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Abstract. For an ordered set W = {w1, w2, . . . , wk} of k distinct vertices in a nontrivial
connected graph G, the metric code of a vertex v of G with respect to W is the k-vector

code(v) = (d(v, w1), d(v, w2), . . . , d(v, wk))

where d(v, wi) is the distance between v and wi for 1 6 i 6 k. The set W is a local metric
set of G if code(u) 6= code(v) for every pair u, v of adjacent vertices of G. The minimum
positive integer k for which G has a local metric k-set is the local metric dimension lmd(G)
of G. A local metric set of G of cardinality lmd(G) is a local metric basis of G. We
characterize all nontrivial connected graphs of order n having local metric dimension 1,
n − 2, or n − 1 and establish sharp bounds for the local metric dimension of a graph in
terms of well-known graphical parameters. Several realization results are presented along
with other results on the number of local metric bases of a connected graph.
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1. Introduction

A research area in graph theory that has increased in popularity during the past

few decades is that of studying various methods that can be used to distinguish all

of the vertices in a connected graph or to distinguish the two vertices if they are

adjacent. Many of these methods involve graph colorings or distance in graphs.

If all of the vertices of a graph G of order n are distinguished as a result of being

assigned distinct colors, then of course n colors are needed to accomplish this. On

the other hand, if the goal is to distinguish every two adjacent vertices in G by a

vertex coloring, then this can be accomplished by means of a proper coloring of G

and the minimum number of colors needed to do this is the chromatic number χ(G)

of G. There are, however, other methods that have been used to distinguish every
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two adjacent vertices in G by means of vertex colorings which may require fewer

than χ(G) colors (see [12], for example).

With a given edge coloring c (proper or not) of a graph G, each vertex of G can be

labeled with the set of colors of its incident edges. If distinct vertices have distinct

labels, then c is a vertex-distinguishing edge coloring (see [3], [14] for example); while

if every two adjacent vertices have distinct labels, then c is a neighbor-distinguishing

edge coloring (see [2], [16] for example). With a given vertex coloring c (proper or

not) of a graph G, each vertex of G can also be labeled with the set of colors of

its neighboring vertices. Again, if distinct vertices have distinct labels, then c is a

vertex-distinguishing vertex coloring (see [1], [7], [18] for example); while if every

two adjacent vertices have distinct labels, then c is a neighbor-distinguishing vertex

coloring (see [8], [9], [11] for example).

Distance in graphs has also been used to distinguish all of the vertices of a graph.

The distance d(u, v) between two vertices u and v in a connected graphG is the length

of a shortest path between these two vertices. Suppose that W = {w1, w2, . . . , wk}

is an ordered set of vertices of a nontrivial connected graph G. For each vertex v

of G, there is associated a k-vector called the metric code, or simply the code of v

(with respect to W ), which is denoted by codeW (v) and defined by

codeW (v) = (d(v, w1), d(v, w2), . . . , d(v, wk))

(or simply code(v) if the set W under consideration is clear). If code(u) 6= code(v)

for every pair u, v of distinct vertices of G, thenW is called a metric set or a resolving

set. The minimum k for which G has a metric k-set is the global metric dimension, or

simply the metric dimension of G, which is denoted by dim(G). Resolving sets and

metric dimensions of graphs were introduced, independently, by Harary and Melter

[13] and Slater [20], [21], although, as indicated in [4], these concepts were studied

earlier for hypercubes under the guise of a coin weighing problem. In recent years,

this concept has been studied widely (see [4], [5], [13], [15], [17], [19], [20], [21], for

example) with a variety of applications.

Consequently, the major problem dealing with resolving sets is to minimize the

number of vertices in a subset W of the vertex set of a connected graph G so that

the distances to the vertices of W are not the same for any two vertices of G. When

using colorings to distinguish the vertices of G, the goal is to minimize the number

of colors needed so that every two vertices of G can be distinguished in some way by

the type of coloring being used.

A more common problem in graph theory concerns distinguishing every two neigh-

bors in a graphG by means of some coloring rather than distinguishing all the vertices

of G by a graph coloring. Since distinguishing all the vertices of a connected graph
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G has been studied with the aid of distances in G, this suggests the topic of using

distances in G to distinguish the two vertices in each pair of neighbors.

The foregoing discussion then gives rise to a local version of resolving sets. In this

case, we consider those ordered setsW of vertices of G for which any two vertices ofG

having the same code with respect to W are not adjacent in G. If code(u) 6= code(v)

for every pair u, v of adjacent vertices of G, then W is called a local metric set of G.

The minimum k for which G has a local metric k-set is the local metric dimension

of G, which is denoted by lmd(G). A local metric set of cardinality lmd(G) in G

is a local metric basis of G. The local metric dimension exists for every nontrivial

connected graph G. In fact, V (G) is always a local metric set of G. Indeed, for each

independent set U of vertices in G, the set V (G) − U is a local metric set. Thus we

have the following observation. The independence number of a graph G is denoted

by α(G).

Observation 1.1. For every nontrivial connected graph G of order n,

lmd(G) 6 n − α(G).

While each metric set of a nontrivial connected graph G is vertex-distinguishing

(since every two vertices of G have distinct codes), each local metric set is neighbor-

distinguishing (since every two adjacent vertices of G have distinct codes). Thus

every metric set is also a local metric set and so if G is a nontrivial connected graph

of order n, then

(1) 1 6 lmd(G) 6 dim(G) 6 n − 1.

To illustrate these concepts, consider the graph G of Figure 1. In this case, W1 =

{v1, v4} is a local metric 2-set and W2 = {v1, v3, v5} is a metric 3-set. The corre-

sponding codes for the vertices of G with respect to the setsW1 andW2, respectively,

are shown in Figure 1. In fact, lmd(G) = 2 and dim(G) = 3.

v

v1

v2

v3

v4

v5

v6

(1, 1)

(0, 2)

(1, 2)

(2, 1)

(2, 0)

(2, 1)

(1, 2)

v

v1

v2

v3

v4

v5

v6

(1, 1, 1)

(0, 2, 2)

(1, 1, 2)

(2, 0, 2)

(2, 1, 1)

(2, 2, 0)

(1, 2, 1)

Figure 1: A graph with local metric dimension 2 and metric dimension 3
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These examples illustrate a useful observation. When determining whether a given

set W of vertices of a nontrivial connected graph G is a local metric set of G, one

need only investigate the pairs of adjacent vertices in V (G)−W since w ∈ W is the

only vertex of G whose distance from w is 0. Furthermore, if W is a subset of the

vertex set of a graph G containing a local metric set of G, then W is also a local

metric set of G.

2. Graphs with prescribed order and local metric dimension

We refer to the book [6] for graph theory notation and terminology not described

in this paper. It is known that if G is a nontrivial connected graph of order n, then

dim(G) = n − 1 if and only if G = Kn and dim(G) = 1 if and only if G = Pn. In

the case of local metric dimensions, there is an analogous result. Before stating this

result, we present some additional terminology. Two vertices u and v in a connected

graph G are twins if u and v have the same neighbors in V (G) − {u, v}. If u and

v are adjacent, they are referred to as true twins ; while if u and v are nonadjacent,

they are false twins. If u and v are true twins and v and w are true twins, then so too

are u and w. Hence two vertices being true twins produces an equivalence relation

on V (G). If the resulting true twin equivalence classes are U1, U2, . . . , Ul, then every

local metric set of G must contain at least |Ui| − 1 vertices from Ui for each i with

1 6 i 6 l. Thus we have the following observation.

Observation 2.1. If G is a nontrivial connected graph of order n having l true

twin equivalence classes, then lmd(G) > n − l.

Observe also that there is no connected graph having exactly two true twin equiv-

alence classes. To see this, suppose that G is a nontrivial connected graph having

U1 and U2 as its only true twin equivalence classes. Since G is connected, there exist

two adjacent vertices x ∈ U1 and y ∈ U2. However, this implies that every vertex

in U1 is adjacent to y, which in turn implies that every vertex in U2 is adjacent to

every vertex in U1. Therefore, G is a complete graph, which is impossible. We state

this observation below.

Observation 2.2. There is no nontrivial connected graph having exactly two

true twin equivalence classes.

For a vertex v of G, the eccentricity e(v) of v is the distance between v and a

vertex farthest from v. The diameter diam(G) of G is the largest eccentricity among

all vertices of G. If G is a nontrivial connected graph of order n with diameter d
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and v0, v1, . . . , vd is a path of length d in G, then V (G) − {v1, v2, . . . , vd} is a local

metric set of G. This yields another observation.

Observation 2.3. If G is a nontrivial connected graph of order n and diameter d,

then lmd(G) 6 n − d.

Theorem 2.4. Let G be a nontrivial connected graph of order n. Then lmd(G) =

n − 1 if and only if G = Kn and lmd(G) = 1 if and only if G is bipartite.

P r o o f. Since the complete graph Kn has only one true twin equivalence class,

lmd(Kn) > n − 1 (by Observation 2.1). It then follows, by (1), that lmd(Kn) =

n − 1. On the other hand, if G 6= Kn, then α(G) > 2 and so lmd(G) 6 n − 2 by

Observation 1.1.

It remains to show that lmd(G) = 1 if and only if G is bipartite. Suppose first

that G is a bipartite graph with partite sets U and V . Let W = {w}, where w ∈ U

say. Since d(u, w) is even for each u ∈ U and d(u, v) is odd for each v ∈ V , it follows

that W is a local metric basis and so lmd(G) = 1. To verify the converse, let G be

a nontrivial connected graph having local metric dimension 1 and let W = {w} be

a local metric basis of G. For 0 6 i 6 e(w), let Ni = {v ∈ V (G) : d(v, w) = i}.

(Therefore, N0 = W and N1 = N(w).) Since W is a local metric basis, each

set Ni is an independent set. Furthermore, if i and j are integers with 0 6 i,

j 6 e(w) and |i − j| > 2, then no vertex in Ni is adjacent to any vertex in Nj .

Therefore, G is a bipartite graph with partite sets U = N0 ∪ N2 ∪ . . . ∪ N2⌊e(w)/2⌋

and V = N1 ∪ N3 ∪ . . . ∪ N2⌈e(w)/2⌉−1. �

Next, we characterize all nontrivial connected graphs of order n > 3 having local

metric dimension n − 2. The clique number ω(G) of a graph G is the order of a

largest complete subgraph (clique) in G.

Theorem 2.5. A connected graph G of order n > 3 has local metric dimension

n − 2 if and only if ω(G) = n − 1.

P r o o f. First, let G be a connected graph of order n > 3 with clique number

n−1. Since G 6= Kn, it follows that lmd(G) 6 n−2. Let H = Kn−1 be a clique in G

and let v ∈ V (G)−V (H) with d = deg v. Then 1 6 d 6 n−2. Observe that U1 = {v},

U2 = N(v) = {v1, v2, . . . , vd}, and U3 = V (G) − N [v] = {vd+1, vd+2, . . . , vn−1} are

the true twin equivalence classes. Therefore, lmd(G) > n − 3 by Observation 2.1.

Assume, to the contrary, that G contains a local metric set W ′ consisting of n− 3

vertices. Then again, by Observation 2.1, V (G)−W ′ = {v, x2, x3}, where xi ∈ Ui for

i = 2, 3. However, this implies that x2 and x3 are adjacent and d(x2, w) = d(x3, w)
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for all w ∈ W ′. Thus code(x2) = code(x3), which is a contradiction. Therefore,

lmd(G) = n − 2.

For the converse, let G be a connected graph of order n > 3 with lmd(G) = n− 2.

We show that ω(G) = n − 1. Since G 6= Kn (by Theorem 2.4), it follows that

ω(G) 6 n − 1. The result follows immediately for n = 3 since G = P3. Since

every connected graph G of order 4 with ω(G) 6 2 is bipartite, it follows that

lmd(G) = 1 (by Theorem 2.4). Therefore, ω(G) = 3 for all connected graphs G of

order 4 with lmd(G) = 2. Hence we may now assume that n > 5. Suppose that there

is some graph G of order n > 5 for which lmd(G) = n − 2 and ω(G) 6 n − 2. By

Observation 2.3, diam(G) = 2. Also, there exists a setX = {x1, x2, x3, x4} consisting

of four distinct vertices such that x1x2, x3x4 /∈ E(G). Consider the induced subgraph

H = 〈X〉.

If ∆(H) = 2, say degH(x1) = 2, then let W1 = V (G) − {x2, x3, x4}. Since

d(x1, x3) = d(x1, x4) = 1 while d(x1, x2) = 2 and x3 and x4 are not adjacent in G, it

follows that W1 is a local metric set. Similarly, if δ(H) = 0, say degH(x1) = 0, then

W2 = V (G) − {x1, x3, x4} is a local metric set since the three vertices x1, x3, and

x4 are mutually nonadjacent. Therefore, lmd(G) 6 n− 3 in each case, which cannot

occur.

Therefore, we consider the case where ∆(H) = δ(H) = 1 and we may assume that

E(H) = {x1x3, x2x4}. If there exists a vertex v∗ ∈ V (G) − X such that d(x1, v
∗) 6=

d(x3, v
∗) or d(x2, v

∗) 6= d(x4, v
∗), say the former, then codeW2

(x1) 6= codeW2
(x3)

since v∗ ∈ W2. Since x4 is adjacent to neither x1 nor x3, it follows that W2 is a

local metric set. On the other hand, if d(x1, v) = d(x3, v) and d(x2, v) = d(x4, v) for

every v ∈ V (G) − X , then there exists a vertex v′ in V (G) − X which is adjacent

to every vertex in X since diam(G) = 2. Then let W3 = V (G) − {x3, x4, v
′} and

observe that d(v′, x1) = d(v′, x2) = 1 while d(x4, x1) = d(x3, x2) = 2. Therefore,

codeW3
(v′) /∈ {codeW3

(x3), codeW3
(x4)}. Since x3 and x4 are not adjacent, it follows

that W3 is a local metric set. Hence, lmd(G) 6 n−3, which is again a contradiction.

�

We have seen that if G is a nontrivial connected graph of order n with lmd(G) = k,

then 1 6 k 6 n−1. In fact, every pair k, n of integers with 1 6 k 6 n−1 is realizable

as the local metric dimension and order of a connected graph, respectively, as we

show next.

Theorem 2.6. For each pair k, n of integers with 1 6 k 6 n − 1, there exists a

connected graph G of order n with lmd(G) = k.

P r o o f. By Theorems 2.4 and 2.5, there exists a connected graph G of order n

with lmd(G) = k for k ∈ {1, n− 2, n− 1}. Thus we may assume that 2 6 k 6 n− 2.
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Let G be the graph obtained from Kk+1 with vertex set V = {v1, v2, . . . , vk+1} and

the path vk+2, vk+3, . . . , vn by joining vk+1 and vk+2. Since V − {vk+1} is a local

metric set, lmd(G) 6 k. Assume, to the contrary, that lmd(G) 6 k − 1 and let W ′

be a local metric set of k − 1 vertices. Since every local metric set must contain

at least k − 1 vertices from V − {vk+1} by Observation 2.1, we may assume that

W ′ = {v1, v2, . . . , vk−1}. However then codeW ′(vk) = codeW ′(vk+1) = (1, 1, . . . , 1),

which is a contradiction. Thus lmd(G) = k. �

We noted that if G is a nontrivial connected graph with lmd(G) = a and dim(G) =

b, then a 6 b. On the other hand, every pair a, b of positive integers with a 6 b

can be realized as the local metric dimension and metric dimension, respectively,

of some connected graph. In order to verify this, we state (without proofs) two

useful lemmas which provide the metric dimension and local metric dimension of all

complete multipartite graphs.

Lemma 2.7. Let G = Kn1,n2,...,nk
be a complete k-partite graph of order n,

where k > 2, n = n1 +n2 + . . .+nk, and n1 6 n2 6 . . . 6 nk. If n2 = 1, then let p be

the largest integer such that np = 1; otherwise let p = 1. Then dim(G) = n−k+p−1.

Lemma 2.8. For each complete k-partite graph G, where k > 2, lmd(G) = k−1.

Theorem 2.9. For each pair a, b of positive integers with a 6 b, there is a

nontrivial connected graph G with lmd(G) = a and dim(G) = b.

P r o o f. Consider the complete (a+1)-partite graph G = K1,1,...,1,b−a+2 of order

b + 2. Then lmd(G) = (a + 1) − 1 = a by Lemma 2.8 and dim(G) = (b + 2) − (a +

1) + a − 1 = b by Lemma 2.7. �

3. Bounds for the local metric dimension of a graph

In this section we establish bounds for the local metric dimension of a nontrivial

connected graph in terms of its order and other well-known graphical parameters.

Other results involving the local metric dimension and the number of true twin

equivalence classes of a graph are also presented.

Theorem 3.1. If G is a nontrivial connected graph with clique number ω, then

(2) lmd(G) > ⌈log2 ω⌉.

Furthermore, for each integer ω > 2, there exists a connected graph Gω with clique

number ω such that lmd(Gω) = ⌈log2 ω⌉.
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P r o o f. Let F = Kω be a clique in G with V (F ) = {v1, v2, . . . , vω}. Suppose

that lmd(G) = k and let W be a local metric basis. For each vi ∈ V (F ), let

code(vi) = (a1,i, a2,i, . . . , ak,i). Since |d(vi, x) − d(vi′ , x)| 6 1 for every two vertices

vi, vi′ ∈ V (F ) and every vertex x in G, it follows that |{aj,i : 1 6 i 6 ω}| 6 2 for

1 6 j 6 k. Therefore, there are at most 2k possible codes for the ω vertices in F

with respect to W . Since every vertex in F must have a distinct code, it follows that

ω 6 2k or k > log2 ω. Therefore, lmd(G) > ⌈log2 ω⌉.

We now construct a connected graph Gω with clique number ω such that

lmd(Gω) = ⌈log2 ω⌉ for each integer ω > 2. If ω = 2, then let G2 be a non-

trivial tree and so lmd(G2) = 1 = ⌈log2 ω⌉. Thus we may assume that ω > 3. Then

there exists a unique integer k > 2 such that 2k−1 + 1 6 ω 6 2k. Let ω = 2k−1 + p,

where p is an integer with 1 6 p 6 2k−1. Construct the graph Gω from the complete

graph Kω with vertex set V (Kω) = {v1, v2, . . . , vω} by adding the k new vertices

in the set W = {w1, w2, . . . , wk} as follows: Let X = {x1,x2, . . . ,x2k} be the set

of the 2k distinct ordered k-tuples whose coordinates are elements in {1, 2}, where

x1,x2, . . . ,x2k are listed in the lexicographic order. Thus x1 = (1, 1, . . . , 1) and

x2k = (2, 2, . . . , 2). For each j with 1 6 j 6 k, the vertex wj is joined to the vertex

vi (1 6 i 6 2k−1 + p) if and only if the j-th coordinate of xi is 1. Thus v1 is

adjacent to every vertex in W while vω is adjacent to none of the vertices in W if

ω = 2k. Since Gω is a connected graph with ω(Gω) = ω = 2k−1 + p, it follows that

lmd(Gω) > k by (2). On the other hand, code(vi) = xi for 1 6 i 6 2k−1 + p and so

W is a local metric set of Gω. Therefore, lmd(Gω) = k. �

The graph Gω constructed in the proof of Theorem 3.1 illustrates an interesting

feature of the local metric dimension, namely if H is a subgraph of a graph G, then

it is possible that lmd(H) > lmd(G). For example, let H = Kω be the complete

subgraph of order ω in the graph Gω. Then lmd(H) = ω − 1 > ⌈log2 ω⌉ = lmd(Gω)

for each ω > 4.

We now present another lower bound for the local metric dimension of a graph in

terms of its order and clique number. This lower bound is particularly useful when

n is large and n − ω is small.

Theorem 3.2. If G is a nontrivial connected graph of order n with ω = ω(G),

then

lmd(G) > n − 2n−ω.

Furthermore, for each pair n, ω of integers with 2n−ω 6 ω 6 n, there exists a

connected graph G of order n whose clique number is ω such that lmd(G) = n−2n−ω.
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P r o o f. The result is immediate if ω ∈ {n − 1, n} and so assume that 2 6 ω 6

n−2. Suppose that H = Kω is a clique in G and let X = V (H) and Y = V (G)−X .

Consider an arbitrary local metric set W . We show that |W | > n − 2n−ω.

Let p = |Y ∩W |. Therefore, 0 6 p 6 n−ω. Since d(x, w) = 1 for all x ∈ X−X∩W

and w ∈ X ∩W , there are at most 2p possible codes for the vertices in X − X ∩W .

Hence, |X − X ∩ W | 6 2p and so |X ∩ W | > ω − 2p. Therefore, |W | > p + (ω − 2p).

If p = 0, then

|W | > ω − 1 = n − (n − ω + 1) > n − 2n−ω

since n− ω > 2. If 1 6 p 6 n− ω, then consider the function f from R to R defined

by f(x) = x + (ω − 2x). Observe that f ′(x) = 1 − 2x ln 2 < 0 for x > 1 and so

f(x) > f(n − ω) = n − 2n−ω for 1 6 x 6 n − ω. Therefore,

|W | > f(p) > n − 2n−ω.

Next, let n and ω be positive integers with 2n−ω 6 ω 6 n. Clearly G = Kn

possesses the desired property for ω = n. Therefore, suppose that 2n−ω 6 ω < n.

Let X , Y , and Z be pairwise disjoint sets of vertices, where X = {x1, x2, . . . , xn−ω},

Y = {y1, y2, . . . , y2n−ω}, and Z = ∅ if 2n−ω = ω and Z = {z1, z2, . . . , zω−2n−ω}

otherwise. Also, let P(A) = {S1, S2, . . . , S2n−ω} be the power set of the set A =

{1, 2, . . . , n − ω}. We construct a graph G with V (G) = X ∪ Y ∪ Z such that

〈X ∪ Z〉 ∼= Kn−2n−ω , 〈Y ∪ Z〉 ∼= Kω, and xiyj ∈ E(G) if and only if i ∈ Sj for

1 6 i 6 n−ω and 1 6 j 6 2n−ω. Therefore, the order of G is n and since n−ω > 1,

it follows that ω(G) = max{ω, n − 2n−ω + 1} = ω. Furthermore, X ∪ Z is a local

metric basis of G and so lmd(G) = |X ∪ Z| = n − 2n−ω. �

The following is an immediate consequence of Theorem 3.2.

Corollary 3.3. IfG is a nontrivial connected graph of order n and lmd(G) = n−k,

then ω(G) 6 n − ⌈log2 k⌉.

We have seen in Observations 1.1 and 2.3 that if G is a nontrivial connected graph

of order n having independence number α and diameter d, then lmd(G) 6 n−α and

lmd(G) 6 n − d. In fact, more can be said.

Theorem 3.4. For each pair α, n of integers with 1 6 α 6 n − 1, there exists

a nontrivial connected graph G of order n and independence number α such that

lmd(G) = n − α.

P r o o f. For integers α and n with 1 6 α 6 n − 1, let G = Kn−α + Kα. Since

V (Kn−α) is a local metric set, it follows that lmd(G) 6 n − α. By Observation 2.1,

every local metric set must contain at least n−α−1 vertices from the set V (Kn−α).
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Let W be any subset of V (Kn−α) with |W | = n − α − 1. If V (Kn−α) − W = {v},

then codeW (v) = codeW (x) for each vertex x in Kα. Thus W is not a local metric

set and so lmd(G) = n − α. �

Theorem 3.5. For each pair d, n of integers with 1 6 d 6 n − 1, there exists a

nontrivial connected graph G of order n and diameter d such that lmd(G) = n − d.

P r o o f. Let d and n be integers with 1 6 d 6 n − 1. For d = 1, the complete

graph Kn has the desired property. Also, consider the path Pn for d = n− 1. Hence

suppose that 2 6 d 6 n − 2. Let G be the graph obtained from a complete graph

H = Kn−d of order n − d and a path P : v1, v2, . . . , vd of order d by joining every

vertex in H to v1. Then diam(G) = d and lmd(G) 6 n−d by Observation 2.3. Also,

observe that Ui = {vi} for 1 6 i 6 d and Ud+1 = V (Kn−d) are the d + 1 true twin

equivalence classes. Hence, lmd(G) > n− d− 1 by Observation 2.1 and furthermore,

every local metric set contains at least n − d − 1 vertices in Ud+1. Assume, to the

contrary, that lmd(G) = n − d − 1 and let W be a local metric basis. Then there

exists a vertex x ∈ Ud+1 −W . However then, code(x) = code(v1), which contradicts

the fact that W is a local metric set. Therefore, lmd(G) = n − d. �

By Observations 2.1 and 2.2, if G is a nontrivial connected graph of order n having

l true twin equivalence classes, then l 6= 2 and lmd(G) > n − l. For a fixed integer

n > 2, we next determine all possible values of l for which there is a connected graph

G of order n with l true twin equivalence classes such that lmd(G) = n − l.

Theorem 3.6. Let n and l be integers with 1 6 l 6 n−1. There exists a connected

graph G of order n with l true twin equivalence classes such that lmd(G) = n − l if

and only if l = 1 or 3 6 l 6 n − 2.

P r o o f. Let G be a connected graph of order n with l true twin equivalence

classes U1, U2, . . . , Ul. Then l = 1 or 3 6 l 6 n− 1 by Observation 2.2. If l = n− 1,

then we may assume, without loss of generality, that |Ui| = 1 for 1 6 i 6 n − 2 and

Un−1 = {x, y}. Then x and y are adjacent. Since G is connected and d(x, v) = d(y, v)

for every v ∈ V (G)−{x, y}, there exists a vertex z that is adjacent to both x and y.

This implies that G contains a triangle and so G is not bipartite. By Theorem 2.4,

lmd(G) > 2 and so lmd(G) 6= n − (n − 1) = n − l.

To verify the converse, first observe that G = Kn has the desired property for

l = 1. If 3 6 l 6 n − 2, then let G be the graph obtained from vertex-disjoint

complete graphs H1 = Kn−l and H2 = K2 of orders n − l and 2, respectively, and a

path P : v1, v2, . . . , vl−2 of order l− 2 by joining (i) every vertex in H1 to v1 and (ii)

the two vertices in H2 to vl−2. Then Ui = {vi} for 1 6 i 6 l− 2, Ul−1 = V (H1), and

Ul = V (H2) are the true twin equivalence classes. Let x ∈ V (H1) and y ∈ V (H2)
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and observe that the set W = V (G)− [V (P ) ∪ {x, y}] is a local metric set containing

n− l vertices. Therefore, lmd(G) 6 n− l. Since lmd(G) > n− l by Observation 2.1,

we obtain the desired result. �

The following result presents a sharp upper bound for the local metric dimension of

a nontrivial connected graph in terms of its order, the number of true twin equivalence

classes, and the number of singleton true twin equivalence classes.

Theorem 3.7. Let G be a nontrivial connected graph of order n having l true

twin equivalence classes. If p of these l true twin equivalence classes consist of a

single vertex, then

lmd(G) 6 n − l + p.

P r o o f. If l = 1 or p ∈ {l − 1, l}, then the result immediately follows by (1).

Since l 6= 2 by Observation 2.2, we may assume that l > 3 and 0 6 p 6 l−2. Suppose

that U1, U2, . . . , Ul are the true twin equivalence classes and |Ui| > 2 for p+1 6 i 6 l.

For each i with p + 1 6 i 6 l, let ui ∈ Ui. Now let U = {up+1, up+2, . . . , ul} and

W = V (G) − U . Then |W | = n − (l − p) = n − l + p. We show that W is a local

metric set of G. Let x and y be two adjacent vertices of U . Then x and y belong to

distinct true twin equivalence classes. Therefore, there exists z ∈ V (G)−{x, y} such

that d(x, z) 6= d(y, z). If z ∈ W , then codeW (x) 6= codeW (y), as desired. Thus we

may assume that z /∈ W and so z ∈ U . Then z = uj for some j with p + 1 6 j 6 l.

Let z′ ∈ Uj − {z}. Then z′ ∈ W and d(x, z′) = d(x, z) 6= d(y, z) = d(y, z′). Thus W

is a local metric set and so lmd(G) 6 |W | = n − l + p. �

The upper bound in Theorem 3.7 is sharp. To see this, let k > 3 be an integer,

A = {1, 2, . . . , k − 2}, and let P(A) = {S1, S2, . . . , S2k−2} be the power set of A.

Define the sets S2k−2+1, S2k−2+2, . . . , S2k by

Si+2k−2 = Si ∪ {k − 1}, Si+2k−1 = Si ∪ {k}, Si+2k−1+2k−2 = Si ∪ {k − 1, k}

for 1 6 i 6 2k−2. Thus {S1, S2, . . . , S2k} is the power set of A ∪ {k − 1, k} =

{1, 2, . . . , k}. Let H = K2k be a complete graph of order 2k with V (H) =

{u1, u2, . . . , u2k}. We construct G from H by adding k new vertices in the set

W0 = {w1, w2, . . . , wk} and joining ui to wj if and only if j ∈ Si. Note that G = Gω

(ω = 2k) is described in the proof of Theorem 3.1. Hence W0 is a local metric

basis and lmd(G) = k. Furthermore, deg wi = 2k−1 for 1 6 i 6 k. We show that

lmd(G − wi) = k + 2k−1 − 1 for 1 6 i 6 k. By symmetry, it suffices to show that

lmd(G−wk) = k+2k−1−1. Since the setW = {u1, u2, . . . , u2k−1}∪(W0 − {wk}) is a

local metric set of G−wk containing k+2k−1−1 vertices, lmd(G−wk) 6 k+2k−1−1.
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Observe that each set Ui = {ui, ui+2k−1} is a true twin equivalence class in G − wk

for 1 6 i 6 2k−1. Thus, if there exists a local metric set W ′ in G − wk containing

at most k + 2k−1 − 2 vertices, then we may assume that {u1, u2, . . . , u2k−1} ⊆ W ′

and wk−1 /∈ W ′. On the other hand, dG−wk
(ui+2k−1 , v) 6= dG−wk

(ui+2k−1+2k−2 , v)

if and only if v = wk−1 for 1 6 i 6 2k−2. Therefore, we may assume that

{u2k−1+1, u2k−1+2, . . . , u2k−1+2k−2} ⊆ W ′ as well. However then, 2k−1 + 2k−2 6

|W ′| < 2k−1 + k − 1, which is impossible. Therefore, lmd(G−wk) = k + 2k−1 − 1 as

claimed. Since the order of G is n = 2k + k− 1 and G has l = 2k−1 + k− 1 true twin

equivalence classes, namely the 2-sets Ui (1 6 i 6 2k−1) and the singleton sets {wj}

(1 6 j 6 k− 1), it follows that p = k− 1 and so lmd(G−wk) = n− l + p, as desired.

The following is an immediate consequence of Observation 2.1 and Theorem 3.7.

Corollary 3.8. If G is a nontrivial connected graph of order n with l true twin

equivalence classes none of which is a singleton set, then lmd(G) = n − l.

Suppose that G is a nontrivial connected graph of order n having l true twin

equivalence classes, p of which consist of a single vertex. Theorem 3.6 provides all

possible values of l for which lmd(G) = n − l. We now study the structures of such

graphs. If p = 0, then lmd(G) = n − l by Corollary 3.8; while if p = l, then every

true twin equivalence class is a singleton set and so n = l. Since G is nontrivial,

lmd(G) > 0 = n − l and so lmd(G) 6= n − l. Therefore, it remains to consider the

case where 1 6 p 6 l − 1. We first establish some additional definitions. For two

subsets X and Y of the vertex set V (G) of a connected graph G, define the distance

d(X, Y ) between X and Y by

d(X, Y ) = min{d(x, y) : x ∈ X and y ∈ Y }.

Thus d(X, Y ) = 0 if and only if X ∩Y 6= ∅ and d(X, Y ) = 1 if and only if X ∩Y = ∅

and some vertex in X is adjacent a vertex in Y . Suppose that S = {U1, U2, . . . , Ul}

is the set of all true twin equivalence classes of a nontrivial connected graph G. For

an ordered subset X = {X1, X2, . . . , Xk} of S and an element U of S, the code

code∗X(U) of U (with respect to X) is defined as the ordered k-tuple

code∗X(U) = (a1, a2, . . . , ak),

where

ai =

{

d(U, Xi) if U 6= Xi,

1 if U = Xi.

In other words, ai = 1 if and only if d(U, Xi) 6 1 for 1 6 i 6 k. We are now prepared

to present a necessary and sufficient condition for a nontrivial connected graph G of
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order n having l true twin equivalence classes (where p of these classes consist of a

single vertex and 1 6 p 6 l − 1) to have local metric dimension n − l.

Theorem 3.9. Let G be a nontrivial connected graph of order n and let S =

{U1, U2, . . . , Ul} be the set of true twin equivalence classes of G. Suppose that

|Ui| > 2 for 1 6 i 6 l − p and |Ui| = 1 for l − p + 1 6 i 6 l, where 1 6 p 6 l − 1. Let

X = {U1, U2, . . . , Ul−p}. Then lmd(G) = n− l if and only if code∗X(U) 6= code∗X(U ′)

for every two elements U, U ′ in S with d(U, U ′) = 1.

P r o o f. Suppose first that lmd(G) = n − l and let W0 be a local metric

basis of G. Then V (G) − W0 = {u1, u2, . . . , ul}, where ui ∈ Ui for 1 6 i 6 l

and W0 ⊆
l−p
⋃

i=1

Ui. Suppose that Ui, Uj ∈ S and d(Ui, Uj) = 1. Then i 6= j. Let

code∗X(Ui) = (a1, a2, . . . , al−p) and code∗X(Uj) = (b1, b2, . . . , bl−p). Since uiuj ∈

E(G) and codeW0
(ui) 6= codeW0

(uj), there exists a vertex w ∈ W0 ∩ Us, where

1 6 s 6 l − p, such that d(ui, w) 6= d(uj , w). Observe that s 6= i, j, since otherwise

d(ui, w) = d(uj , w) = 1. Then Us 6= Ui, Uj and so as = d(Ui, Us) = d(ui, w) 6=

d(uj , w) = d(Uj , Us) = bs, implying that code∗X(Ui) 6= code∗X(Uj).

For the converse, let ui ∈ Ui for 1 6 i 6 l and consider the set W1 = V (G) −

{u1, u2, . . . , ul}. We show that W1 is a local metric set of G. Suppose that ui

and uj are adjacent in G. Let code∗X(Ui) = (a1, a2, . . . , al−p) and code∗X(Uj) =

(b1, b2, . . . , bl−p). These codes are different and so we may assume, without loss of

generality, that a1 6= b1. Since |U1| > 2, there exists a vertex w ∈ U1 − {u1}. Then

observe that d(ui, w) = a1 6= b1 = d(uj , w). Since w ∈ W1, it follows that W1 is a

local metric set of G and so lmd(G) 6 |W1| = n − l. Therefore, lmd(G) = n − l by

Observation 2.1. �

Corollary 3.10. Let G be a nontrivial connected graph of order n having l true

twin equivalence classes, p of which consist of a single vertex. Then lmd(G) = n − l

if and only if (i) p = 0 or (ii) 1 6 p 6 l − 1 and G satisfies the conditions described

in Theorem 3.9.

4. On the uniqueness and non-uniqueness of

local metric bases in a graph

We now turn our attention to determining those positive integers k for which there

exists a nontrivial connected graph G with local metric dimension k such that either

(i) G has a single local metric basis or (ii) G contains two local metric bases that are

arbitrarily far apart. We begin with (i).
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Theorem 4.1. There exists a nontrivial connected graph G with lmd(G) = k

having a unique local metric basis if and only if k > 2.

P r o o f. Let G be a nontrivial connected graph having local metric dimension

k. If k = 1, then G is bipartite and any singleton set W ⊆ V (G) is a local metric

basis. Therefore, if G has a unique local metric basis, then k > 2.

To verify the converse, suppose that k > 2. Consider the set A = {1, 2, . . . , k}

and let P(A) = {S1, S2, . . . , S2k} be the power set of A. Let H = K2k be a complete

graph of order 2k with V (H) = {u1, u2, . . . , u2k}. We construct G from H by adding

k new vertices in the set W = {w1, w2, . . . , wk} and joining ui to wj if and only if

j ∈ Si. Note that G = Gω, where ω = 2k, described in the proof of Theorem 3.1.

Hence lmd(G) = k and furthermore, W is a local metric basis.

We show that W is the only local metric basis of G. Let W ′ be a local metric

basis and assume, to the contrary, thatW ′ 6= W . By symmetry, we may assume that

wk /∈ W ′. Let P(B) = {S′
1, S

′
2, . . . , S

′
2k−1} be the power set of B = A−{k}. We may

also assume that Si = S′
i and Si+2k−1 = S′

i∪{k} for 1 6 i 6 2k−1. SinceW ′ is a local

metric set of G and wk /∈ W ′, this implies that for each i (1 6 i 6 2k−1), at least

one of ui and ui+2k−1 belongs to W ′. Hence, k = |W ′| > 2k−1. This is impossible if

k > 3. If k = 2, on the other hand, then W ′ ⊆ V (H), say W ′ = {u1, u2}. However

then, codeW ′(u3) = codeW ′(u4), a contradiction. Therefore, if W ′ is a local metric

basis of G, then W ′ = W . �

To describe a solution to the problem stated in (ii), we first present some prelim-

inary information, beginning with a lemma, which gives the local metric dimension

lmd(G × H) of the Cartesian product G × H of two graphs G and H in terms of

lmd(G) and lmd(H). For the metric dimension of graphs, it was shown in [5] that

dim(G) 6 dim(G × K2) 6 dim(G) + 1 for every connected graph G. In [4] bounds

(or exact values) have been established on lmd(G×H) for many well-known classes

of graphs G and H .

Lemma 4.2. For every two connected graphs G and H ,

lmd(G × H) = max{lmd(G), lmd(H)}.

P r o o f. Suppose that G and H are connected graphs of orders p and q, re-

spectively, with V (G) = {u1, u2, . . . , up} and V (H) = {v1, v2, . . . , vq}. Also, let

lmd(G) = k and lmd(H) = l and assume, without loss of generality, that k > l.

Rename the vertices of G and H , if necessary, so that WG = {u1, u2, . . . , uk} and

WH = {v1, v2, . . . , vl} are local metric bases of G and H , respectively. Construct
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G×H from q disjoint copies G1, G2, . . . , Gq of G with V (Gi) = {u1,i, u2,i, . . . , up,i}

for 1 6 i 6 q by joining uj,i and uj′,i′ if and only if j = j′ and vivi′ ∈ E(H).

Now consider the set W = {u1,1, u2,2, . . . , ul,l} ∪ W ′, where W ′ = ∅ if k = l and

W ′ = {ul+1,1, ul+2,1, . . . , uk,1} if k > l. We show that W is a local metric set of

G×H . Let x and y be adjacent vertices in G×H not belonging to W . We consider

two cases.

C a s e 1. Both x and y belong to V (Gα) for some α (1 6 α 6 q). Since x, y ∈

V (Gα), observe that x = ua,α and y = ub,α for some a and b and uaub ∈ E(G).

Since WG is a local metric basis of G, there exists a vertex uc ∈ WG such that

dG(ua, uc) 6= dG(ub, uc). Then the set W contains a vertex w1 = uc,β for some β and

observe that

dG×H(x, w1) = dG(ua, uc) + dH(vα, vβ) 6= dG(ub, uc) + dH(vα, vβ) = dG×H(y, w1).

Therefore, codeW (x) 6= codeW (y).

C a s e 2. x ∈ V (Gα) and y ∈ V (Gβ) for some α and β, where α 6= β (1 6 α,

β 6 q). Then x = ua,α and y = ua,β for some a and vαvβ ∈ E(H). Since WH is

a local metric basis of H , there exists a vertex vγ ∈ WH such that dH(vα, vγ) 6=

dH(vβ , vγ). Then the set W contains a vertex w2 = ub,γ for some b and observe that

dG×H(x, w2) = dG(ua, ub) + dH(vα, vγ) 6= dG(ua, ub) + dH(vβ , vγ) = dG×H(y, w2).

Therefore, codeW (x) 6= codeW (y).

Hence, every two adjacent vertices in G × H have distinct codes with respect to

W and so lmd(G × H) 6 |W | = k = lmd(G).

To show that lmd(G) 6 lmd(G × H), let W be a local metric basis of G× H and

let W1 be the subset of V (G1) such that ui,1 ∈ W1 if and only if ui,j ∈ W . We show

that W1 is a local metric set of G1. Let x, y ∈ V (G1) − W1 be two adjacent vertices

in G1. Since W is a local metric set of G × H , there exists a vertex w = ua,α ∈ W

such that dG×H(x, w) 6= dG×H(y, w). Therefore, W1 contains a vertex w′ = ua,1.

Then observe that

dG1
(x, w′) = dG×H(x, w) − dH(v1, vα) 6= dG×H(y, w) − dH(v1, vα) = dG1

(y, w′),

implying that codeW1
(x) 6= codeW1

(y). Hence lmd(G1) 6 |W1| 6 |W | = lmd(G×H).

�

By Observation 2.1, if U1, U2, . . . , Ul are the true twin equivalence classes of a

graph G, then every local metric basis of G must contain at least |Ui| − 1 vertices

from Ui for each i (1 6 i 6 l). Therefore, if G has two local metric bases W and
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W ′ that are disjoint, then 1 6 d(W, W ′) 6 diam(G) and |Ui| 6 2 for each i. Let

d(W, W ′) = t. Then |W | + |W ′| + (t − 1) 6 n and so t 6 n − 2 lmd(G) + 1. Also,

if |Ui| = 2 for some i, say U1 = {u, v}, then u ∈ W and v ∈ W ′, implying that

d(W, W ′) = 1. Hence, if G contains two local metric bases W and W ′ such that

d(W, W ′) > 2, then every true twin equivalence class of G is a singleton set.

Theorem 4.3. For each pair k, t of positive integers, there exists a connected

graph G with lmd(G) = k having two local metric bases W and W ′ such that

d(W, W ′) = s for each s with 1 6 s 6 t.

P r o o f. Construct G = Kk+1 × Pt+1 from t + 1 copies H1, H2, . . . , Ht+1 of

Kk+1, where V (Hi) = {u1,i, u2,i, . . . , uk+1,i} for 1 6 i 6 t + 1, by joining uj,i to

uj,i+1 for 1 6 i 6 t and 1 6 j 6 k+1. By Lemma 4.2 and Theorem 2.4, lmd(G) = k.

Furthermore, each setWi = V (Hi)−{uk+1,i} is a local metric basis for 1 6 i 6 t+1.

Since d(W1, Ws+1) = s for 1 6 s 6 t, we obtain the desired result. �

By the proofs of Theorems 4.1 and 4.3, there exists a connected graph with a

local metric basis W for which the subgraph 〈W 〉 induced by W is an empty graph

and there also exists a connected graph with a local metric basis W ′ for which the

subgraph 〈W ′〉 induced by W ′ is a complete graph. In fact, for every graph H , there

is a connected graph with a local metric basis W such that 〈W 〉 = H .

Theorem 4.4. For every graph H , there exists a connected graph G having local

metric basis W such that 〈W 〉 = H .

P r o o f. Suppose that H is a graph of order k > 1 with V (H) = {w1, w2, . . . ,

wk}. Let P(A) = {S1, S2, . . . , S2k} be the power set of the set A = {1, 2, . . . , k}.

Construct G from H by adding 2k new vertices in the set U = {u1, u2, . . . , u2k}

such that 〈U〉 = K2k and joining wi to uj if and only if i ∈ Sj for 1 6 i 6 k and

1 6 j 6 2k. Observe that ω(G) = 2k and so lmd(G) > k by Theorem 3.1. Since

V (H) is a local metric set containing k vertices, it follows that lmd(G) = k and

V (H) is a local metric basis of G. �

A c k n ow l e d gm e n t s. We are grateful to the referee whose valuable sugges-

tions resulted in an improved paper.
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