1, f −α2 and g −α1, g −α2 are the zeros

of f ′ and g′ respectively. Also the poles of H come from those poles (zeros) of f and

g whose multiplicities are different and those 1 points of F whose multiplicities are

different from those of the corresponding 1 points of G. Since all the poles of H are

simple, using Lemma 2.1 we get the conclusion of the lemma from (1.2), (2.3) and

(2.4). �
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Lemma 2.13. Let F , G be given by (2.1) and let H 6≡ 0. If Em)(1; F ) =

Em)(1; G) and f , g share (∞, k), (0, p), where 3 6 m < ∞, then
(n

2
+ 1

)

{T (r, f) + T (r, g)} 6 N(r, 0; f) + 2N(r, b; f) + N(r,∞; f) + N(r, 0; g)

+ 2N(r, b; g) + N(r,∞; g) + N∗(r, 0; f, g) + N∗(r,∞; f, g)

−
(m

2
−

3

2

)

{NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)}

−
(

m −
3

2

)

{N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)} + S(r, f) + S(r, g).

P r o o f. By the second fundamental theorem we get

(n + 1)T (r, f) + (n + 1)T (r, g)(2.5)

6 N(r, 1; F ) + N(r, 0; f) + N(r, b; f) + N(r,∞; f) + N(r, 1; G) + N(r, 0; g)

+ N(r, b; g) + N(r,∞; g) − N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g).

Using Lemmas 2.3 and 2.12, we see that

N(r, 1; F ) + N(r, 1; G) 6
1

2
[N(r, 1; F ) + N(r, 1; G)] + N(r, 1; F |= 1)(2.6)

−
(m

2
−

1

2

)

{NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)}

−
(

m −
1

2

) {

N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)

}

6
n

2
{T (r, f) + T (r, g)} + N∗(r, 0; f, g) + N∗(r,∞; f, g)

+ N(r, b; f) + N(r, b; g) + N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)

+ NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)

−
(m

2
−

1

2

)

{NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)}

−
(

m −
1

2

) {

N
m)
L (r, 1; F ) +N

m)
L (r, 1; G)

}

+ N0(r, 0; f ′) + N0(r, 0; g′) + S(r, f) + S(r, g)

6
n

2
{T (r, f) + T (r, g)} + N∗(r, 0; f, g) + N∗(r,∞; f, g)

+ N(r, b; f) + N(r, b; g)

−
(m

2
−

3

2

)

{

NF>m+1(r, 1; F | G 6= 1) + NG>m+1(r, 1; G | F 6= 1)
}

−
(

m −
3

2

) {

N
m)
L (r, 1; F ) + N

m)
L (r, 1; G)

}

+ N0(r, 0; f ′)

+ N0(r, 0; g′) + S(r, f) + S(r, g).

Using (2.6) in (2.5) the lemma follows. �
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Lemma 2.14 [22]. If H ≡ 0, then F , G share (1,∞).

Lemma 2.15. Let F , G be given by (2.1) and let H ≡ 0. If f , g share (0, 0) then

f and g share (0,∞).

P r o o f. If f and g have no zero then clearly f and g share (0,∞).

Next suppose that f and g have common zeros. Since H ≡ 0 we have

(2.7) F =
AG + B

CG + D
,

where AD − BC 6= 0. Let z0 be a common zero of f and g. From (2.1) it is clear

that z0 is a common zero of F and G. Consequently, from (2.7) we get B = 0. Hence

from (2.7) we get

F =
AG

CG + D
.

So F and G share (0,∞), that is, f and g share (0,∞). �

3. Proofs of the theorems

P r o o f of Theorem 1.1. Let F and G be given by (2.1). Since E5)(S3, f) =

E5)(S3, f) it follows from (1.5) and (2.1) that E5)(1; F ) = E5)(1; G). Suppose H 6≡ 0.

Then by Lemma 2.13 for m = 5, k = 0, p = 4 we get

(n

2
− 2

)

{T (r, f) + T (r, g)}(3.1)

6 N(r, 0; f |> 5) + 3N(r,∞; f) − {NF>6(r, 1; F | G 6= 1)

+ NG>6(r, 1; G | F 6= 1)} −
7

2

{

N
5)
L (r, 1; F ) + N

5)
L (r, 1; G)

}

+ S(r, f) + S(r, g).

Using Lemma 2.4, Lemma 2.5, Lemma 2.7 for m = 5, k = 0 and p = 4, Lemma 2.9

for k = 0 and noting that n > 5,

N∗(r,∞; f, g) 6 N(r,∞; f)

and

N(r, 0; f) 6
1

2
[N(r, 0; f) + N(r, 0; g)]
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we get

(3.2)
(n

2
− 2

)

{T (r, f) + T (r, g)} 6 N(r, 0; f |> 5) +
3

n − 3
[N

5)
L (r, 1; F ) + N

5)
L (r, 1; G)

+ NF>6(r, 1; F | G 6= 1) + NG>6(r, 1; G | F 6= 1) + N(r, 0; f |> 5)]

− {NF>6(r, 1; F | G 6= 1) + NG>6(r, 1; G | F 6= 1)}

−
7

2
{N

5)
L (r, 1; F ) + N

5)
L (r, 1; G)} + S(r, f) + S(r, g)

6
n

n − 3
N(r, 0; f |> 5) +

3

n − 3
[N

5)
L (r, 1; F )

+ N
5)
L (r, 1; G) + NF>6(r, 1; F | G 6= 1) + NG>6(r, 1; G | F 6= 1)]

− {NF>6(r, 1; F | G 6= 1) + NG>6(r, 1; G | F 6= 1)}

−
7

2
{N

5)
L (r, 1; F ) + N

5)
L (r, 1; G)} + S(r, f) + S(r, g)

6
n

(n − 3)(5n − 1)

[

2T (r, f) + 2T (r, g) + N∗(r,∞; f, g)

+
2

5
{N(r, 0; f) + N(r,∞; f)}

]

+
2(6 − n)

5(n − 3)
{N(r, 0; f) + N(r,∞; f)} + S(r, f) + S(r, g)

6
n

(n − 3)(5n − 1)

[

2T (r, f) +
1

5
N(r, 0; f) + 2T (r, g)

+
1

5
N(r, 0; g) +

7

5
N(r,∞; f)

]

+
(6 − n)

(n − 3)

{1

5
{N(r, 0; f) + N(r, 0; g)} +

2

5
N(r,∞; f)

}

+ S(r, f) + S(r, g)

6
n

(n − 3)(5n − 1)

[11

5
{T (r, f) + T (r, g)} +

7

5
N(r,∞; f)

]

+
(6 − n)

(n − 3)

{1

5
{T (r, f) + T (r, g)} +

2

5
N(r,∞; f)

}

+ S(r, f) + S(r, g)

Now using Lemma 2.10 for m = 5 in (3.2) we obtain

(n

2
− 2

)

{T (r, f) + T (r, g)}(3.3)

6
n

(n − 3)(5n − 1)

[{11

5
+

49

10(5n− 17)

}

{T (r, f) + T (r, g)}
]

+
(6 − n)

(n − 3)

[{1

5
+

14

10(5n− 17)

}

{T (r, f) + T (r, g)}
]

+ S(r, f) + S(r, g),
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i.e.,

(n

2
− 2 −

n(22n− 65)

2(n − 3)(5n− 1)(5n − 17)
−

(n − 2)(6 − n)

(n − 3)(5n − 17)

)

{T (r, f) + T (r, g)}

6 S(r, f) + S(r, g),

which is a contradiction. So H ≡ 0. Hence Lemma 2.14 and Lemma 2.15 imply

respectively that F and G share (1,∞) and f , g share (0,∞). So Ef (S3,∞) =

Eg(S3,∞) and the theorem follows from Theorem A and Remark 1.1. �

P r o o f of Theorem 1.2. Let F and G be given by (2.1). Since E4)(S3, f) =

E4)(S3, f) it follows from (1.5) and (2.1) that E4)(1; F ) = E4)(1; G). Suppose H 6≡ 0.

Then by Lemma 2.13 for m = 4, k = 0, p = ∞ we get
(n

2
− 2

)

{T (r, f) + T (r, g)} 6 3N(r,∞; f)(3.4)

−
1

2
{NF>5(r, 1; F | G 6= 1) + NG>5(r, 1; G | F 6= 1)}

−
5

2
{N

4)
L (r, 1; F ) + N

4)
L (r, 1; G)} + S(r, f) + S(r, g).

Using Lemma 2.5 and Lemma 2.9 for k = 0, p = ∞ we obtain
(n

2
− 2

)

{T (r, f) + T (r, g)}(3.5)

6
3

n − 3
[N

4)
L (r, 1; F ) + N

4)
L (r, 1; G)

+ NF>5(r, 1; F | G 6= 1) + NG>5(r, 1; G | F 6= 1)]

−
1

2
{NF>5(r, 1; F | G 6= 1) + NG>5(r, 1; G | F 6= 1)}

−
5

2
{N

4)
L (r, 1; F ) + N

4)
L (r, 1; G)} + S(r, f) + S(r, g)

6
(9 − n)

2(n − 3)

[

N(r, 0; f) + N(r,∞; f)
]

+ S(r, f) + S(r, g).

Now using Lemma 2.11 for m = 4 in (3.5) we obtain
(n

2
− 2

)

{T (r, f) + T (r, g)}(3.6)

6
(9 − n)

2(n − 3)

[{1

4
+

1

2(4n − 14)

}{

T (r, f) + T (r, g)
}]

+ S(r, f) + S(r, g),

i.e.,

(n

2
− 2 −

9 − n

8(n − 3)
−

9 − n

4(4n− 14)(n − 3)

)

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g),

which is a contradiction for n > 5. So H ≡ 0. Hence by Lemma 2.14 we get that F

and G share (1,∞). Now the theorem follows from Theorem A and Remark 1.1. �
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P r o o f of Theorem 1.3. Let F and G be given by (2.1). Since E6)(S3, f) =

E6)(S3, f) it follows from (1.5) and (2.1) that E6)(1; F ) = E6)(1; G). Suppose H 6≡ 0.

Then by Lemma 2.13 for m = 6, k = 0, p = 2 we get

(n

2
− 2

)

{T (r, f) + T (r, g)} 6 N(r, 0; f |> 3) + 3N(r,∞; f)(3.7)

−
3

2
{NF>7(r, 1; F | G 6= 1) + NG>7(r, 1; G | F 6= 1)}

−
9

2
{N

6)
L (r, 1; F ) + N

6)
L (r, 1; G)} + S(r, f) + S(r, g).

Using Lemma 2.5, Lemma 2.7 for p = 2, Lemma 2.9 for k = 0 we obtain

(n

2
− 2

)

{T (r, f) + T (r, g)}(3.8)

6 N(r, 0; f |> 3) +
3

n − 3
[N

6)
L (r, 1; F ) + N

6)
L (r, 1; G)

+ NF>7(r, 1; F | G 6= 1) + NG>7(r, 1; G | F 6= 1) + N(r, 0; f |> 3)]

−
3

2
{NF>7(r, 1; F | G 6= 1) + NG>7(r, 1; G | F 6= 1)}

−
9

2
{N

6)
L (r, 1; F ) + N

6)
L (r, 1; G)} + S(r, f) + S(r, g)

6
n

(n − 3)(3n − 1)
[2T (r, f) + 2T (r, g) + N∗(r,∞; f, g)

+
1

3
{N(r, 0; f) + N(r,∞; f)}] + S(r, f) + S(r, g)

6
n

(n − 3)(3n − 1)

[13

6
{T (r, f) + T (r, g)} +

4

3
N(r,∞; f)

]

+ S(r, f) + S(r, g)

Now using Lemma 2.10 for m = 6 in (3.8) we obtain

(n

2
− 2

)

{T (r, f) + T (r, g)}(3.9)

6
n

(n − 3)(3n − 1)

[{13

6
+

16

3(6n − 20)

}

{T (r, f) + T (r, g)}
]

+ S(r, f) + S(r, g),

i.e.,

(n

2
− 2 −

13n

6(n − 3)(3n− 1)
−

16n

3(n − 3)(3n − 1)(6n − 20)

)

{T (r, f) + T (r, g)}

6 S(r, f) + S(r, g),

which is a contradiction for n > 5. So H ≡ 0. Hence Lemma 2.14 and Lemma 2.15

imply respectively that F and G share (1,∞) and f , g share (0,∞). So Ef (S3,∞) =

Eg(S3,∞) and the theorem follows from Theorem A and Remark 1.1. �
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