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Approximate solutions for integrodifferential

equations of the neutral type

B.G. Pachpatte

Abstract. The main objective of the present paper is to study the approximate

solutions for integrodifferential equations of the neutral type with given initial
condition. A variant of a certain fundamental integral inequality with explicit
estimate is used to establish the results. The discrete analogues of the main
results are also given.

Keywords: approximate solutions, integrodifferential equation, neutral type, ex-
plicit estimate, discrete analogues, dependency of solutions, closeness of solutions

Classification: 34G20, 34A60

1. Introduction

Consider the initial value problem (IVP, for short) for the integrodifferential
equation of the form

(1.1) x′(t) = f(t, x(t), x′(t), Hx(t)),

for t ∈ R+ = [0,∞), with the given initial condition

(1.2) x(0) = x0,

where

(1.3) Hx(t) :=

∫ t

0

h(t, σ, x(σ), x′(σ)) dσ,

f , h are given functions, x is the unknown function to be found and ′ denotes
the derivative. We assume that f ∈ C(R+ × R

n × R
n × R

n, Rn) and for σ ≤ t,
h ∈ C(R2

+ × R
n × R

n, Rn), where R
n denotes the n-dimensional Euclidean space

with appropriate norm denoted by | · |. The special version of IVP of the form

x′(t) = f(t, x(t), Hx(t)), x(0) = x0,

(often referred to as neutral integrodifferential equations) is discussed in the recent
monograph by H. Brunner [3, pp.155, 175] (see also [4]). In fact, analysis of the
qualitative properties of solutions of IVP (1.1)–(1.2) is a challenging task, because
of the occurrence of the extra factor x′(t) on the right hand side in (1.1).
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In practice, it is often difficult to obtain the solutions to the IVP (1.1)–(1.2)
explicitly and, thus, a new insight to handle the qualitative properties of its
solutions is needed. The method of approximate solutions provides the most
powerful and widely used analytic tool in the study of various dynamic equations.
It enables us to obtain valuable information about solutions without the need to
know in advance the solutions explicitly. The problems of existence and some
other basic properties of solutions of IVP (1.1)–(1.2) are recently dealt by the
present author in [8]. In the present paper, we offer the conditions for the error
evaluation of approximate solutions of IVP (1.1)–(1.2) by establishing some new
bounds on solutions of approximate problems. We also study the dependency
of solutions of IVP (1.1)–(1.2) on parameters. The main tool employed in the
analysis is based on the application of a variant of a certain integral inequality
with explicit estimate given in [8] (see also [5], [7]). Results on the discrete
analogue of IVP (1.1)–(1.2) are also given.

2. Main results

Let xi(t) ∈ C(R+, Rn) (i = 1, 2) be functions such that x′

i
(t) exist for t ∈ R+

and satisfy the inequalities

(2.1) |x′

i(t) − f(t, xi(t), x
′

i(t), Hxi(t))| ≤ εi,

for given constants εi ≥ 0, where it is assumed that the initial conditions

(2.2) xi(0) = xi,

are fulfilled. Then we call xi(t) the εi-approximate solutions with respect to IVP
(1.1)–(1.2).

We require the following variant of the integral inequality established by the
present author in [8, p. 98]. For similar results, see [5], [7].

Lemma 1. Let u, a, b ∈ C(R+, R+) and for s ≤ t; e(t, s), ∂

∂t
e(t, s), k(t, s) ∈

C(R2
+, R+) and a(t) is nondecreasing for t ∈ R+. If

(2.3) u(t) ≤ a(t) +

∫ t

0

[

b(s)u(s) + e(t, s)u(s) +

∫ s

0

k(s, σ)u(σ) dσ

]

ds,

for t ∈ R+, then

(2.4) u(t) ≤ a(t) exp

(
∫ t

0

[b(s) + A(s)] ds

)

,

for t ∈ R+, where

(2.5) A(t) = e(t, t) +

∫ t

0

{

k(t, σ) +
∂

∂t
e(t, σ)

}

dσ.
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In the following theorem we obtain estimates for the difference between the
two approximate solutions of equation (1.1) with (2.2).

Theorem 1. Suppose that the functions f , h in equation (1.1) satisfy the con-

ditions

|f(t, x, y, z) − f(t, x̄, ȳ, z̄)| ≤ M [|x − x̄| + |y − ȳ|] + |z − z̄| ,(2.6)

|h(t, s, x, y) − h(t, s, x̄, ȳ)| ≤ q(t, s) [|x − x̄| + |y − ȳ|] ,(2.7)

where M ≥ 0 is a constant such that M < 1 and for s ≤ t; q(t, s), ∂

∂t
q(t, s) ∈

C(R2
+, R+). Let xi(t) (i = 1, 2) be respectively εi-approximate solutions of equa-

tion (1.1) with (2.2) on R+ such that

(2.8) |x1 − x2| ≤ δ,

where δ ≥ 0 is a constant. Then

(2.9) |x1(t) − x2(t)| + |x′

1(t) − x′

2(t)| ≤ α(t) exp

(
∫ t

0

[

M

1 − M
+ A0(s)

]

ds

)

,

for t ∈ R+, where

α(t) =
(ε1 + ε2)(t + 1) + δ

1 − M
,(2.10)

A0(t) =
1

1 − M

[

q(t, t) +

∫ t

0

{

q(t, σ) +
∂

∂t
q(t, σ)

}

dσ

]

.(2.11)

Proof: Since xi(t) (i = 1, 2) for t ∈ R+ are respectively εi-approximate solutions
of equation (1.1) with (2.2), we have (2.1). By taking t = s and integrating both
sides with respect to s from 0 to t, we have

εit ≥

∫ t

0

|x′

i(s) − f(s, xi(s), x
′

i(s), Hxi(s))| ds

≥

∣

∣

∣

∣

∫ t

0

{x′

i(s) − f(s, xi(s), x
′

i(s), Hxi(s))} ds

∣

∣

∣

∣

(2.12)

=

∣

∣

∣

∣

{

xi(t) − xi(0) −

∫ t

0

f(s, xi(s), x
′

i(s), Hxi(s)) ds

}∣

∣

∣

∣

,

for i = 1, 2. From (2.12) and using the elementary inequalities

(2.13) |v − z| ≤ |v| + |z|, |v| − |z| ≤ |v − z|,
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we observe that

(2.14)

(ε1 + ε2)t ≥

∣

∣

∣

∣

{

x1(t) − x1(0) −

∫ t

0

f(s, x1(s), x
′

1(s), Hx1(s)) ds

}∣

∣

∣

∣

+

∣

∣

∣

∣

{

x2(t) − x2(0) −

∫ t

0

f(s, x2(s), x
′

2(s), Hx2(s)) ds

}
∣

∣

∣

∣

≥

∣

∣

∣

∣

{

x1(t) − x1(0) −

∫ t

0

f(s, x1(s), x
′

1(s), Hx1(s)) ds

}

−

{

x2(t) − x2(0) −

∫ t

0

f(s, x2(s), x
′

2(s), Hx2(s)) ds

}∣

∣

∣

∣

≥ |x1(t) − x2(t)| − |x1(0) − x2(0)|

−

∣

∣

∣

∣

∫ t

0

f(s, x1(s), x
′

1(s), Hx1(s)) ds

−

∫ t

0

f(s, x2(s), x
′

2(s), Hx2(s)) ds

∣

∣

∣

∣

.

Moreover, from (2.1) and using the elementary inequalities in (2.13), we observe
that

(2.15)

ε1 + ε2 ≥ |x′

1(t) − f(t, x1(t), x
′

1(t), Hx1(t))|

+ |x′

2(t) − f(t, x2(t), x
′

2(t), Hx2(t))|

≥ |{x′

1(t) − f(t, x1(t), x
′

1(t), Hx1(t))}

− {x′

2(t) − f(t, x2(t), x
′

2(t), Hx2(t))}|

≥ |x′

1(t) − x′

2(t)| − |f(t, x1(t), x
′

1(t), Hx1(t))

−f(t, x2(t), x
′

2(t), Hx2(t))| .

Let u(t) = |x1(t) − x2(t)| + |x′

1(t) − x′

2(t)| for t ∈ R+. From (2.14), (2.15) and
using the hypotheses, we observe that

(2.16)

u(t) ≤ (ε1 + ε2)t + |x1(0) − x2(0)|

+

∫ t

0

|f(s, x1(s), x
′

1(s), Hx1(s)) − f(s, x2(s), x
′

2(s), Hx2(s))| ds

+ (ε1 + ε2) + |f(t, x1(t), x
′

1(t), Hx1(t)) − f(t, x2(t), x
′

2(t), Hx2(t))|

≤ (ε1 + ε2)(t + 1) + δ +

∫ t

0

{

Mu(s) +

∫ s

0

q(s, σ)u(σ) dσ

}

ds

+ Mu(t) +

∫ t

0

q(t, σ)u(σ) dσ.
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From (2.16), it is easy to observe that

(2.17) u(t) ≤ α(t) +
1

1 − M

∫ t

0

{

Mu(s) + q(t, s)u(s) +

∫ s

0

q(s, σ)u(σ) dσ

}

ds,

where α(t) is given by (2.10). Clearly α(t) is nondecreasing for t ∈ R+. Now a
suitable application of Lemma 1 to (2.17) yields (2.9). �

Remark 1. We note that the estimate obtained in (2.9) yields not only a bound
for the difference between the two approximate solutions of equation (1.1) with
(2.2) but also a bound on the difference between their derivatives. If x1(t) is a
solution of equation (1.1) with x1(0) = x1, then we see that x2(t) → x1(t) as
ε2 → 0 and δ → 0. Moreover, if we put (i) ε1 = ε2 = 0 and x1 = x2 in (2.9), then
the uniqueness of solutions of equation (1.1) is established and (ii) ε1 = ε2 = 0
in (2.9), then we get a bound that shows the dependency of solutions of equation
(1.1) on given initial values.

The equation (1.1) contains as a special case the equation

x′(t) = f(t, x(t), x′(t)),

for t ∈ R+. Usually, the terminology neutral is used when x′(t) in f is replaced
by x′(t − τ), τ > 0. Here, it is to be noted that, in this case for the existence
of a unique solution with suitable initial conditions, one needs that the function
f is bounded and satisfies a Lipschitz condition, but the Lipschitz constant need
not be less than one, see [9, p. 185] and [10, p. 459]. In [1], Bellman and Cooke
have discussed the behavior of solutions of such equations when the retardation
τ tends to zero. For an excellent account on the study of such equations, see the
book by Bellman and Cooke [2].

Consider the IVP (1.1)–(1.2) together with the following IVP

y′(t) = g(t, y(t), y′(t), Hy(t)),(2.18)

y(0) = y0,(2.19)

for t ∈ R+, where H is given by (1.3) and g ∈ C(R+ × R
n × R

n × R
n, Rn).

In the next theorem we provide conditions concerning the closeness of the
solutions of IVP (1.1)–(1.2) and IVP (2.18)–(2.19).

Theorem 2. Suppose that the functions f , h in equation (1.1) satisfy the con-

ditions (2.6), (2.7) and there exist constants ε̄ ≥ 0, δ̄ ≥ 0 such that

|f(t, x, y, z) − g(t, x, y, z)| ≤ ε̄,(2.20)

|x0 − y0| ≤ δ̄,(2.21)

where f, x0 and g, y0 are as in IVP (1.1)–(1.2) and IVP (2.18)–(2.19). Let

x(t) and y(t) be respectively, solutions of IVP (1.1)–(1.2) and IVP (2.18)–(2.19)
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on R+. Then

(2.22) |x(t) − y(t)| + |x′(t) − y′(t)| ≤ β(t) exp

(
∫ t

0

[

M

1 − M
+ A0(s)

]

ds

)

,

for t ∈ R+, where

(2.23) β(t) =
ε̄(t + 1) + δ̄

1 − M
,

and A0(t) is as in (2.11).

Proof: Let r(t) = |x(t) − y(t)| + |x′(t) − y′(t)| for t ∈ R+. Using the facts
that x(t) and y(t) are solutions of IVP (1.1)–(1.2) and IVP (2.18)–(2.19) and the
assumptions, we observe that
(2.24)

r(t) ≤ |x0 − y0| +

∫ t

0

|f(s, x(s), x′(s), Hx(s)) − f(s, y(s), y′(s), Hy(s))| ds

+

∫ t

0

|f(s, y(s), y′(s), Hy(s)) − g(s, y(s), y′(s), Hy(s))| ds

+ |f(t, x(t), x′(t), Hx(t)) − f(t, y(t), y′(t), Hy(t))|

+ |f(t, y(t), y′(t), Hy(t)) − g(t, y(t), y′(t), Hy(t))|

≤ δ̄ +

∫ t

0

{

Mr(s) +

∫ s

0

q(s, σ)r(σ) dσ

}

ds + ε̄t

+ Mr(t) +

∫ t

0

q(t, σ)r(σ) dσ + ε̄

= ε̄(t + 1) + δ̄ + Mr(t) +

∫ t

0

{

Mr(s) + q(t, s)r(s) +

∫ s

0

q(s, σ)r(σ) dσ

}

ds.

From (2.24), we get

(2.25) r(t) ≤ β(t) +
1

1 − M

∫ t

0

{

Mr(s) + q(t, s)r(s) +

∫ s

0

q(s, σ)r(σ) dσ

}

ds,

for t ∈ R+, where β(t) is given by (2.23). Clearly β(t) is nondecreasing for t ∈ R+.
Now an application of Lemma 1 to (2.25) yields (2.22). �

Remark 2. We note that the result given in Theorem 2 relates the solutions of
IVP (1.1)–(1.2) and IVP (2.18)–(2.19) in the sense that if f is close to g and x0 is
close to y0, then the solutions of IVP (1.1)–(1.2) and IVP (2.18)–(2.19) are also
close together.

The following theorem gives conditions for an estimate of the difference between
the solutions of IVP (1.1)–(1.2) and IVP (2.18)–(2.19).
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Theorem 3. Suppose that

(2.26) |f(t, x, y, z) − g(t, x̄, ȳ, z̄)| ≤ L [|x − x̄| + |y − ȳ|] + |z − z̄| ,

where L ≥ 0 is a constant such that L < 1 and the conditions (2.7), (2.21) hold.

Let x(t) and y(t) be respectively, solutions of IVP (1.1)–(1.2) and IVP (2.18)–
(2.19) on R+. Then

(2.27) |x(t) − y(t)| + |x′(t) − y′(t)| ≤

(

δ̄

1 − L

)

exp

(
∫ t

0

[

L

1 − L
+ A1(s)

]

ds

)

,

where

(2.28) A1(t) =
1

1 − L

[

q(t, t) +

∫ t

0

{

q(t, σ) +
∂

∂t
q(t, σ)

}

dσ

]

.

Proof: Let w(t) = |x(t) − y(t)| + |x′(t) − y′(t)| for t ∈ R+. Using the facts that
x(t) and y(t) are respectively, solutions of IVP (1.1)–(1.2) and IVP (2.18)–(2.19)
and the assumptions, we observe that

(2.29)

w(t) ≤ |x0 − y0| +

∫ t

0

|f(s, x(s), x′(s), Hx(s)) − g(s, y(s), y′(s), Hy(s))| ds

+ |f(t, x(t), x′(t), Hx(t)) − g(t, y(t), y′(t), Hy(t))|

≤ δ̄ +

∫ t

0

{

Lw(s) +

∫ s

0

q(s, σ)w(σ) dσ

}

ds

+ Lw(t) +

∫ t

0

q(t, σ)w(σ) dσ.

From (2.29), we get

(2.30) w(t) ≤
δ̄

1 − L
+

1

1 − L

∫ t

0

{

Lw(s) + q(t, s)w(s) +

∫ s

0

q(s, σ)w(σ) dσ

}

ds.

Now an application of Lemma 1 to (2.30) yields (2.27). �

We next consider the following neutral type integrodifferential equations

z′(t) = F (t, z(t), z′(t), Hz(t), µ),(2.31)

z′(t) = F (t, z(t), z′(t), Hz(t), µ0),(2.32)

with the given initial condition

(2.33) z(0) = z0,

for t ∈ R+, where H is given by (1.3), F ∈ C(R+ × R
n × R

n × R
n × R, Rn) and

µ, µ0 are real parameters.
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The following theorem deals with the dependency of solutions of IVP (2.31)–
(2.33) and IVP (2.32)–(2.33) on parameters.

Theorem 4. Suppose that the function F in equations (2.31), (2.32) satisfy the

conditions

|F (t, x, y, z, µ) − F (t, x̄, ȳ, z̄, µ)| ≤ N [|x − x̄| + |y − ȳ|] + |z − z̄| ,(2.34)

|F (t, x, y, z, µ) − F (t, x, y, z, µ0)| ≤ n(t) |µ − µ0| ,(2.35)

where N ≥ 0 is a constant such that N < 1, and n ∈ C(R+, R+) satisfies

(2.36) n(t) +

∫ t

0

n(s) ds ≤ N̄ ,

N̄ ≥ 0 is a constant and the function h satisfies the condition (2.7). Let z1(t) and

z2(t) be the solutions of IVP (2.31)–(2.33) and IVP (2.32)–(2.33) respectively.

Then

|z1(t) − z2(t)| + |z′1(t) − z′2(t)|(2.37)

≤
N̄ |µ − µ0|

1 − N
exp

(
∫ t

0

[

N

1 − N
+ A2(s)

]

ds

)

,

where

(2.38) A2(t) =
1

1 − N

[

q(t, t) +

∫ t

0

{

q(t, σ) +
∂

∂t
q(t, σ)

}

dσ

]

.

Proof: Let v(t) = |z1(t)− z2(t)|+ |z′1(t)− z′2(t)| for t ∈ R+. Using the facts that
z1(t) and z2(t) are the solutions of IVP (2.31)–(2.33) and IVP (2.32)–(2.33), we
observe that

(2.39)

v(t) ≤

∫ t

0

|F (s, z1(s), z
′

1(s), Hz1(s), µ) − F (s, z2(s), z
′

2(s), Hz2(s), µ)| ds

+

∫ t

0

|F (s, z2(s), z
′

2(s), Hz2(s), µ) − F (s, z2(s), z
′

2(s), Hz2(s), µ0)| ds

+ |F (t, z1(t), z
′

1(t), Hz1(t), µ) − F (t, z2(t), z
′

2(t), Hz2(t), µ)|

+ |F (t, z2(t), z
′

2(t), Hz2(t), µ) − F (t, z2(t), z
′

2(t), Hz2(t), µ0)| .

The rest of the proof can be completed by closely looking at the proofs of the
above theorems and hence we omit the details. �

Remark 3. We note that an important feature of our approach here is that it is
elementary and can be extended to obtain similar results as given in this paper
for the IVP for higher order Volterra integrodifferential equation of the form

(2.40) x(n)(t) = f(t, x(t), x′(t), . . . , x(n)(t), Gx(t)),
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with the prescribed initial values

(2.41) x(k)(0) = xk

0 , (k = 0, 1, . . . , n − 1),

for t ∈ R+, where n ≥ 2 is a given integer and

(2.42) Gx(t) :=

∫ t

0

g(t, σ, x(σ), x′(σ), . . . , x(n)(σ)) dσ.

For a brief discussion on the existence, uniqueness and estimates on the solutions
of the special version of IVP

x(n)(t) = f(t, x(t), . . . , x(n−1)(t), Gx(t)),

with given initial values (3.41) by using different method, see [1, pp. 156, 176].

3. Discrete analogue

Let N0 = {0, 1, 2, . . .} and for any functions z(n), w(n, s); n, s ∈ N0 define the
operators ∆, ∆1 by ∆z(n) = z(n + 1)− z(n), ∆1w(n, s) = w(n + 1, s)− w(n, s).
Let D(S1, S2) denote the class of discrete functions from the set S1 to the set S2.
We use the usual conventions that empty sums and products are taken to be 0
and 1, respectively. We now explore our idea to obtain results similar to the ones
given above, concerning the discrete analogue of IVP (1.1)–(1.2) which can be
written as

(3.1) ∆x(n) = f̄(n, x(n), ∆x(n), H̄x(n)),

for n ∈ N0, with the given initial condition

(3.2) x(0) = x̄0,

where

(3.3) H̄x(n) :=

n−1
∑

σ=0

h̄(n, σ, x(σ), ∆x(σ)),

f̄ , h̄ are given functions and x is unknown function to be found. We assume that
f̄ ∈ D(N0 ×R

n ×R
n ×R

n, Rn) and for σ ≤ n; h̄ ∈ D(N2
0 ×R

n ×R
n, Rn). In this

section we formulate in brief the results analogous to Lemma 1 and Theorems 1, 2
related to the solutions of IVP (3.1)–(3.2) only. One can formulate results similar
to those in Theorems 3 and 4 with suitable modifications.

Let xi(n) ∈ D(N0, R) (i = 1, 2) be functions such that ∆xi(n) exist for n ∈ N0

and satisfy

(3.4)
∣

∣∆xi(n) − f̄(n, xi(n), ∆xi(n), H̄xi(n))
∣

∣ ≤ εi,
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for given constants εi ≥ 0, where it is supposed that the initial conditions

(3.5) xi(0) = x̄i,

are fulfilled. Then we call xi(n) the εi-approximate solutions with respect to the
IVP (3.1)–(3.2).

Discrete analogues of Lemma 1 and Theorems 1, 2 are given as follows.

Lemma 2. Let u, a, b ∈ D(N0, R+) and for s ≤ n; e(n, s), ∆1e(n, s), k(n, s) ∈
D(N2

0, R+). If a(n) is nondecreasing in n ∈ N0 and

(3.6) u(n) ≤ a(n) +
n−1
∑

s=0

[

b(s)u(s) + e(n, s)u(s) +
s−1
∑

σ=0

k(s, σ)u(σ)

]

,

for n ∈ N0, then

(3.7) u(n) ≤ a(n)
n−1
∏

s=0

[

1 + b(s) + Ā(s)
]

,

for n ∈ N0, where

(3.8) Ā(n) = e(n + 1, n) +
n−1
∑

σ=0

{k(n, σ) + ∆1e(n, σ)} .

The proof follows by looking closely at the proofs of the similar results given
in [7, Theorem 4.4.2] and [6, Theorems 1.3.4, 1.4.2].

Theorem 5. Suppose that the functions f̄ , h̄ in (3.1) satisfy

∣

∣f̄(n, x, y, z) − f̄(n, x̄, ȳ, z̄)
∣

∣ ≤ M̄ [|x − x̄| + |y − ȳ|] + |z − z̄| ,(3.9)
∣

∣h̄(n, σ, x, y) − h̄(n, σ, x̄, ȳ)
∣

∣ ≤ q̄(n, σ) [|x − x̄| + |y − ȳ|] ,(3.10)

where M̄ ≥ 0 is a constant such that M̄ < 1 and for s ≤ n; q̄(n, s), ∆1q̄(n, s) ∈
D(N2

0, R+). Let xi(n) (i = 1, 2) be respectively εi-approximate solutions of equa-

tion (3.1) with (3.5) on N0 such that

(3.11) |x̄1 − x̄2| ≤ δ0,

where δ0 ≥ 0 is a constant. Then

|x1(n) − x2(n)| + |∆x1(n) − ∆x2(n)|(3.12)

≤ ᾱ(n)

n−1
∏

s=0

[

1 +

{

M̄

1 − M̄
+ Ā0(s)

}]

,

for n ∈ N0, where

ᾱ(n) =
(ε1 + ε2)(n + 1) + δ0

1 − M̄
,(3.13)
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Ā0(n) =
1

1 − M̄

[

q̄(n + 1, n) +
n−1
∑

σ=0

{q̄(n, σ) + ∆1q̄(n, σ)}

]

.(3.14)

Proof: Since xi(n) (i = 1, 2) are respectively, εi-approximate solutions of equa-
tion (3.1) with (3.5), we have (3.4). By taking n = s in (3.4) and summing up
both sides over s from 0 to n − 1, we observe that

εin ≥

n−1
∑

s=0

∣

∣∆xi(s) − f̄(s, xi(s), ∆xi(s), H̄xi(s))
∣

∣

≥

∣

∣

∣

∣

∣

n−1
∑

s=0

{

∆xi(s) − f̄(s, xi(s), ∆xi(s), H̄xi(s))
}

∣

∣

∣

∣

∣

(3.15)

=

∣

∣

∣

∣

∣

{

xi(n) − xi(0) −

n−1
∑

s=0

f̄(s, xi(s), ∆xi(s), H̄xi(s))

}
∣

∣

∣

∣

∣

,

for i = 1, 2. From (3.15) and using the elementary inequalities in (2.13), we
observe that

(ε1 + ε2)n ≥

∣

∣

∣

∣

∣

{

x1(n) − x1(0) −

n−1
∑

s=0

f̄(s, x1(s), ∆x1(s), H̄x1(s))

}∣

∣

∣

∣

∣

(3.16)

+

∣

∣

∣

∣

∣

{

x2(n) − x2(0) −

n−1
∑

s=0

f̄(s, x2(s), ∆x2(s), H̄x2(s))

}∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

{

x1(n) − x1(0) −

n−1
∑

s=0

f̄(s, x1(s), ∆x1(s), H̄x1(s))

}

−

{

x2(n) − x2(0) −

n−1
∑

s=0

f̄(s, x2(s), ∆x2(s), H̄x2(s))

}∣

∣

∣

∣

∣

≥ |x1(n) − x2(n)| − |x1(0) − x2(0)|

−

∣

∣

∣

∣

∣

n−1
∑

s=0

f̄(s, x1(s), ∆x1(s), H̄x1(s)) −
n−1
∑

s=0

f̄(s, x2(s), ∆x2(s), H̄x2(s))

∣

∣

∣

∣

∣

.

Furthermore, from (3.4) and using the elementary inequalities in (2.13), we ob-
serve that

(ε1 + ε2) ≥
∣

∣∆x1(n) − f̄(n, x1(n), ∆x1(n), H̄x1(n))
∣

∣(3.17)

+
∣

∣∆x2(n) − f̄(n, x2(n), ∆x2(n), H̄x2(n))
∣

∣

≥
∣

∣

{

∆x1(n) − f̄(n, x1(n), ∆x1(n), H̄x1(n))
}

−
{

∆x2(n) − f̄(n, x2(n), ∆x2(n), H̄x2(n))
}
∣

∣

≥ |∆x1(n) − ∆x2(n)| −
∣

∣f̄(n, x1(n), ∆x1(n), H̄x1(n))
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−f̄(n, x2(n), ∆x2(n), H̄x2(n))
∣

∣ .

The rest of the proof can be completed by following the proof of Theorem 1 with
suitable modifications and using Lemma 2. Here we omit the further details. �

Consider the IVP (3.1)–(3.2) together with the following IVP

∆y(n) = ḡ(n, y(n), ∆y(n), H̄y(n)),(3.18)

y(0) = ȳ0,(3.19)

for n ∈ N0, where H̄ is given by (3.3) and ḡ ∈ D(N0 × R
n × R

n × R
n, Rn).

Theorem 6. Suppose that the functions f̄ , h̄ in equation (3.1) satisfy the con-

ditions (3.9), (3.10) and there exist constants ε̄ ≥ 0, δ̄ ≥ 0 such that

∣

∣f̄(n, x, y, z) − ḡ(n, x, y, z)
∣

∣ ≤ ε̄,(3.20)

|x̄0 − ȳ0| ≤ δ̄,(3.21)

where f̄ , x̄0 and ḡ, ȳ0 are as in IVP (3.1)–(3.2) and IVP (3.18)–(3.19). Let

x(n) and y(n) be solutions of IVP (3.1)–(3.2) and IVP (3.18)–(3.19), respectively,

on N0. Then

(3.22) |x(n) − y(n)| + |∆x(n) − ∆y(n)| ≤ β̄(n)
n−1
∏

s=0

[

1 +

{

M̄

1 − M̄
+ Ā0(s)

}]

,

for n ∈ N0, where

(3.23) β̄(n) =
ε̄(n + 1) + δ̄

1 − M̄
,

and Ā0(n) is as in (3.14).

The proof follows by a similar argument as in the proof of Theorem 2 given
above with suitable modifications. We omit the details.
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