Commentationes Mathematicae Universitatis Carolinae

Ryotaro Sato

Growth orders of Cesaro and Abel means of uniformly continuous operator
semi-groups and cosine functions

Commentationes Mathematicae Universitatis Carolinae, Vol. 51 (2010), No. 3, 441--451

Persistent URL: http://dml.cz/dmlcz/140720

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/140720
http://project.dml.cz

Comment.Math.Univ.Carolin. 51,3 (2010) 441-451 441

Growth orders of Cesaro and Abel means of uniformly

continuous operator semi-groups and cosine functions

RYOTARO SATO

This paper is dedicated to the memory of Sen-Yen Shaw.

Abstract. It will be proved that if N is a bounded nilpotent operator on a Banach
space X of order k + 1, where k > 1 is an integer, then the «-th order Cesaro
mean C} := ~yt=7 fg(t—s)“fflT(s) ds and Abel mean Ay := X [ e=**T(s) ds of
the uniformly continuous semigroup (T'(t));>¢ of bounded linear operators on X
generated by ial+ N, where 0 # a € R, satisfy that (a) ||C} || ~ t*~7 (t — oo) for
all0 < v < k+1; (b) |[CF || ~t=1 (t — o0) for all v > k+1; (c) |[Ax]l ~ A (A 0).
A similar result will be also proved for the uniformly continuous cosine function
(C(t))t>0 of bounded linear operators on X generated by (ial + N)2.

Keywords: Cesaro mean, Abel mean, growth order, uniformly continuous oper-
ator semi-group and cosine function

Classification: 47D06, 47D09, 47A35

1. Introduction and results

Let (T'(t))1>0 be a Cy-semigroup of bounded linear operators on a complex Ba-
nach space X. As for the y-th order Cesaro mean C}' of the semigroup (7'(t)):>0,
Chen-Sato-Shaw [1] studied the following question. Does there exist for any real
d > 0 an example of (T'(t));>0 such that sup,. [|C}]| = oo for all 0 < v < §, and
Sup,s [|CY || < oo for all ¥ > §7 They proved in [1] the following result. Let k > 1
be an integer and N be a bounded nilpotent operator on X of order k + 1 (i.e.,
NF £ 0 and N1 =0). Let (T'(t));>0 be the uniformly continuous semigroup of
bounded linear operators on X generated by A :=ial + N, where 0 # a € R, so
that T'(t) has the form

k

. - tPNT
. tA _ _dat tN __ _iat
(1) T(t) :=e =% =e E Tt

n=0

Then the y-th order Cesaro mean C}' and Abel mean Ay of (T'(t)):>¢ satisfy that
|CY|| ~ th=7 (t — oo) for all integers v = 1,2,..., k+1; |C]|| ~t~! (t — o0)
for all v > k+1; [|Ax]| ~ A (A | 0); sup,q |C{|| = oo for all 0 < v < k, and
Sup,s [|CY ]| < oo for all v > k. Here a(t) ~ b(t) (t — oo) [resp. (¢ | 0)] means
that both the ratios a(t)/b(t) and b(t)/a(t) are bounded in some open interval
(e,00) [resp. (0,€)]. Thus they gave a partial solution to the question. It remains
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still open for § > 1 which is not an integer. (If 0 < § < 1, then the question has
a positive answer. See Theorem 4.2 in [1].)

The aim of this article is to prove that the relation ||C} || ~ t*~7 (¢ — oo) holds
not only for all integers v = 1,2,..., k+ 1 but also for all real numbers v with
0 <y <k+1. That is,

Theorem 1. Let (T(t));>0 be the above semigroup of operators. Let C} and A,
denote the ~y-th order Cesaro and Abel means of (T'(t)):>0, respectively. Then

(@) ||CY|| ~t*=7 (t — o0) forall 0 <y < k+1;
(b) [|C7|| ~t~1 (t — o0) for all v > k + 1;
(©) [[Axl[ ~ A (A1 0).

We also consider the uniformly continuous cosine function (C(t))¢>o of bounded
linear operators on X generated by B := A? (cf. [4]). Thus C(t) has the form

k . .
B 1 A Ay ezattn + e*“lt(ft)n Nn
@ t t = t t
r t"cosat . n  thsinat .,
- Z nl NT+ Z L N7,
0<n<k 0<n<k

where Zlogngk [resp. Z/O/Sngk] means that the summation is taken for all n
such that 0 < n < k, and n is even [resp. odd]. In this case the ~-th order
Cesaro mean C, and Abel mean Ay of (C(t));>0 are defined as C} := vt~ fot (t—
s)771C(s)ds and Ay = )\fooo e~ (s) ds, respectively. It was proved in [1] that
Supsq [|CY ]| = oo for all 0 < v < k, and sup,~ ||C/|| < oo for all ¥ > k. The
next theorem improves the result considerably.

Theorem 2. Let (C(t))t>0 be the above cosine function of operators. Let C}
and Ay denote the y-th order Cesaro and Abel means of (C(t))i>0, respectively.
Then

(@) G 1l = O() (t — o0, G7]l # oft™) (t — o0), and |7 #
th=7 (t — o0) for all 0 <~y <k +2;

(b) |IC|| ~t72 (t — o0) for all v > k + 2;

(©) 43l ~ X2 (A L 0).

For related topics the author would like to refer the reader to [2] and [3] (see
also [5]).

2. Lemmas

For a complex-valued continuous function u on [0, c0), we let

¢/ (u) = fyt”/o (t — s)" tu(s) ds (v, t > 0).
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Let u, be the function defined by u,(t) := t"e® for t > 0, where n > 0 is an
integer. Then we have

v [ : N |
¢ (up) == [ (t—3s)""ts"eds=—e" | TNt —s)"e " ds,
7 Jo v 0

so that, by letting

t

(3) U t)i= [ 73— se s (3t 0)
0

we have

(4) G lun) = 2 Un(,t) (3, ¢ > 0).

Integration by parts gives
(6)  Uslrt) =it e —i(y—)Usly—1,6)  (y>1,¢>0).

Lemma 1. Let n > 0 be an integer. Then Up(y,t) ~ t™ (t — oo) for all
0<y <1

ProoF: (i) First we consider the case n = 0. Suppose 0 < 7 < 1. Then, since
the function s — s7~! is decreasing on (0, 00) and since

t t t
Uo(v,t) = / s leTi ds = / s7 !t cossds — z/ s7 sinsds,
0 0 0

it follows easily that

27 t
0< / s7 tsinsds < inf / s7 tsinsds < sup |Ug(7,t)]
0 t>2m 0 t>2m

/2 ™ T 2y
§/ s”ilcossder/ s”ilsinsds§2/ 7 lds = 2.
0 0 0 v
Hence Up(7y,t) ~ t° (t — o). To use an induction argument we need to consider
the case v > 1. First we have Up(1,t) = i(e”® — 1). Suppose 1 < v < 2.
Then, since |Up(y — 1,t)] < 27771/(y — 1) for all ¢ > T, it follows from (5) that
Uo(v,t) = it te™ (1 + o(1)) (t — o00). We then apply an induction argument
to v > 2. Suppose Up(7,t) = it?"te (1 + o(1)) (t — oo) for all v with n <
v < n+1, where n > 1 is an integer, and suppose n +1 < # < n + 2. Then,
since Up(B3,t) = it’~te™" —i(B — 1)Uo(B — 1,t) by (5), it follows that Uy(83,t) =
itP~le=®(140(1)) (t — 0o). Consequently, Uy(v,t) = it""te~*(14+0(1)) (t — o)

for all v > 1, which will be used below.
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(ii) We consider the case n > 1. Suppose the lemma holds for n — 1. We note
that

t
©)  Ualnt) = [ 5= se s
0
n ¢ : - n
<k> (71)717]9 tk/ gytn—k=1,—is 7o _ Z (k) (71)nfktkU0(,y +n— k,t)
0

I
M3

h=0 k=0
= nol (Z) (—1)F gk (itv+n—k—1e—it —i(y+n—k—1DU(y+n—k— 1,t))

k=0

i (Z)<—1>Ot”Uo<%t> (by (5))

I
-

n

= —it7tlem <Z> ()" Fth(y =14+ n—k)Us(y — 1 +n — k,t)
0

+ <Z> (—1)%"Uo (v, 1),

el
Il

where the last equality comes from the fact that 0 = (1 —1)" =37 () (=1)".
Suppose 0 < v < 1. If 0 < k <n — 2, then, since v — 1 +n — k > 1, the result
obtained in (i) shows that

Uy =14+ n —k,t) ~ T2 = o(t"™1) (t — 0).
Similarly, if kK =n — 1, then
tnilUO(’y —14n-— (n - ]‘)ﬂt) = tnilU()(’Yat) ~ ! (t - OO)

Thus, from (6) and the fact that t"Up(y,t) ~ t" (t — 00), it follows that Uy, (v, t) ~
t" (t — 00). This completes the proof. O

Next, let v, and w, be the functions on [0, c0) defined by vy, (t) := ™ cost and
wp (t) := t"sint, where n > 0 is an integer. Then we have

t

t t
() = / (t—s)""'s"cossds = % /0 sT7Ht — s)™ cos(t — s) ds

" t
= tl"Y (cost/ s77L(t — 5)" cos s ds + sint/ s7Ht — s)"sins ds)
0 0

so that, letting

t

(7) F.(v,t) = s77H(t — )™ cos s ds,

/
(8) Gn(v,t) = /57 Lt — s)"sin s ds,
0
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(9) Va(v,t) = Fu(y,t)cost + Gn(7,1)sint,
(10) Wn(v,t) = Fu(v,t)sint — Gp(7,t) cost,
we have

(11) ) = ZValrt) (3 t> 0%

and similarly

t
(12) ¢/ (wy) = l/ (t—s)""ts"sinsds = an('y,t) (v, t>0).
o Jy £

Lemma 2. Fy(v,t) and Go(v,t) satisfy that

. . o0 —1
tlirgo Fo(v,t) = [, 87 ' cossds >0,

(13) 0< tn>1f Go(y,t) < sup Go(,£) < 00 forall 0 <y <1;
4 t>m
(14) Fo(l,t) =sint, Go(l,t) =1 — cost;
— 7 1(gi
(15) Folt) = 1(Smt o(L)) {t = o) for all v > 1.
Go(7,t) = t7H(—cost + o(1)) (t — o)

PROOF: Suppose 0 < v < 1. Then, since the function s — 57! is decreasing and
convex on (0, 00), we have as in the proof of Lemma 1

n

2(j+1)m 27
lim Fy(y,t) = lim / 7 tcossds > / s7 L cossds > 0.
t—oo n—oo 4 2 0
j=0 27

Similarly
T 2
/ s7  sinsds > Go(y,t) > / s7 tsinsds > 0 (t > m).
0 0

The proof of (14) is direct.
Next suppose v > 1. Then integration by parts gives

t t
Fo(y,t) = / s7  cossds =7 sint — (v — 1)/ s7 %sinsds
0 0

=" sint — (v = 1)Go(y — 1,1);

(16)

and similarly

t
(17) Go(v,t) = / 7 sinsds = —t""tcost + (v — 1) Fy(y — 1,1).
0
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Thus, if 1 < v <2, then, by the results for 0 < v —1 < 1, we see that Fy(v,t) =
7" I(sint 4+ o(1)) (t — o0), and Go(7,t) = 7~ (—cost + o(1)) (t — o0). We can
repeat this process to prove (15) for all v > 1. O

Lemma 3. Let n > 1. Then F,(v,t) and G,(v,t) satisfy that

(18) {F”(%t) =t B0yt +o(1) (E—=o00), oy 0<~y<1;

Gn(7,1) = "(Go(7,t) + o(1)) (t — o0)

F,(1,t) = O(t" 1) (t — o0),
(19) {Gn(l,t) ={"(1+0(1)) (t — o0);

20) {Fn(%t)(vl)Gn(vl,t)JrnGnd%t), forall 4> 1.

Gn('%t) = (7 - 1)Fn(’y - Lt) - nFn—l(’yat)

PRrROOF: It follows from (7) that

t
(21) Fn('y,t):/ sTHt — 5)" cos s ds
0

n

n ¢
= Z (kz) (71)"*’“151“/ sTTn=k=1 cos s ds
k=0 0

(]

S =
— o

S (n) (—1) K¢k (twn,k,l sint — (y+n—k—1)Go(y+n—k— Lt))

k=0 k
+t" Fo (7, t) (by (16))

n—1
= —ttlgint — Z (Z) (=) Fth(y =14+ n —k)Go(y — 14+ n — k,t)
k=0
—anFQ(’y,ﬁ).
Similarly
¢
Gn(y,t) = / s77Ht — 5)"sin s ds
0

(22 _ 7l cost + Z (Z) (=) Fth(y =14 n—k)Fo(y — 1 +n — k,t)
k=0

+ tnGo("}/, t)
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First suppose 0 < v < 1. Then by Lemma 2

O(t7tm=2) (t — o00) for 0<k<n-2,

tPFy(y —14+n—k,t) =
oy k) {O(t"—l) (t — 00) for k=n—1;
and

Ot+"=2) (t—o00)  for 0<k<n-2

t"Go(y —1+n—k,t) =
oty ki) {O(t"—l) (t — o0) for k=n—1.

Thus (18) follows from (21) and (22).
Next suppose v = 1. Then by (21) and (14)

F,(1,t) = —t"sint— i (:) (=)™ *t*(n — k)Go(n — k,t) + t"Fy(1,1)
k=0

- (" (1) *tF(n — k)Go(n — K, t);
> (1) :

and similarly by (22) and (14)

Gn(1,t) =t" + z_: (Z) (=1)"Ftk(n — k) Fy(n — k, t).

k=0

Here it follows from (14) and (15) that

{thO(”_k’t):O(t"_l) (t=o0) Al 0<k<n—1

t*Go(n — k,t) = O™ 1) (t — o0)

whence (19) follows.
Finally suppose v > 1. Then by (21) and (16)

n—1

— 7 gint — (y = 1) kz_% (Z) (=D F*Go(y — 1 +n — k,t)

Fu(v,t)

n—1
-1
+ny (n k >(1)"_1_kGo(’Y —14n—kt)+t"Fo(y,t)

n—1
-1
+nz (n k )(—1)”_1_’“th0(7 +n—1—k,t)

= _('Y - 1)Gn('7 —1,t) + nGn—l(%t);
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and similarly by (22) and (17)
Gn(’)/a t) = (,7 - 1)Fn(7 - 17t) - nFn—l(’)/a t)
This proves (20), and hence the proof is complete. O
Lemma 4. Vy(v,t) and Wy(~,t) satisfy that
Vo(v,t) = O(t°) (t — 00), Vo(y,1) # ot°) (t — o0),
Vo(v,t) # t° (t — 00), and

VV()(’Y; t) = O(to) (t - OO), Wo(%t) 7é O(to) (t - oo)ﬂ
Wo(y,t) # 1% (t — o0)

(23)

forall 0 < v < 1;

(24) Vo(1,t) =sint, Wy(1,t) =1 — cost;

VO(’Y; t) = O(to) (t - OO), V()("}/,t) 7é O(to) (t - OO),
(25) Vo(3.1) £ 10 (t — 50), and

Wo(y,t) =t7 11+ o(1)) (t — o0)
foralll <~y < 2.

PROOF: (23) and (24) follow directly from Lemma 2 together with the definitions
of Vo(y,t) and Woy(v,t) (cf. (9), (10)). Suppose v > 1. Then by (16) and (17)

Vo(v,t) = Fo(v,t) cost + Go(v,t) sint
= (" 'sint — (y = 1)Go(y — 1,t)) cost
(26) + (=t eost + (v — 1) Fo(y — 1,1)) sint
=—(y—=1)Go(y—1,t)cost + (y — 1) Fo(y — 1,¢) sint
= (v = YWoly —1,1);

and similarly

(27) Wo(y,t) =71 = (v = DVo(y = L,1).

Thus (25) follows from (23). This completes the proof. O
Lemma 5. Let n > 1. Then V,(v,t) and W, (v,t) satisfy that

o {mwww%wm+w?aam»

for all 0 <~y <1,
Wi (y,t) = " (Wo(7,1) + o(1)) (£ — o0)

Va(1,t) = t"(sint + o(1)) (t — 00),
(29) {Wn(l,t) = —t"(cost + o(1)) (t — o0);
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(50) {vm,t) = (= OWaly =L —nWaa(nt),

Wn(’ya t) = _(7 - 1)‘/n('y - 17t) + nVn—l('Yat)
PROOF: Suppose 0 < v < 1. Then

Va(y,t) = Fu(y,t)cost + Gn(7,t)sint
= t"(Fo(7,t) +o(1)) cost + t*(Go(7,t) + o(1))sint  (by (18))
= t”(FO('y,t) cost + Go(7,1) sint+o(1))
= t"(Vo(7,1) +0(1)) (t — o0);

and similarly W, (v,t) = t"(Wy(vy,t) + o(1)) (t — o0). (29) follows easily from
(9), (10) and (19). Finally suppose v > 1. Then by (20)

Va(y,t) = Fu(y,t)cost + Gn(v,t)sint
= ( — (v = 1DGn(y = L,t) + nGp-1(7, t)) cost
+((r = VFu(y = 1,8) = nFy 1 (3,1) ) sint
= (y-— 1)<Fn(’y —1,t)sint — Gn(y — 1,¢t) cost)
—n(Fn_l('y, £)sint — Gn_1(7,1) cost)
= (y=DWaly —1L1) = nWn_1(y,1),

so that the first half of (30) follows. The second half follows similarly. O

As an immediate consequence of Lemmas 4 and 5 (see especially (30)) we have
the following

Lemma 6. Let n > 1. Then V,(v,t) and W, (v,t) satisfy that

Va(y,1) = O(t") (t — 00), Va(y,t) # o(t") (t — o0),
Va(3,8) # 47 (t — o0), and

Wi (7,1) = O@t") (t — 00), Wa(y,t) # o(t") (t — o0),
Wi (7,t) # 1" (t — o0)

forall 0 < v < 2.

(31)

3. Proofs of the theorems

PrROOF OF THEOREM 1: We may assume without loss of generality that a = 1.
By (1), (4) and Lemma 1, if 0 < v < 1, then ||C]| ~ t*=7 (¢ — o), where
C?Y := T(t). Further, since 0 € p(A), we may apply [1, Theorem 3.3] to infer
that ||C7 Y| ~ [|CY — I|t~" (t — co). By this and an induction argument, if
0 <~ <k+1, then |C]| ~ t*=7 (t — 00). The fact that [|[CFT|| ~ ¢! (t — o0)
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has been proved in [1, Theorem 3.4]. Next suppose k + 1 < 7 < k + 2. Then,
since lim; o, ||C7 || = 0, the equation

(32) AC) =yt~ H (7 =)
(cf. [3]) yields that

(33) Jim C’ = lim A~ ey t—1n=-4A"1
— 00 ’y
This argument can be repeated, and hence (33) holds for all v > k + 1. Finally

lim A7'Ay =lim [ e MT(t)dt =1lim (M — A)~' = —A71,

A0 A0 Jo Al0
Hence in particular ||Ax]| ~ A (A ] 0), and ||C]|| ~t~! (t — o0) for all v > k + 1.
This completes the proof. (Il

PrROOF OF THEOREM 2: This is similar to the above proof. We may assume
that a = 1. By (2), (11), (12), and Lemmas 4 and 6, if 0 < v < 2, then (a) in
Theorem 2 holds. We then use the equation

3 By =D 220,

where C? := C(t) (cf. [3]). Since 0 € p(B) = p(A?), it follows that ||C7 || ~
|C} —I||t72 (t — 00), and so if 0 < v < k + 2, then (a) in Theorem 2 holds.
Next, let € X be such that ||| = 1 and Nz = 0. Then, since lim;_.o, CFz =
limy oo (k/tk)(fot(t — )" cossds)x = 0, it follows that liminf, . [|CF — I >
liminf, .o [|CFz — || = ||z = 1, whence ||CF™2|| ~ =2 (t — o0). Now suppose
k+2 <~ <k+4. Then limy . |C7 || =0, and so

2

. t ) _
35 lim ———C7 hm B Y ¢V *—-1)=-B"'.

This argument can be repeated, and hence (35) holds for all v > k + 2. Finally

lim A\724, = Jim A~ / e MO(t)dt =1im (A>T — B)™! = —-B7!
L0 0 L0

(cf. [4]). Hence in particular ||Ax| ~ A% (A | 0), and ||C]|| ~ t~2 (t — o) for all
v > k + 2. This completes the proof. O
Remark. lim; . (t/(k + 1))C’kJrl does not exist in Theorem 1. To see this we
write ACF = (k/t)(CF1 —I) =: (k/t)CF~' + D}, where lim; o || D}|| = 0, and
finally AKCF =: (k!/tF)T(t) + D757 where lim;_ ||DkH = 0. Since

k! | ptat : " an iat k k : k
m T(t) =kle Z:O e (N® 4+ EY), where tlin&HEtHZO,
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it follows that if N*z # 0, then lim;_, Cfz does not exist. Hence lim;_, . (t/(k+
1))CF ! does not exist by (32). Similarly lim; o (£2/(k + 2)(k + 1))CF2 does
not exist in Theorem 2.
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