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Functor of extension of Λ-isometric maps between

central subsets of the unbounded Urysohn universal space

Piotr Niemiec

Abstract. The aim of the paper is to prove that in the unbounded Urysohn uni-
versal space U there is a functor of extension of Λ-isometric maps (i.e. dilations)
between central subsets of U to Λ-isometric maps acting on the whole space.
Special properties of the functor are established. It is also shown that the mul-
tiplicative group R \ {0} acts continuously on U by Λ-isometries.

Keywords: Urysohn’s universal space, ultrahomogeneous spaces, functor, exten-
sions of isometries

Classification: 54C20, 54E40, 54E50

The (unbounded) Urysohn universal space was introduced in [13], [14]. In
[10], we have proved that in a bounded Urysohn space, there is a functor of
extension of contractions with special properties. The purpose of this paper is to
show that one can extend functorially Λ-isometric maps between central subsets
of the unbounded Urysohn space U. As an application, we shall prove that the
semigroup (R, ·) acts on U in a very specific way which makes the space U similar
to normed linear spaces.

Urysohn universal spaces are still investigated because of their importance in
the theory of Polish groups and therefore the literature dealing with them is still
growing up, especially in recent years, see e.g. [1], [2], [3], [4], [7], [8], [15], [16].

The paper is organized as follows: in Section 1 we build an auxiliary functor
and establish its properties. This is done by means of a modified method of
Katětov [6], already used by Uspenskij [15], Gao and Kechris [2] or Melleray [8].
The results of the first part are applied in Section 2 where we prove the existence
of a special functor of extension of Λ-isometric maps in the unbounded Urysohn
space U. To do that we use our method introduced in [11] and applied also in
[10]. In the last part we show that the multiplicative semigroup R acts on U in a
very specific way.

1. Auxiliary functor

We begin with the following

1.1 Definition. A Katětov map on a metric space (X, d) is any function f : X →
R such that |f(x) − f(y)| ≤ d(x, y) ≤ f(x) + f(y) for each x, y ∈ X . The space
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of all Katětov maps on X is denoted by E(X) and it is called the Katětov hull

of the space X . The Katětov hull is equipped with the metric induced by the
supremum norm, which we denote by ‖ · ‖. (Katětov maps may be unbounded,
their difference however is always bounded.) It is always a complete metric space.

The Kuratowski map e : X → E(X) is given by the formula e(x) = ex, where
ex(y) = d(x, y) (x, y ∈ X). The map e is isometric and ‖f − ex‖ = f(x) for each
f ∈ E(X) and x ∈ X . This says that the space X may be identified with the
subset e(X) of E(X), which is commonly done. However, we follow Katětov [6]
and we shall distinguish between X and e(X).

Let A be a nonempty subset of the space X and let f ∈ E(A). The Katětov

extension of f (in X) is a map f̂ : X → R defined by

f̂(x) = inf
a∈A

(f(a) + d(x, a)) (x ∈ X).

The map E(A) ∋ f 7→ f̂ ∈ E(X) is a well defined isometric embedding (this is
the theorem of Katětov [6]).

Let E(X,ω) = {f̂ : f ∈ E(T ) with a finite nonempty T ⊂ X} ⊂ E(X). It is
well known that if X is separable, then so is E(X,ω) (see e.g. [6]). Note also that
e(X) ⊂ E(X,ω).

For a number λ ∈ (0,+∞), by a λ-isometric map between metric spaces (X, d)
and (Y, ̺) we mean any function ϕ : X → Y such that ̺(ϕ(x), ϕ(y)) = λd(x, y)
for every x, y ∈ X . A Λ-isometric map is a λ-isometric map for some positive λ.
If an isometric [respectively, a λ-isometric, a Λ-isometric] map is bijective, it is
called an isometry [respectively a λ-isometry, a Λ-isometry].

Now we are ready to introduce a certain category and an auxiliary functor
acting on it. Let S be the class of all complete separable nonempty metric spaces.
For two members X and Y of S, let Λ(X,Y ) be the family of all pairs (ϕ, λ),
where λ is a positive constant and ϕ : X → Y is λ-isometric. Note that the entry
‘λ’ matters only if cardX = 1 (in other cases λ is uniquely determined by ϕ).

ForX,Y, Z ∈ S and (ϕ, λ) ∈ Λ(X,Y ) and (ψ, µ) ∈ Λ(Y, Z), put (ψ, µ)◦(ϕ, λ) =
(ψ ◦ ϕ, λµ) ∈ Λ(X,Z). Additionally, let IdX = (idX , 1), where idX is the identity
map on X . There is no difficulty in checking that the above rules well define a
category. Now we shall build a functor on it.

For a nonempty metric space (X, d), let jX : E(X) → X ⊔ (E(X) \ e(X)) (‘⊔’
stands for the disjoint union) be a map defined by jX(ex) = x for x ∈ X and
jX(f) = f for f /∈ e(X). Clearly, jX is a bijection.

Now let (X, d) ∈ S. Put E(X, d) = (E(X), E(d)) where E(X) = X ⊔ (E(X,ω) \
e(X)) and E(d) : E(X) × E(X) → R is a metric defined by

E(d)(u, v) = ‖j−1
X (u) − j−1

X (v)‖ (u, v ∈ E(X)).

It is easy to check that

(1.1) (X, d) ⊂ (E(X), E(d))
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(the above inclusion means, in particular, that the metric d coincides with the
restriction of E(d) to the set X ×X) and that (E(X), E(d)) ∈ S.

Now let ϕ : X → Y be λ-isometric, where X is nonempty. We define j[ϕ, λ] :
E(X) → E(Y ) by the formula j[ϕ, λ](f) = ĝ, where g = λf ◦ ϕ−1 ∈ E(ϕ(X)). It
is easily seen that j[ϕ, λ] is a well defined λ-isometric map (because of the fact
that E(ϕ(X)) ∋ g 7→ ĝ ∈ E(Y ) is isometric).

Let X,Y ∈ S and (ϕ, λ) ∈ Λ(X,Y ). First of all, observe that if f ∈ E(X,ω),
then j[ϕ, λ](f) ∈ E(Y, ω). Indeed, if f = û with u ∈ E(T ), then j[ϕ, λ](f) = v̂
with v = λu ◦ (ϕ

∣∣
T
)−1 ∈ E(ϕ(T )) and thus j[ϕ, λ](f) ∈ E(Y, ω). This provides

us to define E(ϕ, λ) : E(X) → E(Y ) as follows: E(ϕ, λ)(u) = jY (j[ϕ, λ](j−1
X (u))).

It is not difficult to verify that E(ϕ, λ) is λ-isometric (and therefore (E(ϕ), λ) ∈
Λ(E(X), E(Y ))) and that

(1.2) E(ϕ, λ)
∣∣
X

= ϕ.

The reader will check that E(IdX) = idE(X) and E(ψ, µ) ◦ E(ϕ, λ) = E(ψ ◦ ϕ, λµ)
for every X,Y, Z ∈ S and (ϕ, λ) ∈ Λ(X,Y ) and (ψ, µ) ∈ Λ(Y, Z). Now we shall
establish further properties of the operator E . Repeating the proof of Uspenskij
[15] (or of Katětov [6]), one may show that

1.2 Proposition. Let (X, d) and (Y, ̺) be two arbitrary members of S. If

(ϕn, λn)n is a sequence of elements of Λ(X,Y ) such that (ϕn)n is pointwisely

convergent to some ϕ0 : X → Y and (λn)n converges to some positive λ0, then

(ϕ0, λ0) ∈ Λ(X,Y ) and the sequence (E(ϕn, λn))n is pointwisely convergent to

E(ϕ0, λ0).

The above result says that the operator E is continuous in the topologies of
pointwise convergence. Indeed, since X and E(X) are separable, therefore the
collections Λ(X,Y ) and Λ(E(X), E(Y )) are metrizable in these topologies.

It is clear that if ϕ is λ-isometric and surjective, then E(ϕ, λ) is surjective as
well. It turns out that the converse implication is also true, which shows the
following

1.3 Proposition. Let (X, d), (Y, ̺) ∈ S and (ϕ, λ) ∈ Λ(X,Y ). Then for every

y ∈ Y ,

(1.3) dist̺(y, imϕ) = distE(̺)(y, im E(ϕ, λ)),

where ‘ im’ stands for the image of a function. In particular, Y ∩im E(ϕ, λ) = imϕ
and E(ϕ, λ) is surjective if and only if so is ϕ.

Proof: To prove (1.3), it is enough to check that

‖j[ϕ, λ](f) − ey‖ ≥ dist̺(y, imϕ)
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for each f ∈ E(X). Put g = λf ◦ ϕ−1. Since g is nonnegative, we have

‖j[ϕ, λ](f) − ey‖ = ‖ĝ − ey‖ = ĝ(y) = inf{g(z) + ̺(z, y) : z ∈ ϕ(X)}

≥ inf{̺(z, y) : z ∈ ϕ(X)} = dist̺(y, imϕ).

Now if y ∈ Y ∩E(ϕ), then the right-hand side expression of (1.3) is equal to 0 and
thus y ∈ imϕ. But imϕ is closed, because X is complete and ϕ is Λ-isometric.
So, y ∈ imϕ. The remainder of the claim follows from the proved part. �

To simplify the notation, let us agree that whenever (Z, λ) is a metric space
and f, g : W → Z are arbitrary functions defined on a nonempty set U , then
λsup(f, g) denotes the number supw∈W λ(f(w), g(w)) ∈ [0,+∞]. One may think
that the operator E preserves distances, i.e. that

(1.4) E(̺)sup(E(ϕ, λ), E(ψ, µ)) = ̺sup(ϕ, ψ) ∈ [0,+∞]

whenever (X, d), (Y, ̺) ∈ S and (ϕ, λ), (ψ, µ) ∈ Λ(X,Y ). We suppose that this is
not the rule in general. However, there is no difficulty in showing that

1.4 Proposition. Let (X, d), (Y, ̺) ∈ S and let λ > 0. If ϕ, ψ : X → Y are two

λ-isometric maps, then

E(̺)sup(E(ϕ, λ), E(ψ, λ)) = ̺sup(ϕ, ψ).

2. Functor on the unbounded Urysohn space

Recall that a metric space U is an (unbounded) Urysohn universal space if U is
complete, separable, universal and ultrahomogeneous , where universality means
that every separable metric space is isometrically embeddable in U and ultraho-
mogeneity says that every isometry between finite subsets of U is extendable to
an isometry of the whole space. The Urysohn universal space U is more than
ultrahomogeneous — it is compact homogeneous, i.e. every isometry between two
compact subsets of U is extendable to an isometry of the whole space. This was
proved by Huhunaǐsvili in [5]. The existence and the uniqueness (up to isometry)
of the Urysohn space were proved by Urysohn [13], [14]. He has also proved that
a metric space X is Urysohn if it is the completion of an unbounded separable
finitely injective space, which gives the most convenient way to construct this
space. Recall that an unbounded metric space (Z, d) is finitely injective if for ev-
ery finite nonempty subset T of Z and every Katětov map f on T there is x ∈ X
such that f = ex

∣∣
T
.

Katětov in his fundamental paper [6] described a very convenient method of
constructing finitely injective spaces. Namely, starting with an arbitrary non-
empty metric space X , one defines inductively an increasing sequence of spaces as

follows: X0 = X and Xn = E(Xn−1, ω) (or Xn = E(Xn−1, ω)) for n ≥ 1. Iden-
tifying Xn with e(Xn), one has Xn ⊂ Xn+1 and thus the space X∗ =

⋃∞
n=0Xn

is well defined. Whatever X is, X∗ is finitely injective and has the same density
character as X . Thus, thanks to the before mentioned theorem of Urysohn, the
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completion of X∗ is an Urysohn space, provided X is separable. We shall use
these fact and idea in the sequel. But first we state the following definition (we
restrict here only to unbounded spaces; for the general case see e.g. [9]).

2.1 Definition. Let X be an unbounded metric space. A subset A of X is
central , if for each finite nonempty subset T of X and every Katětov map f on
A ∪ T there is x ∈ X such that f = ex

∣∣
A∪T

.

Central subsets of the Urysohn space U are of our interest. One shows that if
A is a central subset of U, then E(A) is separable (see e.g. [9]). The converse is
not true.

In the sequel we shall need the following result due to Melleray [7].

2.2 Theorem. For a nonempty metric space (X, d), the following conditions are

equivalent:

(i) E(X) is separable,

(ii) X is separable and E(X,ω) is dense in E(X),
(iii) X has the collinearity property, i.e. there is no infinite subset A of X

for which

inf{d(x, y) + d(y, z) − d(x, z) : x, y, z are distinct points of A} > 0.

Closed balls in the completion of a metric space with the collinearity property are

compact.

Melleray [7] has shown that every unbounded metric space has an isometric
copy in U which is not central. In the opposite, we have proved in [9] that every
metric space with separable Katětov hull has a central copy in U.

Our aim is to extend Λ-isometric maps between central subsets of U. For this,
we need the following two results, the proofs of which the reader can find in [9]:

2.3 Proposition. If A is a central subset of a metric space X , then A is central

in the completion of X .

2.4 Proposition. Every isometry between central subsets of U is extendable to

an isometry of the whole space.

Let (X, d) be a metric space. For any (possibly empty) subset B of X , put

E(X,B, ω) = {f̂ : f ∈ E(B ∪ T ) for some finite nonempty T ⊂ X} ⊂ E(X).
Thus, E(X,ω) = E(X, ∅, ω). Note that E(X,B1, ω) ⊂ E(X,B2, ω), provided
B1 ⊂ B2 ⊂ X .

In the sequel we shall need the following property, which is an almost immediate
consequence of Theorem 2.2:

2.5 Lemma. If A is a subset of a metric space X and E(A) is separable, then

the closures of the sets E(X,A, ω) and E(X,ω) coincide.

Proof: We may assume that A is nonempty. Let g ∈ E(X,A, ω). This means
that there is a finite subset T of X and a Katětov map f on A ∪ T such that
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g = f̂ . Let ε > 0. Since E(A) is separable, so is E(A ∪ T ) and therefore, by
Theorem 2.2(ii), there are a finite nonempty subset B of A∪T and a Katětov map
u onB such that ‖f−û

∣∣
A∪T

‖ ≤ ε. Put v = û
∣∣
A∪T

. We have then v̂ = û ∈ E(X,ω)

and, by the Katětov theorem, ‖g − v̂‖ = ‖f̂ − v̂‖ = ‖f − v‖ ≤ ε. This shows that

g ∈ E(X,ω) and thus E(X,A, ω) ⊂ E(X,ω). The converse inclusion follows from
the one E(X,ω) ⊂ E(X,A, ω). �

Now, using the Katětov method, we shall iterate the operator E built in the first
section. This idea is analogous to that of Gao and Kechris [2] and Uspenskij [15].

For any (X, d) ∈ S, put E0(X, d) = (E0(X), E0(d)) = (X, d) and for n ≥ 1, let
En(X, d) = (En(X), En(d)) = (E(En−1(X)), E(En−1(d))). By (1.1), (En(X), En(d))
⊂ (En+1(X), En+1(d)) and therefore we may define a metric space (E∞(X), E∞(d))
∈ S as the completion of the space

⋃∞
n=0(En(X), En(d)). Similarly, for (ϕ, λ) ∈

Λ(X,Y ) with (X, d), (Y, ̺) ∈ S, put E0(ϕ, λ) = ϕ and En(ϕ, λ) = E(En−1(ϕ, λ), λ)
(n ≥ 1). One easily checks that (En(ϕ, λ), λ) ∈ Λ(En(X), En(Y )) and that
En+1(ϕ, λ) extends En(ϕ, λ) (thanks to (1.2)). So,

⋃∞
n=0 En(ϕ, λ) is a well defined

λ-isometric map and therefore we may define E∞(ϕ, λ) as the unique continuous
extension of it. We have (E∞(ϕ, λ), λ) ∈ Λ(E∞(X), E∞(Y )).

The reader will check with no difficulty that E∞(IdX) = idE∞(X) and E∞(ψ, µ)◦
E∞(ϕ, λ) = E∞(ψ ◦ ϕ, λµ) for every (ϕ, λ) ∈ Λ(X,Y ), (ψ, µ) ∈ Λ(Y, Z) and
X,Y, Z ∈ S. Further properties of the operator E∞ are collected in the following

2.6 Proposition. Whenever (X, d) and (Y, ̺) are members of S and (ϕn, λn)
(n ≥ 1), (ϕ, λ) and (ψ, λ) are elements of Λ(X,Y ), then:

(i) the space E∞(X) is isometric to U,

(ii) Y ∩ im E∞(ϕ, λ) = imϕ; E∞(ϕ, λ) is surjective if and only if so is ϕ,

(iii) if the sequence (ϕn)n is pointwisely convergent to ϕ and λ = limn→∞ λn,

then the sequence (E∞(ϕn, λn))n converges pointwisely to E∞(ϕ, λ),
(iv) E∞(̺)sup(E∞(ϕ, λ), E∞(ψ, λ)) = ̺sup(ϕ, ψ).

The crucial point of our further construction will be the following

2.7 Lemma. For X ∈ S, the following conditions are equivalent:

(i) X is a central subset of E∞(X),
(ii) E(X) is separable.

Proof: The implication ‘(ii) =⇒ (i)’ follows from the fact that the Katětov hull
of each central subset of U is separable.

To prove the converse implication, we shall use Lemma 2.5 and Proposition 2.3.
Assume that E(X) is separable and consider the space X∗=

⋃∞
n=0 En(X). Let T

be a finite subset of X∗ and let f ∈ E(X ∪ T ). Since T is finite, there is n ≥ 0

such that T ⊂ En(X). For simplicity, put Z = En(X) and u = f̂
∣∣
Z
. We may

assume that u /∈ e(Z). By Lemma 2.5, u ∈ E(Z, ω). So, u ∈ E(Z, ω) \ e(Z) ⊂
En+1(X) ⊂ X∗ and f = eu

∣∣
X∪T

. This shows that X is central in X∗ and hence,

by Proposition 2.3, X is central in E∞(X) as well. �

Now we are ready to state and prove the main result of this section.
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2.8 Theorem. Let d be the metric of U. Let L be the collection of all quadruples

of the form (X,ϕ, Y ;λ), where X and Y are closed nonempty central subsets of

U, λ is a positive number and ϕ is a λ-isometric map of X to Y . There exists

an operator L ∋ (X,ϕ, Y ;λ) 7→ ϕ̂X,Y ;λ ∈ UU such that whenever X,Y, Z are

closed nonempty central subsets of U, (ϕn, λn) (n ≥ 1) and (ϕ, λ) and (ψ, µ) are

members of Λ(X,Y ) and (θ, ν) ∈ Λ(Y, Z), then:

(Λ1) îdX,X;1 = idU and θ̂ ◦ ϕX,Z;λν = θ̂Y,Z;ν ◦ ϕ̂X,Y ;λ,

(Λ2) ϕ̂X,Y ;λ is a λ-isometric map which extends ϕ,

(Λ3) Y ∩ im ϕ̂X,Y ;λ = imϕ; ϕ̂X,Y ;λ is surjective if and only if so is ϕ,

(Λ4) if the sequence (ϕn)n is pointwisely convergent to ϕ and λ = limn→∞ λn,

then the sequence (ϕ̂nX,Y ;λn

)n converges pointwisely to ϕ̂X,Y ;λ,

(Λ5) if µ = λ, then dsup(ϕ̂X,Y ;λ, ψ̂X,Y,µ) = dsup(ϕ, ψ).

Proof: Let X be an arbitrary closed nonempty central subset of U. We infer
from this that E(X) is separable. By Proposition 2.6(i), there is an isometry
ΨX : E∞(X) → U. By Lemma 2.7, X is central in E∞(X) and thus ΨX(X)
is a central subset of U, isometric to X and hence, thanks to Proposition 2.4,
there is an isometry ΘX : U → U such that ΘX

∣∣
X

= ΨX

∣∣
X

. Put ΦX = Θ−1
X ◦

ΨX : E∞(X) → U. Then ΦX is an isometry such that ΦX

∣∣
X

= idX .

Now for (X,ϕ, Y ;λ) ∈ L, put

ϕ̂X,Y ;λ = ΦY ◦ E∞(ϕ, λ) ◦ Φ−1
X .

It is easy to check that all items of the statement are satisfied. �

Note that — as in the first section — the entry ‘λ’ of a quadruple (X,ϕ, Y ;λ)
in the statement of the foregoing theorem may be omitted if cardX > 1. In that
case, (Λ4) says that the operator Λ(X,Y ) ∋ ϕ 7→ ϕ̂X,Y ∈ Λ(U,U) is continuous
in the topologies of pointwise convergence.

3. Multiplicative action of R on U

The main result of the previous section implies the following

3.1 Theorem. Let d be the metric of U and let θ and Z be a fixed element of U

and a central nonempty subset of it, respectively. There is an action · : R×U → U

such that for every s, t ∈ R and x, y ∈ U:

(M1) 0 · x = θ, 1 · x = x, tθ = θ and s(tx) = (st)x,
(M2) d(tx, ty) = |t|d(x, y),
(M3) d(sz, tz) = |t− s|d(z, θ) for each z ∈ Z,

(M4) the function R × U ∋ (t, x) 7→ tx ∈ U is continuous.

Proof: Let E denote the Banach space of all continuous real-valued functions
on [0, 1] equipped with the supremum metric ̺. Since E is universal for separable
metric spaces, there is an isometric embedding j : Z∪{θ} → E such that j(θ) = 0.
Now for t ∈ R \ {0}, let ϕt : E → E be defined by ϕt(f) = tf . Put mt =
E∞(ϕt, t) : E∞(E) → E∞(E) for t 6= 0 and m0 : E∞(E) ∋ ξ 7→ 0 ∈ E ⊂ E∞(E).
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Additionally, for each ξ ∈ E∞(E) and t ∈ R, put t ∗ ξ = mt(ξ). If we think of
the action ‘∗’ as a multiplication ‘·’ [on E∞(E)] appearing in (M1)–(M4), then ‘∗’
satisfies (M1) for any x ∈ E∞(E) and with θ replaced by the zero element of E,
because mt ◦ms = mst. Further, since ϕt is a |t|-isometry for t 6= 0, so is mt and,
therefore, (M2) is also fulfilled, when d is replaced by E∞(̺) and x, y ∈ E∞(E).
What is more, the action ∗ : R × E∞(E) → E∞(E) is continuous. Further, by
Proposition 2.6(i), there is an isometry ψ : E∞(E) → U. By Lemma 2.7 and
Proposition 2.4, there exists an isometry κ : U → U which extends ψ ◦ j. Let
Ψ = κ−1 ◦ ψ. Then Ψ

∣∣
j(Z∪{θ})

= j−1. Finally, for t ∈ R and u ∈ U, put

t · u = Ψ(t ∗ Ψ−1(u)). By the previously proved properties of the action ‘∗’ on
E∞(E), the action ‘·’ on U satisfies conditions (M1), (M2) and (M4), while (M2)
follows from the connection t · z = Ψ(tj(z)) for z ∈ Z and t ∈ R. �

3.2 Remark. One may ask whether there is an action as in the statement of
Theorem 3.1 such that (M3) is fulfilled for each z ∈ U. We answer that this is
impossible, which can be shown as follows.

Suppose, for the contrary, that there exists such a multiplication. Take b ∈ U

such that d(b, θ) = 1. Put b′ = 1
2 · b. Then, by (M1)–(M3), d(θ, b′) = d(b, b′) =

1
2d(θ, b) = 1

2 , which implies that the formulas θ, b′ 7→ 1 and b 7→ 1
2 define a Katětov

map on {θ, b, b′}. Thus there exists c ∈ U such that d(c, θ) = d(c, b′) = 2d(c, b) =
1. Hence, by (M1)–(M3), 1 = d(b′, c) = d(1

2 · b, 1 · c) ≤ d(1
2 · b,

1
2 · c)+d(1

2 · c, 1 · c) =
1
2d(b, c) + 1

2d(c, θ) = 3
4 , which is a contradiction.

3.3 Remark. Melleray [8], following Pestov [12] (who was interested in the
‘bounded version’ of the Urysohn universal space), thought of whether the group
Iso(U) of all isometries of the unbounded Urysohn space (U, d) is path-connected
with respect to its uniform topology, i.e. the topology induced by the metric
min(dsup, 1). He pointed out this as an open problem. Below we explain that the
answer to this is negative.

Theorem 3.1 implies that there is an unbounded isometry ϕ ∈ Iso(U), i.e.
dsup(ϕ, idU) = +∞. Indeed, it is enough to put ϕ(x) = (−1) · x. (The existence
of an unbounded isometry was also proved by Cameron and Vershik [1], by a
different method.) Now if we define an equivalence relation on Iso(U) by ϕ ∼
ψ ⇐⇒ dsup(ϕ, ψ) < +∞, then it is easy to see that every equivalence class (with
respect to ‘∼’) is open in the uniform topology. These sets are pairwise disjoint
and therefore Iso(U) is disconnected with respect to the uniform topology.
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