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Abstract. In this paper we consider a linear operator on an unbounded interval associated
with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms
of the recessive system of solutions at infinity. This generalizes a similar result obtained by
Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential
equations.
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1. Introduction

Friedrichs extension of linear differential operators is a topic frequently studied in

literature. If Lmin is a minimal operator defined by a semibounded symmetric (for

example, Sturm-Liouville) operator in a Hilbert space H , then Friedrichs proved in

[7], [8] the existence of a self-adjoint extension of Lmin preserving the lower bound.

This extension is known as the Friedrichs extension LF of the minimal operator. One

of the characterizations of the domain of LF , which will be used also in this work, is

given in the classical result [6] by Freudenthal.

In this paper we consider the Hilbert space L2[a,∞) of Lebesgue measurable

complex-valued 2n-vector functions satisfying
∫ ∞

a
y∗(t)y(t) dt < ∞, where y∗ = yT

1 Corresponding author. Research supported by the Grant Agency of the Academy of
Sciences of the Czech Republic under grant KJB100190701, by the Czech Science Foun-
dation under grant 201/09/J009, and by the research project MSM 0021622409 of the
Ministry of Education, Youth, and Sports of the Czech Republic.

2Research supported under grant 0964/2009 of Masaryk University.
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is the conjugate transpose of y. The inner product is defined to be 〈y, z〉 :=∫ ∞

a
y∗(t)z(t) dt. Let A,B,C : [a,∞) → C

n×n be locally integrable matrix functions

such that B(t) and C(t) are Hermitian and B(t) is positive semidefinite (B(t) > 0)

for all t ∈ [a,∞). Put

y =

(
x

u

)
, J :=

(
0 I

−I 0

)
, H(t) :=

(
−C(t) A∗(t)

A(t) B(t)

)

with vector and matrix blocks of dimension n. In this paper we study the Friedrichs

extension of the symmetric operator defined by the differential expression

l[y](t) := −J y′ −H(t)y =

(
C(t)x −A∗(t)u− u′

x′ −A(t)x−B(t)u

)
.

The equation l[y](t) = 0 defines a linear Hamiltonian system

(H) x′ = A(t)x +B(t)u, u′ = C(t)x−A∗(t)u, t ∈ [a,∞).

It is well known that systems of the form (H) contain as special cases, for example, 2n-

th order scalar Sturm-Liouville differential equations or second order matrix Sturm-

Liouville equations, see e.g. [12], [16].

An expository discussion about the boundary conditions which define the Frie-

drichs extension of second order Sturm-Liouville operators can be found in [21, Sec-

tion 10.5]. More precisely, in [9], Friedrichs considered a second order Sturm-Liouville

differential operator and proved that the “Friedrichs” extension on a finite interval

can be determined by the Dirichlet boundary conditions. This result was later ex-

tended in various ways to an unbounded interval in [10], [17], [18] and to higher order

operators in [13], [14]. In [2] (in a very special case) and in [20], the “Friedrichs”

boundary conditions (i.e., the boundary conditions which determine the domain of

the Friedrichs extension) were given for a class of higher order singular differential

operators. More recently, in [12], the Friedrichs extension for singular differential

operators of order 2n on finite or infinite interval was characterized by using the

principal (recessive) solutions. The Friedrichs extension of a Hamiltonian operator

in the limit point case is characterized in [23] by the Dirichlet boundary condition

x(a) = 0, referring to the above notation y = (x∗, u∗)∗. The result of the present

paper can be considered as a completion of this result for the Hamiltonian operator

in the limit circle case. The Friedrichs extension constructed in this paper uses the

recessive system of solutions of the Hamiltonian system (H). This result is of the

same spirit as the corresponding result for higher order Sturm-Liouville equations in

[12, Theorem 12], adopting the concept of y = (x, u) ∈ L2 as in [23]. The key role in
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this result is played by the Lagrange bracket or its limit at infinity,

(1.1) [y, z](t) := y∗(t)J z(t), [y, ỹj]∞ := lim
t→∞

[y, ỹj](t),

where ỹj for j ∈ {1, . . . , n} are the recessive solutions of system (H), see Section 2. As

we shall see, the Friedrichs extension is characterized by the zero values of [y, ỹj ]∞.

The paper is organized as follows. In the next section we briefly introduce the

necessary notation and terminology from the theory of linear Hamiltonian systems,

including the recessive system of solutions of (H) and the corresponding quadratic

functional. In Section 3 we develop the tools from the spectral theory of differential

operators and we state and prove our main result (Theorem 3.1).

2. Linear Hamiltonian systems

In this section we briefly discuss the properties of linear Hamiltonian systems and

their solutions which will be needed in this paper. Vector solutions of (H) will be

denoted by small letters, typically y = (x, u), while matrix solutions of (H) will be

denoted by capital letters, typically Y = (X,U). Here x and u are n-vector valued

(so that y(t) ∈ C
2n), and X and U are n× n-matrix valued (so that Y (t) ∈ C

2n×n).

To be completely consistent with our notation we should write y = (x∗, u∗)∗ and

Y = (X∗, U∗)∗. However, the above simplified notation is well adopted in the theory

of linear Hamiltonian systems.

If Y = (X,U) and Ỹ = (X̃, Ũ) are any two solutions of (H), then their Wronskian

matrix Y ∗(t)J Ỹ (t) = {X∗Ũ − U∗X̃}(t) is a constant matrix, which can be verified

by differentiation. A solution Y = (X,U) is a conjoined basis of (H) if X∗(t)U(t) is

Hermitian and rankY (t) = n for some (and hence for any) point t ∈ [a,∞). Two

conjoined bases Ỹ and Ŷ are called normalized if their Wronskian matrix is the

identity, i.e., Ỹ ∗(t)J Ŷ (t) ≡ I. In this case we have (see e.g. [11, Proposition 1.1.5])

(2.1)

{
X̃∗Ũ , X̂∗Û , X̃X̂∗, Ũ Û∗ are Hermitian,

X̃∗Û − Ũ∗X̂ = I, ÛX̃∗ − ŨX̂∗ = I.

Following [16, pg. 316] and [1, pg. 172], a conjoined basis Ỹ = (X̃, Ũ) of (H) is said

to be a recessive solution (or principal solution at ∞) if X̃(t) is invertible for large

t and for any other conjoined basis Y = (X,U) for which the (constant) Wronskian

matrix Y ∗J Ỹ is nonsingular (such a solution is called dominant) we have

(2.2) lim
t→∞

X−1(t)X̃(t) = 0.
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The recessive solution is determined uniquely up to a right multiple by a nonsingular

n× n matrix. An equivalent characterization of the recessive solution of (H) is

(2.3) lim
t→∞

( ∫ t

a

X̃−1(τ)B(τ)X̃∗−1(τ) dτ

)−1

= 0,

see [4, Theorem 3.1]. In the proof of our main result (Theorem 3.1) we will see another

construction (the so-called Reid’s construction) of the recessive solution which uses

a pointwise limit of certain auxiliary solutions of (H).

In this paper we essentially need the existence of recessive solution Ỹ = (X̃, Ũ)

with the property that

(2.4) X̃(t) is eventually nonsingular.

Both properties, that is, the existence of Ỹ and the eventual invertibility of X̃(t) are

guaranteed for example by the requirement that the system (H) be nonoscillatory and

eventually controllable. In this case the Sturmian separation theorem implies that

every conjoined basis Y = (X,U) of (H) has X(t) eventually nonsingular. However,

the two notions of nonoscillation and eventual controllability are not explicitly needed

in this paper, so that we stay with the assumption on the existence of the recessive

solution in our main result. In addition, in order to keep the values of a certain

functional finite, we will need the assumption that the recessive solution Ỹ satisfies

(2.5) lim
t→∞

Ỹ (t) = 0.

R em a r k 2.1. Assuming that the columns of Ỹ belong to L2, we conjecture that

condition (2.5) is automatically satisfied, although we have not been able to find a

reference for it or prove it.

If Ỹ is the recessive solution of (H), then by definition its columns form the reces-

sive system of (vector) solutions of (H), i.e., the functions ỹ1 := Ỹ e1, . . . , ỹn := Ỹ en

form the recessive system of solutions, where ej is the j-th unit vector.

With the Hamiltonian system (H) we consider the corresponding quadratic func-

tional

(2.6) F(y) :=

∫ ∞

a

Ω(y, y)(t) dt, Ω(y, ỹ)(t) := {x∗Cx̃+ u∗Bũ}(t),

where y = (x, u) is admissible, i.e., x is locally absolutely continuous, u is locally

integrable, supp y ⊆ (a,∞), and y satisfies the first equation in system (H), the so-

called equation of motion. The classical results [16, Chapter VII] of Reid characterize
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the positivity of the quadratic functional F for example by the nonoscillation of the

Hamiltonian system (H) (although in [16] the results are formulated in terms of

disconjugacy of system (H)).

Let ACloc be the set of all locally absolutely continuous functions y : [a,∞) → C
2n.

The motivation for the quadratic functional F is the following. For y = (x, u) ∈

ACloc (not necessarily admissible) we have

y∗l(y) = x∗Cx+ (x′ −Ax)∗u− (x∗u)′ + u∗(x′ −Ax−Bu).

This formula is particularly simple when y is admissible. Therefore, the following

result holds true.

Lemma 2.2. For any admissible y = (x, u) ∈ ACloc ∩ L
2 such that l(y) ∈ L2 we

have

F(y) = (x∗u)(t)
∣∣∞
a

+

∫ ∞

a

{
x∗(Cx −A∗u− u′)

}
(t) dt,(2.7)

F(y) = 〈y, l(y)〉 + (x∗u)(t)
∣∣∞
a
,(2.8)

whenever (finite) lim
t→∞

(x∗u)(t) exists.

3. Friedrichs extension

Denote
D0 := {y ∈ ACloc, supp y ⊆ (a,∞)},

Dmax := {y ∈ L2 ∩ACloc, l(y) ∈ L2}.

i.e., D0 is the set of absolutely continuous C
2n-valued functions with compact support

in (a,∞) and Dmax is the maximal set of functions allowed in l(y) so that l(y) ∈ L2.

Then it is well known that D0 is dense in L
2 and that the expression l(y) defines a

symmetric operator on D0 (as a consequence of the Lagrange identity (3.3) below).

The maximal operator Lmax generated by l(y) is defined as Lmax : Dmax → L2,

Lmax(y) := l(y), and then the minimal operator Lmin is the closure of the restriction

of the maximal operator to the set D0. It follows that y(a) = 0 for any y ∈ Dmin

and that Lmin = L∗
max (the adjoint operator in L

2), i.e.,

(3.1) 〈l(y), z〉 = 〈y, l(z)〉 for all y ∈ Dmin, z ∈ Dmax.

Since the matrix H(t) is Hermitian and since J ∗ = −J = J −1, for any y, z ∈ Dmax

we have

(3.2)
l∗(y)z − y∗l(z) = (−J y′ −Hy)∗z − y∗(−J z′ −Hz)

= (y∗J z)′ + y∗(H−H∗)z = (y∗J z)′,
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which is known as Green’s formula. And since y∗J z = [y, z], integrating equation

(3.2) over [a,∞) yields the Lagrange indentity

(3.3) 〈l(y), z〉 − 〈y, l(z)〉 = [y, z](t)
∣∣∞
a
.

Hence, for any y, z ∈ Dmax both the inner products on the left-hand side of (3.3) are

finite, so that the limit

(3.4) [y, z]∞ =
〈
l(y), z

〉
−

〈
y, l(z)

〉
+ [y, z](a)

exists and is finite. And since [y, z](a) = 0 for any y ∈ Dmin and z ∈ Dmax (use

y(a) = 0 for y ∈ Dmin), equations (3.4) and (3.1) imply that the domain of the

minimal operator has the form

Dmin = {y ∈ Dmax, y(a) = 0, [y, z]∞ = 0 for every z ∈ Dmax},

see also [19, Lemma 7]. The idea of our main result (Theorem 3.1 below) is to

enlarge the domain Dmin by a suitable selection of finitely many functions z from

Dmax satisfying [y, z]∞ = 0. These functions z turn out to be the recessive solutions

of (H).

We assume that the minimal operator is bounded below (positive), i.e., there exists

ε > 0 such that

(3.5) 〈l(y), y〉 > ε〈y, y〉 for all y ∈ Dmin,

where Dmin is the domain of the minimal operator. This assumption is not really

restrictive, since the nonoscillation and eventual controllability of (H) imply that the

operator Lmin is bounded below, say by a constant γ ∈ R, that is, 〈l(y), y〉 > γ〈y, y〉

for every y ∈ Dmin. This follows from the fact that the corresponding eigenvalue

problem has a smallest (although possibly negative) eigenvalue. The proof of this

fact can be found in [11, Theorem 7.6.2] or in [12, pg. 414]. The construction of the

Friedrichs extension then applies to the operator Lmin − γI, where I is the identity

operator.

Recalling the definition of the Lagrange bracket in (1.1), we next present the main

result of this paper. We refer to [12, Theorem 12] for the case of higher order Sturm-

Liouville operators, and to a part of [15, Theorem 4.4] or [21, Theorem 10.5.3] for

the second order operators.
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Theorem 3.1. Assume that (3.5) holds and that the Hamiltonian system (H)

possesses the recessive system of solutions Ỹ = (ỹ1, . . . , ỹn) satisfying conditions

(2.4) and (2.5). Then the domain of the Friedrichs extension LF of the minimal

operator Lmin is given by

DF =
{
y = (x, u) ∈ Dmax, x(a) = 0, [y, ỹj ]∞ = 0 for all j = 1, . . . , n

}
.

We will construct the domain DF of the Friedrichs extension by using the result of

[6], see also [21, Definition 10.5.1] and [13, Section 3]. In particular, for our setting

we conclude that

(3.6) DF =
{
y ∈ Dmax, ∃ys ∈ Dmin with ys → y in L2 as s→ ∞

and 〈l(ys − yr), ys − yr〉 → 0 as s, r → ∞
}
.

Then we have the inclusions D0 ⊆ Dmin ⊆ DF ⊆ Dmax.

R em a r k 3.2. Let q = q± := dim Ker(Lmin − iI) be the deficiency indices of the

operator Lmin. If q = 0, then the operator Lmin is self-adjoint and Dmin = DF . If

the operator Lmin is not self-adjoint, i.e., if 1 6 q 6 n, then a self-adjoint extension

of Lmin is given as a restriction of the operator Lmax to the domain

D :=
{
y = (x, u) ∈ Dmax, x(a) = 0, [y, yj ]∞ = 0 for all j = 1, . . . , q

}
.

Here y1, . . . , yq ∈ Dmax are such that [yi, yj]∞ = 0 for all i, j ∈ {1, . . . , q} and

such that y1, . . . , yq are linearly independent modulo Dmin (i.e., no nontrivial linear

combination of y1, . . . , yq belongs to Dmin). The set D is called a Lagrangian subspace

in [22].

We are now ready to prove the main result of this paper.

P r o o f of Theorem 3.1. Let Ỹ = (X̃, Ũ) be the recessive solution of (H) sat-

isfying conditions (2.4) and (2.5) and put ỹj = (x̃j , ũj), where x̃j(t) = X̃(t)ej and

ũj(t) = Ũ(t)ej on [a,∞) for every j ∈ {1, . . . , n}. By (2.3), the symmetric matrix

Λ(t) :=

∫ t

a

X̃−1(τ)B(τ)X̃∗−1(τ) dτ

satisfies lim
t→∞

Λ−1(t) = 0. Define the dominant solution Ŷ = (X̂, Û) of (H) by

(3.7) X̂(t) := X̃(t)Λ(t), Û(t) := Ũ(t)Λ(t) + X̃∗−1(t).
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Then simple calculations, which use the formulas X̃∗Ũ = Ũ∗X̃ and (X̃−1)′ =

−X̃−1X̃ ′X̃−1, show that (X̂, Û) is a solution of (H) and that the conjoined bases

(X̃, Ũ) and (X̂, Û) are normalized. This yields that (2.1) holds true, so that the

matrix X̂−1X̃ is Hermitian.

For a fixed s ∈ [a,∞) we denote Y [s](t) := Ỹ (t) − Ŷ (t)X̂−1(s)X̃(s), i.e.,

(3.8)
X [s](t) := X̃(t) − X̂(t)X̂−1(s)X̃(s),

U [s](t) := Ũ(t) − Û(t)X̂−1(s)X̃(s).

Then, since it is a linear combination of two solutions, Y [s] = (X [s], U [s]) is a solution

of (H) which satisfies X [s](s) = 0 and U [s](s) = −X̂∗−1(s). Next we show that

(3.9) lim
s→∞

(
X [s](t)

U [s](t)

)
=

(
X̃(t)

Ũ(t)

)
for every t ∈ [a,∞),

i.e., the functions Y [s](·) converge pointwise as s→ ∞ to the recessive solution Ỹ (·).

Since Λ−1(s) → 0 as s→ ∞, the definition of X̂(t) in (3.7) yields for s→ ∞

X [s](t) = X̃(t)[I − Λ(t)Λ−1(s)] → X̃(t),

U [s](t) = Ũ(t)[I − Λ(t)Λ−1(s)] − X̃∗−1(t)Λ−1(s) → Ũ(t).

Next we define for j ∈ {1, . . . , n} functions y
[s]
j = (x

[s]
j , u

[s]
j ) by

y
[s]
j (t) :=

{
Y [s](t)ej , for t ∈ [a, s),

0, for t ∈ [s,∞).

Then x
[s]
j (s) = X [s](s)ej = 0, so that y

[s]
j is admissible. Note that the values of y

[s]
j (a)

are irrelevant (as we shall also see at the end of the proofs of Claim 1 and Claim 5

below), so that without loss of generality we can take them to be zero. Otherwise,

as in [12, pp. 415–418], we can modify the function y
[s]
j by a suitable function with

compact support to obtain the desired value y
[s]
j (a) = 0. Hence, we have y

[s]
j ∈ Dmin.

Now we proceed by proving the following claims.

C l a i m 1. For r > s we have the formula

(3.10) F(y
[s]
j − y

[r]
j ) = e∗j [(X̂

−1X̃)(s) − (X̂−1X̃)(r)]ej .

To prove this we let r > s > a and write

(3.11) F(y
[s]
j − y

[r]
j ) = F(y

[s]
j ) + F(y

[r]
j )

−

∫ ∞

a

{
Ω(y

[s]
j , y

[r]
j ) + Ω(y

[r]
j , y

[s]
j )

}
(t) dt,
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where Ω(·, ·) is defined in (2.6). Now the integral in F(y
[s]
j ) is just over [a, s], so that

by applying formula (2.7) we have

(3.12) F(y
[s]
j ) = (x

[s]
j )∗u

[s]
j

∣∣s
a

+

∫ s

a

{
(x

[s]
j )∗[Cx

[s]
j −A∗u

[s]
j − (u

[s]
j )′]

}
(t) dt

= −[x
[s]
j (a)]∗u

[s]
j (a).

Similarly, we obtain

(3.13) F(y
[r]
j ) = −[x

[r]
j (a)]∗u

[r]
j (a).

Next, using the admissibility of y
[r]
j , identity C

∗ = C, and the product rule for

[(u
[s]
j )∗x

[r]
j ]′ we get

(3.14) Ω(y
[s]
j , y

[r]
j ) = (x

[s]
j )∗Cx

[r]
j + (u

[s]
j )∗[(x

[r]
j )′ −Ax

[r]
j ]

= [Cx
[s]
j −A∗u

[s]
j − (u

[s]
j )′]∗x

[r]
j + [(u

[s]
j )∗x

[r]
j ]′.

Let {tk}
∞

k=1 ⊆ (a, s) be a sequence of points with tk ր s as k → ∞. Since y
[s]
j is a

solution of (H) on [a, s), hence on [a, tk], and since y
[s]
j (t) ≡ 0 on [s,∞), it follows

that
∫ ∞

a

Ω(y
[s]
j , y

[r]
j )(t) dt

(3.14)
= lim

k→∞

(u
[s]
j )∗x

[r]
j

∣∣tk

a
(3.15)

= lim
k→∞

e∗j [U
[s](tk)]∗X [r](tk)ej − [u

[s]
j (a)]∗x

[r]
j (a)

= e∗j [U
[s](s)]∗X [r](s)ej − [u

[s]
j (a)]∗x

[r]
j (a),

where the last equality follows from the continuity of U [s] and X [r] at s. Similarly to

(3.14), the admissibility of y
[s]
j , identity C

∗ = C, and the product rule for [(u
[r]
j )∗x

[s]
j ]′

yield

Ω(y
[r]
j , y

[s]
j ) = (x

[r]
j )∗Cx

[s]
j + (u

[r]
j )∗[(x

[s]
j )′ −Ax

[s]
j ]

= [Cx
[r]
j −A∗u

[r]
j − (u

[r]
j )′]∗x

[s]
j + [(u

[r]
j )∗x

[s]
j ]′.

Since y
[r]
j is a solution of (H) on [a, r), hence on [a, s] because s < r, and since

y
[s]
j (t) ≡ 0 on [s,∞), it follows that

∫ ∞

a

Ω(y
[r]
j , y

[s]
j )(t) dt(3.16)

(2.7)
=

∫ s

a

{
(x

[s]
j )∗[Cx

[r]
j −A∗u

[r]
j − (u

[r]
j )′]

}
(t) dt+ (u

[r]
j )∗x

[s]
j

∣∣s
a

= −[u
[r]
j (a)]∗x

[s]
j (a).
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Hence, by using equations (3.12), (3.13), (3.15), (3.16) in formula (3.11) we get

(3.17) F(y
[s]
j − y

[r]
j ) = −e∗j [U

[s](s)]∗X [r](s)ej + ψ
[s,r]
j ,

where

ψ
[s,r]
j := −[x

[s]
j (a)]∗u

[s]
j (a) − [x

[r]
j (a)]∗u

[r]
j (a) + [u

[s]
j (a)]∗x

[r]
j (a) + [u

[r]
j (a)]∗x

[s]
j (a).

The definition of X [r](s) and formula U [s](s) = −X̂∗−1(s) yield that

(3.18) [U [s](s)]∗X [r](s) = −(X̂−1X̃)(s) + (X̂−1X̃)(r).

On the other hand, by using the definition of y
[s]
j and y

[r]
j through the normalized

conjoined bases (X̃, Ũ) and (X̂, Û), their properties in (2.1), and X̂(a) = 0, we infer

ψ
[s,r]
j = e∗j

[
− (X [s])∗U [s] − (X [r])∗U [r] + (U [s])∗X [r] + (U [r])∗X [s]

]
(a)ej

(3.8)
= e∗j

{
2(Ũ∗X̃ − X̃∗Ũ)(a)

+ (X̃∗Û − Ũ∗X̂)(a)[(X̂−1X̃)(s) + (X̂−1X̃)(r)]

+ [(X̂−1X̃)(s) + (X̂−1X̃)(r)](X̂∗Ũ − Û∗X̃)(a)

− [(X̂−1X̃)(s) − (X̂−1X̃)(r)](X̂∗Û)(a)

× [(X̂−1X̃)(s) − (X̂−1X̃)(r)]
}
ej

(2.1)
= 0.

Therefore, upon inserting formula (3.18) into equation (3.17) we get equality (3.10),

which we wanted to prove. Note that the above calculations leading to formula (3.10)

are independent of the values y
[s]
j (a) and y

[r]
j (a), because these values cancel out in

ψ
[s,r]
j = 0.

C l a i m 2. We have F(y
[s]
j − y

[r]
j ) → 0 as s, r → ∞, s < r. This follows immedi-

ately from identity (3.10) in Claim 1 and from the definition of the recessive solution

(X̃, Ũ) in (2.2), which yields (X̂−1X̃)(τ) → 0 as τ → ∞ for τ ∈ {s, r}.

C l a i m 3. For s < r we have the formula

(3.19)
〈
l(y

[s]
j − y

[r]
j ), y

[s]
j − y

[r]
j

〉
= F(y

[s]
j − y

[r]
j ) → 0 as s, r → ∞, s < r.

To show this we put y := y
[s]
j − y

[r]
j . Then y = (x, u) ∈ ACloc is admissible, y(t) ≡ 0

for t > r (> s) (so that y ∈ L2), and

x∗(a)u(a) = e∗j [(X̂
−1X̃)(s) − (X̂−1X̃)(r)](X̂∗Û)(a)

× [(X̂−1X̃)(s) − (X̂−1X̃)(r)]ej = 0,
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because X̂(a) = 0. Hence, the result in (3.19) follows directly from identity (2.8) in

Lemma 2.2 and from Claim 2.

C l a i m 4. For any sequence of points sk → ∞ as k → ∞ the sequence {y
[sk]
j }∞k=0

converges in L2 to the j-th recessive solution ỹj , which therefore belongs to L
2 (and

hence ỹj ∈ Dmax). In order to prove this, we take an arbitrary sequence sk → ∞ as

k → ∞ and pick rk > sk for every index k. By our assumption (3.5) and Claim 3

we have
〈
y
[sk]
j − y

[rk]
j , y

[sk]
j − y

[rk]
j

〉
→ 0 as k → ∞, so that ‖y

[sk]
j − y

[rk]
j ‖L2 → 0 as

k → ∞. It follows that
{
y
[sk]
j

}∞

k=0
is a Cauchy sequence in the Hilbert space L2, and

therefore it converges in L2 to an element y ∈ L2. However, since by (3.9), for each

t ∈ [a,∞) we have lim
k→∞

y
[sk]
j (t) = ỹj(t), it follows that y = ỹj. Hence, y

[sk]
j → ỹj in

L2 as k → ∞ and ỹj ∈ L2. Moreover, since l(ỹj) = 0 (ỹj being a solution of (H)),

we have ỹj ∈ Dmax.

C l a i m 5. We have the formula

(3.20) F(ỹj − y
[s]
j ) = e∗j (X̂

−1X̃)(s)ej .

First we write

(3.21) F(ỹj − y
[s]
j ) = F(ỹj) + F(y

[s]
j ) −

∫ ∞

a

{
Ω(ỹj , y

[s]
j ) + Ω(y

[s]
j , ỹj)

}
(t) dt.

Now by formula (2.7) in Lemma 2.2 and assumption (2.5) we have

(3.22) F(ỹj) = −[x̃j(a)]
∗ũj(a),

while the value of F(y
[s]
j ) has been calculated in (3.12). In addition, since ỹj is a

solution of (H) and y
[s]
j is admissible, hence

Ω(ỹj , y
[s]
j ) = (ũ′j +A∗ũj)

∗x
[s]
j + ũ∗j [(x

[s]
j )′ −Ax

[s]
j ] =

(
ũ∗jx

[s]
j

)′
.

Consequently, by using y
[s]
j (t) ≡ 0 on [s,∞), we get

(3.23)

∫ ∞

a

Ω(ỹj , y
[s]
j )(t) dt = −[ũj(a)]

∗x
[s]
j (a).

Similarly, the admissibility of ỹj yields

Ω(y
[s]
j , ỹj) = (x

[s]
j )∗Cx̃j + (u

[s]
j )∗(x̃′j −Ax̃j) = (Cx

[s]
j −A∗u

[s]
j )∗x̃j + (u

[s]
j )∗x̃′j .

The function y
[s]
j is a solution of (H) on [a, s), so that on this interval we have

Ω(y
[s]
j , ỹj) = [(u

[s]
j )′]∗x̃j + (u

[s]
j )∗x̃′j =

[
(u

[s]
j )∗x̃j

]′
.
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Take any sequence {tk}
∞

k=1 ⊆ (a, s) with tk ր s as k → ∞. Then

(3.24)

∫ ∞

a

Ω(y
[s]
j , ỹj)(t) dt = lim

k→∞

(u
[s]
j )∗x̃j

∣∣tk

a

= lim
k→∞

e∗j [U
[s](tk)]∗X̃(tk)ej − [u

[s]
j (a)]∗x̃j(a)

= e∗j [U
[s](s)]∗X̃(s)ej − [u

[s]
j (a)]∗x̃j(a),

where we have used the continuity of U [s] and X̃ at s in the last equality. Upon

inserting formulas (3.22), (3.12), (3.23), and (3.24) into equation (3.21) and using

the identity U [s](s) = −X̂∗−1(s) we get

F(ỹj − y
[s]
j ) = e∗j (X̂

−1X̃)(s)ej − ϕ
[s]
j ,

ϕ
[s]
j := [x̃j(a) − x

[s]
j (a)]∗[ũj(a) − u

[s]
j (a)].

Now the definition of y
[s]
j in terms of the solutions (X̃, Ũ) and (X̂, Û) yields

ϕ
[s]
j = e∗j (X̂

−1X̃)(s)(X̂∗Û)(a)(X̂−1X̃)(s)ej = 0,

because X̂(a) = 0. Therefore, formula (3.20) is established. Again note that this

formula is independent of the values ỹj(a) and y
[s]
j (a).

C l a i m 6. We have the formula

(3.25)
〈
l(ỹj − y

[s]
j ), ỹj − y

[s]
j

〉
= F(ỹj − y

[s]
j ) → 0 as s→ ∞.

To show this we put y := ỹj − y
[s]
j . Then y = (x, u) ∈ ACloc is admissible, y ∈ L2 by

Claim 4, lim
t→∞

y(t) = 0 by our assumption (2.5), and x∗(a)u(a) = ϕ
[s]
j = 0. Hence,

formula (3.25) follows from identity (2.8) in Lemma 2.2 and from the property of the

recessive solution (2.2).

C l a i m 7. We have ỹj ∈ DF . Let {sk}
∞

k=1 be a sequence of points converging to

∞. In Claim 4 we proved that ỹj ∈ Dmax and y
[sk]
j → ỹj in L

2 as k → ∞, while

in Claim 6 we showed that
〈
l(ỹj − y

[sk]
j ), ỹj − y

[sk]
j

〉
→ 0 as k → ∞. Hence, by the

characterization of DF in (3.6), we obtain ỹj ∈ DF .

C l a i m 8. Finally we prove that the set

D̃ :=
{
y = (x, u) ∈ Dmax, x(a) = 0, [y, ỹj]∞ = 0 for all j = 1, . . . , n

}

is equal to the domain DF characterized in (3.6). Since the recessive solution Ỹ =

(X̃, Ũ) is a conjoined basis, we have Ỹ ∗(t)J Ỹ (t) ≡ 0 on [a,∞). Hence, [ỹi, ỹj](t) =
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ỹ∗i (t)J ỹj(t) ≡ 0 on [a,∞) for every i, j ∈ {1, . . . , n}. Therefore, the set D̃ is a domain

of a self-adjoint realization of Lmin, see e.g. [19, Theorem 1]. That is, D̃ ⊆ DF .

Conversely, let y ∈ DF . Since we have already proved in Claim 7 that ỹj ∈ DF , it

follows that [y, ỹj]∞ = 0 for every j ∈ {1, . . . , n}. Hence, y ∈ D̃ and so DF ⊆ D̃.

Therefore, D̃ = DF and the proof of Theorem 3.1 is complete. �

R em a r k 3.3. The theory of Friedrichs extension of linear operators is not de-

voted solely to the continuous time, i.e., to differential operators. For example, in

[3] and [5] the Friedrichs extension is constructed for second order and higher order

Sturm-Liouville difference operators. Extending these results to linear Hamiltonian

difference systems is a subject of our present research.
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