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Abstract

In this paper we consider holomorphically projective mappings from
the compact semisymmetric spaces An onto (pseudo-) Kählerian spaces
K̄n. We proved that in this case space An is holomorphically projective
flat and K̄n is space with constant holomorphic curvature. These results
are the generalization of results by T. Sakaguchi, J. Mikeš, V. V. Doma-
shev, N. S. Sinyukov, E. N. Sinyukova, M. Škodová, which were done for
holomorphically projective mappings of symmetric, recurrent and semi-
symmetric Kählerian spaces.
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1 Introduction

Diffeomorphisms and automorphisms of geometrically generalized spaces consti-
tute one of the current main directions in differential geometry. A large number
of papers are devoted to geodesic, quasigeodesic, almost geodesic, holomorphi-
cally projective and other mappings (see [1], [6], [8], [9], [10], [14], [16], [18], [20],
[21], [22], [23]). On the other hand, one line of thought is now the most im-
portant one, namely, the investigation of special affine-connected, Riemannian,
Kählerian and Hermitian spaces.
As we know, Kählerian spaces are the special case of Hermitian spaces [23].

In many papers, holomorphically projective mappings and transformations of
Hermitian spaces are studied (for example see [1], [3], [4], [10], [12], [15], [16],
[13], [17], [19], [20], [21], [23]). These are special cases of F1-planar mappings.
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In [8], [10], F1-planar mappings from the space An with affine connection onto
a Riemannian space V̄n are defined and studied.
In this paper, we present some new results obtained for holomorphically

projective mappings from compact equiaffine semisymmetric An onto Kählerian
spaces K̄n.

2 Holomorphically projective mappings

J. Mikeš and O. Pokorná [12] considered holomorphically projective mappings
from equiaffine spaces An onto Kählerian spaces K̄n.
A space An with the affine connection Γ is equiaffine if in An the Ricci tensor

is symmetric. A (pseudo-) Riemannian space K̄n is called a Kählerian space if
it contains, along with the metric tensor ḡ, an affine structure F satisfying the
following relations

F 2 = −Id, ḡ(X,FY ) + ḡ(Y, FX) = 0, ∇̄F = 0,

where X,Y ∈ TK̄n, ∇̄ is the connection of K̄n.

The following criteria from the paper [12] hold for holomorphically projective
mappings from an equiaffine space An onto a Kählerian space K̄n.
Consider concrete mappings f : An → K̄n, both spaces being referred to the

general coordinate system x with respect to this mapping. This is a coordinate
system where two corresponding points M ∈ An and f(M) ∈ K̄n have equal
coordinates x = (x1, x2, . . . , xn); the corresponding geometric objects in K̄n will
be marked with a bar. For example, ∇ and ∇̄ are connections on An and K̄n,
respectively.
The equiaffine space An admits a holomorphically projective mapping f onto

the Kählerian space K̄n if and only if the following conditions in the common
coordinate system x hold

∇̄(X,Y ) = ∇(X,Y ) + ψ(X)Y + ψ(Y )X − ψ(FX)FY − ψ(FY )FX.

where ψ is a linear form. We suppose that ψ is a gradient form, i.e. ψ = dΨ. In
this space An there is a complex structure F covariantly constant.
If ψ �≡ 0 then a holomorphically projective mapping is called nontrivial ;

otherwise it is said to be trivial or affine.
Hereafter we shall assume that in the equiaffine space An the Ricci tensor Ric

with respect to the structure F will be preserved, i.e. Ric(X,Y ) = Ric(FX,FY ).
In this case P̄ = P holds, where

P h
ijk = Rh

ijk − 1

n+ 2
(δhkRij − δhjRik + (Fh

j Rαk − Fh
k Rαj)F

α
i + 2Fh

i RαkF
α
j )

is the tensor of the holomorphically projective curvature of An. This tensor is
an invariant object of the holomorphically projective mappings, see [10], [20],
[21], [23]. This tensor is F -traceless [5].
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If an equiaffine space An with condition P h
ijk = 0 (holomorphically projective

flat space) admits a holomorphically projective mapping onto a Kählerian space
K̄n, then K̄n has the constant holomorphic curvature [12].

3 Holomorphically projective mappings from
semisymmetric equiaffine spaces

It is known, semisymmetric spaces An are characterized by the condition
R ◦ R = 0 [2]. These spaces were characterized by N. S. Sinyukov [20] by
the following differential conditions on the Riemannian tensor: Rh

ijk,[lm] = 0.
On base of the Ricci identity, this condition is written as follows

Rh
αjkR

α
ilm +Rh

iαkR
α
jlm +Rh

ijαR
α
klm −Rα

ijkR
h
αlm = 0.

We have the following [6]:

Theorem 1 If an equiaffine semisymmetric space An, where the Ricci tensor
Rij with respect to the structure F will be preserved, admits a holomorphically
projective mapping onto a Kählerian space K̄n, then K̄n is the space with the
constant holomorphically projective curvature or K̄n admits a K-concircular
vector field ψi, which satisfies

∇Y ψ(X)− ψ(X)ψ(Y ) + ψ(FX)ψ(FY ) =
Δ

n
ḡ(X,Y ), Δ = const. (3.1)

4 Holomorphically projective mappings from compact
semisymmetric equiaffine spaces

We have the following:

Theorem 2 If a compact equiaffine semisymmetric space An, where the Ricci
tensor Rij with respect to the structure F will be preserved, admits a holomor-
phically projective mapping onto a Kählerian space K̄n then K̄n is the space with
the constant holomorphically projective curvature (and Kn is holomorphically
projective) or mapping is trivial (affine).

Proof Let An be a compact semisymmetric space of the type described above
which admits a holomorphically projective mapping onto a Kählerian space K̄n.
According to the Theorem 1, we have formulas (3.1) which may be written

on all coordinate neighbourhood (x) in the followig form

ψi,j − ψiψj + ψαψβF
α
i F

β
j =

Δ

n
ḡhi, (4.1)

where “ , ” is denote covariant derivative with respect to the connection ∇ on
An, ψi, Fh

i and ḡij are components of form ψ, structure F and metric tensor ḡ,
respectivelly.
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Let us suppose that there exists some solution of the equation (4.1), let be
denoted by ϕ. Using ϕ we obtain the following formulation of these equations:

ψij ≡ ψi,j − ψiϕj + ψαϕβF
α
i F

β
j =

Δ

n
ḡhi, (4.2)

Since the metric tensor ḡij is regular (det(ḡ) �= 0), in a neighbourhood of
every point there exists a positive form Aijzizj such that

ḡij A
ij ≥ 0 (or ḡij Aij ≤ 0).

Contracting formula (4.2) we have ψij A
ij ≥ 0 (or ψij A

ij ≤ 0), which may
be, in detail, written in the form:

(Ψ,ij −Ψ,iϕj +Ψ,αϕβF
α
i F

β
j )A

ij ≥ 0 (or ≤ 0) (4.3)

where the symbol ≥ (or ≤ 0) evidently depends on the signum of the constantΔ
and ψ = dΨ.
The formula (4.3) may be written in the following form:

∂2Ψ(x)

∂xi∂xj
Aij(x) +

∂Ψ(x)

∂xi
Bi(x) ≥ 0 (or ≤ 0)

where Bi(x) are function on coordinate neighbourhood of manifold.
It follows from the Hopf’s Theorem (see [11], [24]) that this second order

differential equations has only trivial solution Ψ = const. This implifies ψ = 0.
Herewith the proof is complete. �
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