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Abstract. The logical foundations of processes handling uncertainty in information use
some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids
(Rl-monoids) are common generalizations of BL-algebras, i.e., algebras of the propositional
basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic.
From the point of view of uncertain information, sets of provable formulas in inference
systems could be described by fuzzy filters of the corresponding algebras. In the paper we
investigate implicative, positive implicative, Boolean and fantastic fuzzy filters of bounded
Rl-monoids.
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1. Introduction

As is well known, while information processing dealing with certain information

is based on the classical two-valued logic, non-classical logics including logics be-

hind fuzzy reasoning handle information with various facets of uncertainty such as

fuzziness, randomness, vagueness, etc.

The classical two-valued logic has Boolean algebras as an algebraic semantics.

Similarly, for important non-classical logics there are algebraic semantics in the form

of classes of algebras. Using these classes, one can obtain an algebraization of infer-

ence systems that handle various kinds of uncertainty. The sets of provable formulas

in inference systems are described by filters, and from the point of view of uncertain

information, by fuzzy filters of the corresponding algebras.

The first author has been supported by the Council of Czech Government, MSM
6198959214.
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BL-algebras were introduced by P.Hájek as an algebraic counterpart of the basic

fuzzy logic BL [7]. Omitting the requirement of pre-linearity in the definition of a

BL-algebra, one obtains the definition of a bounded commutative residuated lattice

ordered monoid (Rl-monoid). Nevertheless, bounded commutative Rl-monoids are

a generalization not only of BL-algebras but also of Heyting algebras which are an

algebraic counterpart of the intuitionistic propositional logic. Therefore, bounded

commutative Rl-monoids could be taken as an algebraic semantics of a more general

logic than Hájek’s fuzzy logic. It is known that every BL-algebra (and consequently

every MV-algebra [3]) is a subdirect product of linearly ordered BL-algebras. More-

over, a bounded commutative Rl-monoid is a subdirect product of linearly ordered

Rl-monoids if and only if it is a BL-algebra [17]. On the other hand, bounded

commutative Rl-monoids which need not be BL-algebras can be constructed from

BL-algebras by means of other natural operations, e.g. by means of pasting, i.e.

ordinal sums.

In both the BL-algebras and bounded commutative Rl-monoids, filters coincide

with deductive systems of those algebras and are exactly the kernels of their congru-

ences. Various types of filters of BL-algebras (Boolean deductive systems, implicative

filters, positive implicative filters, fantastic filters) were studied in [23], [9] and [15].

Generalizations of these kinds of filters were introduced and investigated in [18]

and [20].

Fuzzy ideals (or, in the dual form, fuzzy filters) of MV-algebras were introduced

and developed in [11], [12], and their generalizations for pseudo MV-algebras in [14]

and [5]. Moreover, fuzzy filters of bounded Rl-monoids were recently introduced and

studied in [21]. Some related results one can also find in [25].

In the paper we further develop the theory of fuzzy filters of bounded commu-

tative Rl-monoids. We introduce and investigate implicative fuzzy filters, positive

implicative fuzzy filters, Boolean fuzzy filters and fantastic fuzzy filters of bounded

commutative Rl-monoids and describe their mutual connection, as well as their re-

lations to the corresponding filters.

For concepts and results concerning MV-algebras, BL-algebras and Heyting alge-

bras see for instance [3], [7], [1].

2. Preliminaries

A bounded commutative Rl-monoid is an algebraM = (M ;⊙,∨,∧,→, 0, 1) of type

〈2, 2, 2, 2, 0, 0〉 satisfying the following conditions:

(Rl1) (M ;⊙, 1) is a commutative monoid.

(Rl2) (M ;∨,∧, 0, 1) is a bounded lattice.
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(Rl3) x ⊙ y 6 z if and only if x 6 y → z for any x, y, z ∈ M .

(Rl4) x ⊙ (x → y) = x ∧ y for any x, y ∈ M .

In the sequel, by an Rl-monoid we will mean a bounded commutative Rl-monoid.

On any Rl-monoid M let us define a unary operation negation − by x− := x → 0

for any x ∈ M .

R em a r k 2.1. In fact, bounded commutative Rl-monoids can be also recognized

as commutative residuated lattices [24], [6] satisfying the divisibility condition or

as divisible integral residuated commutative l-monoids [10] or as bounded integral

commutative generalized BL-algebras [2], [13], [4].

The above mentioned algebras can be characterized in the class of all Rl-monoids

as follows: An Rl-monoid M is

a) BL-algebra if and only if M satisfies the identity of pre-linearity (x → y) ∨

(y → x) = 1;

b) an MV-algebra if and only if M fulfils the double negation law x−− = x;

c) a Heyting algebra if and only if the operations “⊙” is idempotent.

When doing calculations, we will use the following list of basic rules for bounded

Rl-monoids.

Lemma 2.2 [19], [22]. In any bounded commutative Rl-monoid M we have for

any x, y, z ∈ M :

(1) 1 → x = x,

(2) x 6 y ⇐⇒ x → y = 1,

(3) x ⊙ y 6 x ∧ y,

(4) x 6 y → x,

(5) (x ⊙ y) → z = x → (y → z) = y → (x → z),

(6) (x ∨ y) → z = (x → z) ∧ (y → z),

(7) x → (y ∧ z) = (x → y) ∧ (x → z),

(8) x 6 x−−, x− = x−−−,

(9) x 6 y =⇒ y− 6 x−,

(10) (x ⊙ y)− = y → x− = y−− → x− = x → y− = x−− → y−,

(11) x 6 y =⇒ z → x 6 z → y, y → z 6 x → z,

(12) x → y 6 y− → x−,

(13) x ∨ y 6 ((x → y) → y) ∧ ((y → x) → x),

(14) x → y 6 (y → z) → (x → z),

(15) x → y 6 (z → x) → (z → y).

A non-empty subset F of an Rl-monoid M is called a filter of M if

(F1) x, y ∈ F imply x ⊙ y ∈ F ;

(F2) x ∈ F , y ∈ M , x 6 y imply y ∈ F.
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A subset D of an Rl-monoid M is called a deductive system of M if

(i) 1 ∈ D;

(ii) x ∈ D, x → y ∈ D imply y ∈ D.

Proposition 2.3 [4]. Let H be a non-empty subset of an Rl-monoid M . Then

H is a filter of M if and only if H is a deductive system of M .

Filters of commutative Rl-monoids are exactly the kernels of their congruences.

If F is a filter of M , then F is the kernel of the unique congruence Θ(F ) such that

〈x, y〉 ∈ Θ(F ) if and only if (x → y) ∧ (y → x) ∈ F for any x, y ∈ M . Hence we will

consider quotient Rl-monoids M/F of Rl-monoids M by their filters F .

3. Fuzzy filters of Rl-monoids

Let [0, 1] be the closed unit interval of reals and let M 6= ∅ be a set. Recall that

a fuzzy set in M is any function ν : M −→ [0, 1].

A fuzzy set ν in an Rl-monoid M is called a fuzzy filter of M if any x, y ∈ M

satisfy

(f1) ν(x ⊙ y) > ν(x) ∧ ν(y),

(f2) x 6 y =⇒ ν(x) 6 ν(y).

By (f2), it follows immediately that

(f3) ν(1) > ν(x) for every x ∈ M .

Lemma 3.1. Let ν be a fuzzy filter of an Rl-monoid M . Then for any x, y ∈ M

we have

(i) ν(x ∨ y) > ν(x) ∧ ν(y),

(ii) ν(x ∧ y) = ν(x) ∧ ν(y),

(iii) ν(x ⊙ y) = ν(x) ∧ ν(y).

P r o o f. For any x, y ∈ M we have x ⊙ y 6 x ∧ y 6 x ∨ y. Then (f2) and (f1)

imply ν(x∨ y) > ν(x⊙ y) > ν(x)∧ ν(y). Since x⊙ y 6 x∧ y 6 x, y, it follows by (f1)

and (f2) that ν(x) ∧ ν(y) 6 ν(x ⊙ y) 6 ν(x ∧ y) 6 ν(x) ∧ ν(y). �

Theorem 3.2. A fuzzy set ν in an Rl-monoidM is a fuzzy filter ofM if and only

if it satisfies (f1) and

(f4) ν(x ∨ y) > ν(x) for any x, y ∈ M .

P r o o f. If ν is a fuzzy filter of an Rl-monoid M then x 6 x ∨ y implies

ν(x) 6 ν(x ∨ y).

Conversely, if ν satisfies (f1) and (f4) and x 6 y, then ν(y) = ν(x ∨ y) > ν(x).

Hence ν is a fuzzy filter of M . �
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Theorem 3.3. Let ν be a fuzzy set in an Rl-monoid M . Then the following

conditions are equivalent.

(1) ν is a fuzzy filter of M .

(2) ν satisfies (f3) and for all x, y ∈ M ,

(∗) ν(y) > ν(x) ∧ ν(x → y).

P r o o f. (1)⇒(2): Let ν be a fuzzy filter of M and let x, y ∈ M . Then, by

Lemma 3.1(iii), ν(y) > ν(x ∧ y) = ν((x → y) ⊙ x) = ν(x → y) ∧ ν(x). Hence ν

satisfies the condition (2).

(2)⇒(1): Let ν be a fuzzy set in M satisfying (f3) and (∗). Let x, y ∈ M , x 6 y.

Then x → y = 1. Thus ν(y) > ν(x) ∧ ν(1) = ν(x), hence (f2) holds.

Further, since x 6 y → (x ⊙ y), by (∗) and (f2) we get ν(x ⊙ y) > ν(y) ∧ ν(y →

(x ⊙ y)) > ν(y) ∧ ν(x). Therefore (f1) is also satisfied and hence ν is a fuzzy filter

of M . �

Let F be a subset of M and let α, β ∈ [0, 1] be such that α > β. Define a fuzzy

subset νF (α, β) in M by

νF (α, β)(x) :=

{

α, if x ∈ F,

β, otherwise.

In particular, νF (1, 0) is the characteristic function χF of F . We will use the notation

νF instead of νF (α, β) for every α, β ∈ [0, 1], α > β.

Let ν be a fuzzy set in M and let α ∈ [0, 1]. The set

U(ν; α) := {x ∈ M : ν(x) > α}

is called the level subset of ν determined by α.

Kondo and Dudek in [16] formulated and proved the so-called Transfer Principle

(TP) which can be used to any (general) algebra of any type:

Tr a n s f e r P r i n c i p l e. A fuzzy set λ defined in a (general) algebra A has a

property P if and only if all non-empty level subsets U(λ; α) have the property P.

(A property P is defined in a standard way by means of terms of algebras. For

more information concerning (TP) see [16].)

Some of the assertions of our paper will be immediate consequences of (TP) and

of its corollaries in [16], hence the proofs of them will be omited. The first of them is
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Theorem 3.4. Let F be a non-empty subset of an Rl-monoidM . Then the fuzzy

set νF is a fuzzy filter of M if and only if F is a filter of M .

Let ν be a fuzzy set in an Rl-monoid M . Denote by Mν the set

Mν := {x ∈ M : ν(x) = ν(1)}.

Note that Mν = U(ν; ν(1)), hence Mν is a special case of a level subset of M .

Theorem 3.5. If ν is a fuzzy filter of an Rl-monoid M , then Mν is a filter of M .

P r o o f. Let ν be a fuzzy filter of M . Let x, y ∈ Mν, i.e. ν(x) = ν(1) = ν(y).

Then ν(x ⊙ y) > ν(x) ∧ ν(y) = ν(1), hence ν(x ⊙ y) = ν(1), thus x ⊙ y ∈ Mν .

Further, let x ∈ Mν, y ∈ M and x 6 y. Then ν(1) = ν(x) 6 ν(y), hence

ν(y) = ν(1), and therefore y ∈ Mν.

That means Mν is a filter of M . �

The converse implication to that from Theorem 3.5 is not true in general, not even

for pseudo MV-algebras, as was shown in [5, Example 3.9].

Theorem 3.6. Let ν be a fuzzy set in an Rl-monoid M . Then ν is a fuzzy filter

of M if and only if its level subset U(ν; α) is a filter of M or U(ν; α) = ∅ for each

α ∈ [0, 1].

P r o o f. It follows from (TP). �

Theorem 3.7. Let ν be a fuzzy subset in an Rl-monoid M . Then the following

conditions are equivalent.

(1) ν is a fuzzy filter of M .

(2) ∀x, y, z ∈ M ; x → (y → z) = 1 =⇒ ν(z) > ν(x) ∧ ν(y).

P r o o f. (1)⇒(2): Let ν be a fuzzy filter of M . Let x, y, z ∈ M and x →

(y → z) = 1. Then by Theorem 3.3, ν(y → z) > ν(x) ∧ ν(x → (y → z)) =

ν(x) ∧ ν(1) = ν(x).

Moreover, also by Theorem 3.3, ν(z) > ν(y) ∧ ν(y → z), hence we obtain ν(z) >

ν(y) ∧ ν(x).

(2)⇒(1): Let a fuzzy set ν in M satisfy the condition (2). Let x, y ∈ M . Since

x → (x → 1) = 1, we have ν(1) > ν(x) ∧ ν(x) = ν(x), hence (f3) is satisfied.

Further, since (x → y) → (x → y) = 1 we get ν(y) > ν(x → y) ∧ ν(x), thus ν

satisfies (∗), which means, by Theorem 3.3, that ν is a fuzzy filter of M . �
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Corollary 3.8. A fuzzy set ν in an Rl-monoid M is a fuzzy filter of M if and

only if for all x, y, z ∈ M , x ⊙ y 6 z implies ν(z) > ν(x) ∧ ν(y).

4. Implicative fuzzy filters

Let M be an Rl-monoid and F a subset of M . Then F is called an implicative

filter of M if

(I) 1 ∈ F ;

(II) x → (y → z) ∈ F , x → y ∈ F imply x → z ∈ F for any x, y, z ∈ M .

By [20], every implicative filter is a filter of M .

A fuzzy set ν in an Rl-monoid M is called an implicative fuzzy filter of M if for

any x, y, z ∈ M

(1) ν(1) > ν(x);

(2) ν(x → (y → z)) ∧ ν(x → y) 6 ν(x → z).

Proposition 4.1. Every implicative fuzzy filter of an Rl-monoid M is a fuzzy

filter of M .

P r o o f. Let ν be an implicative fuzzy filter of M . Let α ∈ [0, 1] be such that

U(ν; α) 6= ∅. Then for any x ∈ U(ν; α) we have ν(1) > ν(x), thus 1 ∈ U(ν; α).

Let x, x → y ∈ U(ν; α), i.e. ν(x), ν(x → y) > α. Then ν(1 → x), ν(1 →

(x → y)) > α, hence ν(1 → (x → y)) ∧ ν(1 → x) > α, thus by (2), ν(1 → y) > α.

That means ν(y) > α, and therefore y ∈ U(ν; α). Hence by Theorem 3.6, ν is a

fuzzy filter of M . �

Theorem 4.2. A filter F of an Rl-monoid M is implicative if and only if νF is

an implicative fuzzy filter of M .

P r o o f. It follows from (TP). �

Theorem 4.3 ([20, Theorem 3.3]). Let F be a filter of an Rl-monoid M . Then

the following conditions are equivalent.

(a) F is an implicative filter of M .

(b) y → (y → x) ∈ F implies y → x ∈ F for any x, y ∈ M .

(c) z → (y → x) ∈ F implies (z → y) → (z → x) ∈ F for any x, y, z ∈ M .

(d) z → (y → (y → x)) ∈ F and z ∈ F imply y → x ∈ F for any x, y, z ∈ M .

(e) x → (x ⊙ x) ∈ F for any x ∈ M .
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Theorem 4.4. Let F be a filter of an Rl-monoidM . Then the following conditions

are equivalent.

(a) νF is an implicative fuzzy filter of M .

(b) νF (y → (y → x)) 6 νF (y → x) for any x, y ∈ M .

(c) νF (z → (y → x)) 6 νF ((z → y) → (z → x)) for any x, y, z ∈ M .

(d) νF (z → (y → (y → x))) ∧ νF (z) 6 νF (y → x) for any x, y, z ∈ M .

(e) νF (x → (x ⊙ x)) = νF (1).

P r o o f. (a)⇔(b): Let νF be an implicative fuzzy filter of M . Then by Theo-

rem 4.2, F is an implicative filter ofM , and hence by Theorem 4.3, y → (y → x) ∈ F

implies y → x ∈ F for any x, y ∈ M . Let x, y ∈ M and let νF (y → (y → x)) = α.

Then νF (y → x) = α, and thus νF satisfies the condition (b).

Conversely, let νF satisfy (b). Let x, y ∈ M and y → (y → x) ∈ F . Then

νF (y → (y → x)) = α, hence also νF (y → x) = α, that means y → x ∈ F . Therefore

by 4.3, F is an implicative fuzzy filter of M .

The proofs of the equivalences (a)⇔(c), (a)⇔(d) and (a)⇔(e) are analogous, and

hence they are omitted. �

Theorem 4.5. Let ν be a fuzzy filter of an Rl-monoidM . Then ν is an implicative

fuzzy filter of M if and only if U(ν; α) is an implicative filter for any α ∈ [0, 1] such

that U(ν; α) 6= ∅.

P r o o f. It follows from (TP). �

As a consequence we obtain the following theorem.

Theorem 4.6. If ν is a fuzzy filter of an Rl-monoid M , then ν is an implica-

tive fuzzy filter of M if and only if U(ν; α) satisfies any of conditions (b)–(e) of

Theorem 4.3 for each α ∈ [0, 1] such that U(ν; α) 6= ∅.

Theorem 4.7 ([20, Theorem 3.4]). If F is a filter of an Rl-monoid M , then F is

an implicative filter if and only if the quotient Rl-monoidM/F is a Heyting algebra.

The following assertion follows from Theorems 4.6 and 4.7.

Theorem 4.8. If ν is a fuzzy filter of an Rl-monoid M , then ν is an implicative

fuzzy filter ofM if and only if the quotient Rl-monoidM/U(ν; α) is a Heyting algebra

for any α ∈ [0, 1] such that U(ν; α) 6= ∅.
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Theorem 4.9 ([20, Theorem 3.10]). LetM be an Rl-monoid. Then the following

conditions are equivalent.

(a) M is a Heyting algebra.

(b) Every filter of M is implicative.

(c) {1} is an implicative filter of M .

Theorem 4.10. Let M be an Rl-monoid. Then the following conditions are

equivalent.

(a) M is a Heyting algebra.

(b) Every fuzzy filter of M is implicative.

(c) Every fuzzy filter ν of M such that ν(1) = 1 is implicative.

(d) χ{1} is an implicative fuzzy filter of M .

P r o o f. (a)⇒(b): Let M be a Heyting algebra and ν a fuzzy filter of M . If

α ∈ [0, 1] and U(ν; α) 6= ∅, then U(ν; α) is, by Theorem 4.9, an implicative filter of

M . Hence by Theorem 4.5, ν is an implicative fuzzy filter of M .

(b)⇒(c), (c)⇒(d): Obvious.

(d)⇒(a): If the fuzzy filter χ{1} = ν{1}(1, 0) is implicative, then by Theorem 4.2,

{1} is an implicative filter ofM , and hence by Theorem 4.9,M is a Heyting algebra.

�

5. Positive implicative and Boolean fuzzy filters

Let M be an Rl-monoid and F a subset of M . Then F is called a positive im-

plicative filter of M if

(I) 1 ∈ F ;

(III) x → ((y → z) → y) ∈ F and x ∈ F imply y ∈ F for any x, y, z ∈ M .

By [20], every positive implicative filter of M is a filter of M .

A fuzzy set ν in an Rl-monoid M is called a positive implicative fuzzy filter of M

if for any x, y, z ∈ M ,

(1) ν(1) > ν(x);

(3) ν(x → ((y → z) → y)) ∧ ν(x) 6 ν(y).

Proposition 5.1. Every positive implicative fuzzy filter of an Rl-monoid M is a

fuzzy filter of M .

P r o o f. Let ν be a positive implicative fuzzy filter ofM, α ∈ [0, 1] and U(ν; α) 6=

∅. Then 1 ∈ U(ν; α).
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Further, let x, x → y ∈ U(ν; α), i.e. ν(x), ν(x → y) > α. Then ν(x → ((y → 1) →

y)) = ν(x → (1 → y)) = ν(x → y), hence ν(x → ((y → 1) → y) ∧ ν(x) > α and thus

by (3), ν(y) > α. Therefore y ∈ U(ν; α).

That means, by Theorem 3.6, ν is a fuzzy filter of M . �

Theorem 5.2. A filter F of an Rl-monoid M is positive implicative if and only

if νF is a positive implicative fuzzy filter of M .

P r o o f. Let F be a filter ofM . Let us suppose that F is positive implicative. Let

νF (x → ((y → z) → y)) ∧ νF (x) = α. Then νF (x → ((y → z) → y)) = α = νF (x),

thus x → ((y → z) → y), x ∈ F , and hence y ∈ F , that means νF (y) = α. Therefore

we get that νF is a positive implicative fuzzy filter of M .

Conversely, let νF be a positive implicative fuzzy filter ofM . Let x → ((y → z) →

y) ∈ F and x ∈ F . Then νF (x → ((y → z) → y)) = α = νF (x), hence νF (y) = α

and so y ∈ F . That means F is a positive implicative filter of M . �

Theorem 5.3 ([20, Theorem 3.8]). Let F be a filter of an Rl-monoid M . Then

the following conditions are equivalent.

(a) F is a positive implicative filter of M .

(b) (x → y) → x ∈ F implies x ∈ F for any x, y ∈ M .

(c) (x− → x) → x ∈ F for any x ∈ M .

Theorem 5.4. Let F be a filter of an Rl-monoidM . Then the following conditions

are equivalent.

(a) νF is a positive implicative fuzzy filter of M .

(b) νF ((x → y) → x) 6 νF (x) for any x, y ∈ M .

(c) νF ((x− → x) → x) = νF (1).

P r o o f. Analogous to that for Theorem 4.4. �

Theorem 5.5. Let ν be a fuzzy filter of an Rl-monoid M . Then ν is a positive

implicative fuzzy filter of M if and only if U(ν; α) is a positive implicative filter of

M for every α ∈ [0, 1] such that U(ν; α) 6= ∅.

P r o o f. Let us suppose that ν is a fuzzy filter ofM . Let ν be positive implicative,

α ∈ [0, 1], U(ν; α) 6= ∅, x, y, z ∈ M and x → ((y → z) → y) ∈ U(ν; α), x ∈ U(ν; α).

Then ν(x → ((y → z) → y)), ν(x) > α, hence ν(x → ((y → z) → y)) ∧ ν(x) > α.

Since ν(y) > ν(x → ((y → z) → y)) ∧ ν(x), we get y ∈ U(ν; α). Therefore the filter

U(ν; α) is positive implicative.

Conversely, let ν be such that U(ν; α) is a positive implicative filter for any α ∈

[0, 1] such that U(ν; α) 6= ∅. If x, y, z ∈ M , then x → ((y → z) → y), x ∈ U(ν; (x →
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((y → z) → y)) ∧ x), thus also y ∈ U(ν; (x → ((y → z) → y)) ∧ x), hence ν(y) >

ν((x → ((y → z) → y)) ∧ x) = ν(x → ((y → z) → y))) ∧ ν(x). That means ν is a

positive implicative fuzzy filter. �

Theorem 5.6. Every positive implicative fuzzy filter of an Rl-monoid M is im-

plicative.

P r o o f. Let ν be a positive implicative fuzzy filter ofM . Then by Theorem 5.5,

if α ∈ [0, 1] is such that U(ν; α) 6= ∅ then U(ν; α) is a positive implicative filter ofM .

Hence by [20, Proposition 3.7], U(ν; α) is also an implicative filter of M . Therefore

by Theorem 4.5, ν is an implicative fuzzy filter of M . �

Theorem 5.7 ([20, Proposition 3.11]). Let F be an implicative filter of an Rl-

monoid M . Then the following conditions are equivalent.

(a) F is a positive implicative filter of M .

(b) (x → y) → y ∈ F implies (y → x) → x ∈ F for any x, y ∈ M .

Theorem 5.8. Let F be an implicative filter of an Rl-monoid M . Then the

following conditions are equivalent.

(a) νF is a positive implicative fuzzy filter of M .

(b) νF ((x → y) → y) = νF ((y → x) → x) for any x, y ∈ M .

P r o o f. (a)⇒(b): Let νF be a positive implicative fuzzy filter of M . Then

by Theorem 5.2, F is a positive implicative filter of M hence (x → y) → y ∈ F

implies (y → x) → x ∈ F for any x, y ∈ M . Let νF ((x → y) → y) = α. Then also

νF ((y → x) → x) = α, and thus νF satisfies (b).

(b)⇒(a): Let νF satisfy (b) and let νF (x → ((y → z) → y)) = α = νF (x).

Then x → ((y → z) → y), x ∈ F , and hence also (y → z) → y ∈ F . Further,

(y → z) → y 6 (y → z) → ((y → z) → z), therefore (y → z) → ((y → z) → z) ∈ F .

Since F is an implicative filter of M , by Theorem 4.3 we get (y → z) → z ∈ F , and

consequently by Theorem 5.7, F is a positive implicative filter of M . Therefore by

Theorem 5.2, νF is a positive implicative fuzzy filter of M . �

Theorem 5.9 ([20, Theorem 3.12]). LetM be an Rl-monoid. Then the following

conditions are equivalent.

(a) {1} is a positive implicative filter.

(b) Every filter of M is positive implicative.

(c) M is a Boolean algebra.
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Theorem 5.10. Let M be an Rl-monoid. Then the following conditions are

equivalent.

(a) M is a Boolean algebra.

(b) Every fuzzy filter of M is positive implicative.

(c) Every fuzzy filter ν of M such that ν(1) = 1 is positive implicative.

(d) χ{1} is a positive implicative fuzzy filter of M .

P r o o f. (a)⇒(b): LetM be a Boolean algebra and ν a fuzzy filter ofM . Let α ∈

[0, 1] be such that U(ν; α) 6= ∅. Then by Theorem 5.9, U(ν; α) is a positive implicative

filter of M . Hence by Theorem 5.5 we obtain that ν is a positive implicative fuzzy

filter of M .

(b)⇒(c), (c)⇒(d): Obvious.

(d)⇒(a): Let χ{1} = ν{1}(1; 0) be a positive implicative fuzzy filter of M . Then

by Theorem 5.2 we get that {1} is a positive implicative filter of M , and therefore

by Theorem 5.9, M is a Boolean algebra. �

A filter F of an Rl-monoid M is called a Boolean filter of M , if for any x ∈ M ,

x ∨ x− ∈ F.

A fuzzy filter ν of an Rl-monoidM is called a Boolean fuzzy filter ofM , if for any

x ∈ M , ν(x ∨ x−) = ν(1).

Theorem 5.11. A filter F of an Rl-monoid M is Boolean if and only if νF is a

Boolean fuzzy filter of M .

P r o o f. Let F be a Boolean filter of M and let x ∈ M . Then νF (x∨x−) = α =

νF (1), hence νF is a Boolean fuzzy filter of M .

Conversely, let νF be a Boolean fuzzy filter ofM and let x ∈ F . Then νF (x∨x−) =

νF (1) = α, then x ∨ x− ∈ F , that means F is a Boolean filter of M . �

Theorem 5.12. Let ν be a fuzzy filter of an Rl-monoid M . Then the following

conditions are equivalent.

(a) ν is a Boolean fuzzy filter of M .

(b) If α ∈ [0, 1] is such that U(ν; α) 6= ∅, then U(ν; α) is a Boolean filter of M .

(c) Mν = U(ν; ν(1)) is a Boolean filter of M .

P r o o f. It follows from (TP). �
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Theorem 5.13. Let ν be a fuzzy filter of an Rl-monoid M . Then ν is Boolean if

and only if the quotient Rl-monoidM/U(ν; α) is a Boolean algebra for any α ∈ [0, 1]

such that U(ν; α) 6= ∅.

P r o o f. In [18] it is proved that a filter F of an Rl-monoid M is Boolean if and

only ifM/F is a Boolean algebra. Hence the assertion is a corollary of the preceding

theorem. �

Theorem 5.14 ([21]). A filter F of an Rl-monoidM is positive implicative if and

only if F is a Boolean filter.

As a consequence of Theorems 5.2, 5.11 and 5.14 we get

Theorem 5.15. If F is a filter of an Rl-monoid M then for the fuzzy filter νF

the following conditions are equivalent.

(a) νF is a positive implicative fuzzy filter of M .

(b) νF is a Boolean fuzzy filter of M .

Analogously, from Theorems 5.5, 5.12 and 5.14 we obtain

Theorem 5.16. Let ν be a fuzzy filter of an Rl-monoid M . Then the following

conditions are equivalent.

(a) If α ∈ [0, 1] is such that U(ν; α) 6= ∅, then U(ν; α) is a positive implicative filter

of M .

(b) If α ∈ [0, 1] is such that U(ν; α) 6= ∅, then U(ν; α) is a Boolean filter of M .

R em a r k 5.17. Theorems 4.8 and 5.16 give an alternative proof of Theorem 5.6.

6. Fantastic fuzzy filters

Let M be an Rl-monoid and F a subset of M . Then F is called a fantastic filter

of M if

(I) 1 ∈ F ;

(IV) z → (y → x) ∈ F and z ∈ F imply ((x → y) → y) → x ∈ F for any x, y, z ∈ M .

By [20], every fantastic filter is a filter of M .

A fuzzy subset ν in an Rl-monoid M is called a fantastic fuzzy filter of M if for

any x, y, z ∈ M ,

(1) ν(1) > ν(x);

(4) ν(z → (y → x)) ∧ ν(z) 6 ν(((x → y) → y) → x).
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Proposition 6.1. Every fantastic fuzzy filter of an Rl-monoid M is a fuzzy filter

of M .

P r o o f. Let ν be a fantastic fuzzy filter of M . Let α ∈ [0, 1] and U(ν; α) 6= ∅.

Then 1 ∈ U(ν; α). Let x, x → y ∈ U(ν; α), i.e., ν(x), ν(x → y) > α. Then

ν(x → (1 → y)) = ν(x → y) > α, hence ν(x → (1 → y)) ∧ ν(x) > α, thus by (4),

ν(y) = ν(1 → y) = ν(((y → 1) → 1) → y) > ν(x → (1 → y)) ∧ ν(x) > α, and so

y ∈ U(ν; α). Therefore by Theorem 3.6, ν is a fuzzy filter of M . �

Theorem 6.2. A filter F of an Rl-monoid M is fantastic if and only if νF is a

fantastic fuzzy filter of M .

P r o o f. Let F be a filter of M . Let us suppose that F is fantastic. Let

νF (z → (y → x)) ∧ νF (z) = α. Then νF (z → (y → x)) = α = νF (z), thus

z → (y → x) ∈ F , z ∈ F , and hence ((x → y) → y) → x ∈ F , that means

ν(((x → y) → y) → x) = α. Therefore we get that νF is a fantastic fuzzy filter ofM .

Conversely, let νF be a fantastic fuzzy filter of M . Let z → (y → x) ∈ F and

z ∈ F . Then νF (z → (y → x)) = α = νF (z), hence νF (((x → y) → y) → x) = α,

and therefore ((x → y) → y) → x ∈ F . That means, F is a fantastic filter of M . �

Theorem 6.3 ([20, Theorems 4.2, 4.4]). Let F be a filter of an Rl-monoid M .

Then the following conditions are equivalent:

(a) F is a fantastic filter of M .

(b) y → x ∈ F implies ((x → y) → y) → x ∈ F for every x, y ∈ M .

(c) x−− → x ∈ F for every x ∈ M .

(d) x → z ∈ F and y → z ∈ F imply ((x → y) → y) → z ∈ F for every x, y, z ∈ M .

Theorem 6.4. Let F be a filter of an Rl-monoidM . Then the following conditions

are equivalent.

(a) νF is a fantastic fuzzy filter of M .

(b) νF (y → x) 6 νF (((x → y) → y) → x) for any x, y ∈ M .

(c) νF (x−− → x) = νF (1) for any x ∈ M .

(c) νF (x → z) ∧ νF (y → z) 6 νF (((x → y) → y) → z) for any x, y, z ∈ M .

P r o o f. Analogous to that for Theorem 4.4. �

Theorem 6.5. Let ν be a fuzzy filter of an Rl-monoid M . Then ν is a fantastic

fuzzy filter of M if and only if U(ν; α) is a fantastic filter of M for every α ∈ [0, 1]

such that U(ν; α) 6= ∅.

P r o o f. It follows from (TP). �

As a consequence we obtain the following theorem.
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Theorem 6.6. Let ν be a fuzzy filter of an Rl-monoid M . Then ν is a fan-

tastic fuzzy filter of M if and only if U(ν; α) satisfies each of conditions (b)–(d) of

Theorem 6.3 for every α ∈ [0, 1] such that U(ν; α) 6= ∅.

Theorem 6.7. Every positive implicative fuzzy filter of an Rl-monoid M is fan-

tastic.

P r o o f. If ν is a positive implicative fuzzy filter of M , then by Theorem 5.5,

U(ν; α) is a positive implicative filter of M for every U(ν; α) 6= ∅. Hence by [20,

Theorem 4.3], U(ν; α) is also a fantastic filter of M , and hence, by the preceding

theorem, ν is a fantastic filter of M . �

Theorem 6.8 ([20, Theorem 4.6]). A filter F of an Rl-monoid M is fantastic if

and only if M/F is an MV-algebra.

Theorem 6.9. If ν is a fuzzy filter of an Rl-monoidM , then ν is a fantastic fuzzy

filter of M if and only if the quotient Rl-monoid M/U(ν; α) is an MV-algebra for

every α ∈ [0, 1] such that U(ν; α) 6= ∅.

P r o o f. Follows from Theorems 6.5 and 6.8. �

Theorem 6.10 ([20, Proposition 4.10]). Let M be an Rl-monoid. Then the

following conditions are equivalent:

(1) M is an MV-algebra.

(2) Every filter of M is fantastic.

(3) {1} is a fantastic filter of M .

Theorem 6.11. Let M be an Rl-monoid. Then the following conditions are

equivalent:

(a) M is an MV-algebra.

(b) Every fuzzy filter of M is fantastic.

(c) Every fuzzy filter ν of M such that ν(1) = 1 is fantastic.

(d) χ{1} is a fantastic fuzzy filter of M .

P r o o f. (a)⇒(b): LetM be anMV-algebra and let ν be a fuzzy filter ofM . Let

α ∈ [0, 1] be such that U(ν; α) 6= ∅. Then by Theorem 6.10, U(ν; α) is a fantastic

filter of M , hence by Theorem 6.5 we get that ν is a fantastic fuzzy filter of M .

(b)⇒(c), (c)⇒(d): Obvious.

(d)⇒(a): Let χ{1} = ν{1}(1; 0) be a fantastic fuzzy filter of M . Then by Theo-

rem 6.2 we have that {1} is a fantastic filter of M , and therefore by Theorem 6.8,

M is an MV-algebra. �
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